Commit e0ceeab0 authored by Felix Lange's avatar Felix Lange Committed by GitHub

crypto/secp256k1: update to github.com/bitcoin-core/secp256k1 @ 9d560f9 (#3544)

- Use defined constants instead of hard-coding their integer value.
- Allocate secp256k1 structs on the C stack instead of converting []byte
- Remove dead code
parent 93077c98
......@@ -72,14 +72,6 @@ func BenchmarkSha3(b *testing.B) {
fmt.Println(amount, ":", time.Since(start))
}
func Test0Key(t *testing.T) {
key := common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000000000")
_, err := secp256k1.GeneratePubKey(key)
if err == nil {
t.Errorf("expected error due to zero privkey")
}
}
func TestSign(t *testing.T) {
key, _ := HexToECDSA(testPrivHex)
addr := common.HexToAddress(testAddrHex)
......
......@@ -33,7 +33,6 @@ package secp256k1
import (
"crypto/elliptic"
"io"
"math/big"
"sync"
"unsafe"
......@@ -224,6 +223,7 @@ func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int,
if len(scalar) > 32 {
panic("can't handle scalars > 256 bits")
}
// NOTE: potential timing issue
padded := make([]byte, 32)
copy(padded[32-len(scalar):], scalar)
scalar = padded
......@@ -257,31 +257,6 @@ func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
}
var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
//TODO: double check if it is okay
// GenerateKey returns a public/private key pair. The private key is generated
// using the given reader, which must return random data.
func (BitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) {
byteLen := (BitCurve.BitSize + 7) >> 3
priv = make([]byte, byteLen)
for x == nil {
_, err = io.ReadFull(rand, priv)
if err != nil {
return
}
// We have to mask off any excess bits in the case that the size of the
// underlying field is not a whole number of bytes.
priv[0] &= mask[BitCurve.BitSize%8]
// This is because, in tests, rand will return all zeros and we don't
// want to get the point at infinity and loop forever.
priv[1] ^= 0x42
x, y = BitCurve.ScalarBaseMult(priv)
}
return
}
// Marshal converts a point into the form specified in section 4.3.6 of ANSI
// X9.62.
func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
......
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// secp256k1_context_create_sign_verify creates a context for signing and signature verification.
static secp256k1_context* secp256k1_context_create_sign_verify() {
return secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
}
// secp256k1_ecdsa_recover_pubkey recovers the public key of an encoded compact signature.
//
// Returns: 1: recovery was successful
// 0: recovery was not successful
// Args: ctx: pointer to a context object (cannot be NULL)
// Out: pubkey_out: the serialized 65-byte public key of the signer (cannot be NULL)
// In: sigdata: pointer to a 65-byte signature with the recovery id at the end (cannot be NULL)
// msgdata: pointer to a 32-byte message (cannot be NULL)
static int secp256k1_ecdsa_recover_pubkey(
const secp256k1_context* ctx,
unsigned char *pubkey_out,
const unsigned char *sigdata,
const unsigned char *msgdata
) {
secp256k1_ecdsa_recoverable_signature sig;
secp256k1_pubkey pubkey;
if (!secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &sig, sigdata, (int)sigdata[64])) {
return 0;
}
if (!secp256k1_ecdsa_recover(ctx, &pubkey, &sig, msgdata)) {
return 0;
}
size_t outputlen = 65;
return secp256k1_ec_pubkey_serialize(ctx, pubkey_out, &outputlen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
}
// secp256k1_pubkey_scalar_mul multiplies a point by a scalar in constant time.
//
// Returns: 1: multiplication was successful
// 0: scalar was invalid (zero or overflow)
// Args: ctx: pointer to a context object (cannot be NULL)
// Out: point: the multiplied point (usually secret)
// In: point: pointer to a 64-byte public point,
// encoded as two 256bit big-endian numbers.
// scalar: a 32-byte scalar with which to multiply the point
int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, unsigned char *point, const unsigned char *scalar) {
int ret = 0;
int overflow = 0;
secp256k1_fe feX, feY;
secp256k1_gej res;
secp256k1_ge ge;
secp256k1_scalar s;
ARG_CHECK(point != NULL);
ARG_CHECK(scalar != NULL);
(void)ctx;
secp256k1_fe_set_b32(&feX, point);
secp256k1_fe_set_b32(&feY, point+32);
secp256k1_ge_set_xy(&ge, &feX, &feY);
secp256k1_scalar_set_b32(&s, scalar, &overflow);
if (overflow || secp256k1_scalar_is_zero(&s)) {
ret = 0;
} else {
secp256k1_ecmult_const(&res, &ge, &s);
secp256k1_ge_set_gej(&ge, &res);
/* Note: can't use secp256k1_pubkey_save here because it is not constant time. */
secp256k1_fe_normalize(&ge.x);
secp256k1_fe_normalize(&ge.y);
secp256k1_fe_get_b32(point, &ge.x);
secp256k1_fe_get_b32(point+32, &ge.y);
ret = 1;
}
secp256k1_scalar_clear(&s);
return ret;
}
......@@ -6,6 +6,7 @@ bench_schnorr_verify
bench_recover
bench_internal
tests
exhaustive_tests
gen_context
*.exe
*.so
......@@ -25,17 +26,24 @@ config.status
libtool
.deps/
.dirstamp
build-aux/
*.lo
*.o
*~
src/libsecp256k1-config.h
src/libsecp256k1-config.h.in
src/ecmult_static_context.h
m4/libtool.m4
m4/ltoptions.m4
m4/ltsugar.m4
m4/ltversion.m4
m4/lt~obsolete.m4
build-aux/config.guess
build-aux/config.sub
build-aux/depcomp
build-aux/install-sh
build-aux/ltmain.sh
build-aux/m4/libtool.m4
build-aux/m4/lt~obsolete.m4
build-aux/m4/ltoptions.m4
build-aux/m4/ltsugar.m4
build-aux/m4/ltversion.m4
build-aux/missing
build-aux/compile
build-aux/test-driver
src/stamp-h1
libsecp256k1.pc
......@@ -6,25 +6,30 @@ addons:
compiler:
- clang
- gcc
cache:
directories:
- src/java/guava/
env:
global:
- FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no schnorr=NO RECOVERY=NO
- FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no RECOVERY=no EXPERIMENTAL=no
- GUAVA_URL=https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar GUAVA_JAR=src/java/guava/guava-18.0.jar
matrix:
- SCALAR=32bit RECOVERY=yes
- SCALAR=32bit FIELD=32bit ECDH=yes
- SCALAR=32bit FIELD=32bit ECDH=yes EXPERIMENTAL=yes
- SCALAR=64bit
- FIELD=64bit RECOVERY=yes
- FIELD=64bit ENDOMORPHISM=yes
- FIELD=64bit ENDOMORPHISM=yes ECDH=yes
- FIELD=64bit ENDOMORPHISM=yes ECDH=yes EXPERIMENTAL=yes
- FIELD=64bit ASM=x86_64
- FIELD=64bit ENDOMORPHISM=yes ASM=x86_64
- FIELD=32bit SCHNORR=yes
- FIELD=32bit ENDOMORPHISM=yes
- BIGNUM=no
- BIGNUM=no ENDOMORPHISM=yes SCHNORR=yes RECOVERY=yes
- BIGNUM=no ENDOMORPHISM=yes RECOVERY=yes EXPERIMENTAL=yes
- BIGNUM=no STATICPRECOMPUTATION=no
- BUILD=distcheck
- EXTRAFLAGS=CFLAGS=-DDETERMINISTIC
- EXTRAFLAGS=CPPFLAGS=-DDETERMINISTIC
- EXTRAFLAGS=CFLAGS=-O0
- BUILD=check-java ECDH=yes EXPERIMENTAL=yes
matrix:
fast_finish: true
include:
......@@ -54,9 +59,11 @@ matrix:
packages:
- gcc-multilib
- libgmp-dev:i386
before_install: mkdir -p `dirname $GUAVA_JAR`
install: if [ ! -f $GUAVA_JAR ]; then wget $GUAVA_URL -O $GUAVA_JAR; fi
before_script: ./autogen.sh
script:
- if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi
- if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi
- ./configure --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-schnorr=$SCHNORR $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
- ./configure --enable-experimental=$EXPERIMENTAL --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-recovery=$RECOVERY $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
os: linux
ACLOCAL_AMFLAGS = -I build-aux/m4
lib_LTLIBRARIES = libsecp256k1.la
if USE_JNI
JNI_LIB = libsecp256k1_jni.la
noinst_LTLIBRARIES = $(JNI_LIB)
else
JNI_LIB =
endif
include_HEADERS = include/secp256k1.h
noinst_HEADERS =
noinst_HEADERS += src/scalar.h
noinst_HEADERS += src/scalar_4x64.h
noinst_HEADERS += src/scalar_8x32.h
noinst_HEADERS += src/scalar_low.h
noinst_HEADERS += src/scalar_impl.h
noinst_HEADERS += src/scalar_4x64_impl.h
noinst_HEADERS += src/scalar_8x32_impl.h
noinst_HEADERS += src/scalar_low_impl.h
noinst_HEADERS += src/group.h
noinst_HEADERS += src/group_impl.h
noinst_HEADERS += src/num_gmp.h
......@@ -32,6 +40,7 @@ noinst_HEADERS += src/field_5x52_impl.h
noinst_HEADERS += src/field_5x52_int128_impl.h
noinst_HEADERS += src/field_5x52_asm_impl.h
noinst_HEADERS += src/java/org_bitcoin_NativeSecp256k1.h
noinst_HEADERS += src/java/org_bitcoin_Secp256k1Context.h
noinst_HEADERS += src/util.h
noinst_HEADERS += src/testrand.h
noinst_HEADERS += src/testrand_impl.h
......@@ -40,41 +49,103 @@ noinst_HEADERS += src/hash_impl.h
noinst_HEADERS += src/field.h
noinst_HEADERS += src/field_impl.h
noinst_HEADERS += src/bench.h
noinst_HEADERS += contrib/lax_der_parsing.h
noinst_HEADERS += contrib/lax_der_parsing.c
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h
noinst_HEADERS += contrib/lax_der_privatekey_parsing.c
if USE_EXTERNAL_ASM
COMMON_LIB = libsecp256k1_common.la
noinst_LTLIBRARIES = $(COMMON_LIB)
else
COMMON_LIB =
endif
pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libsecp256k1.pc
if USE_EXTERNAL_ASM
if USE_ASM_ARM
libsecp256k1_common_la_SOURCES = src/asm/field_10x26_arm.s
endif
endif
libsecp256k1_la_SOURCES = src/secp256k1.c
libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES)
libsecp256k1_la_LIBADD = $(SECP_LIBS)
libsecp256k1_la_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES)
libsecp256k1_la_LIBADD = $(JNI_LIB) $(SECP_LIBS) $(COMMON_LIB)
libsecp256k1_jni_la_SOURCES = src/java/org_bitcoin_NativeSecp256k1.c src/java/org_bitcoin_Secp256k1Context.c
libsecp256k1_jni_la_CPPFLAGS = -DSECP256K1_BUILD $(JNI_INCLUDES)
noinst_PROGRAMS =
if USE_BENCHMARK
noinst_PROGRAMS += bench_verify bench_sign bench_internal
bench_verify_SOURCES = src/bench_verify.c
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_verify_LDFLAGS = -static
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
bench_sign_SOURCES = src/bench_sign.c
bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_sign_LDFLAGS = -static
bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
bench_internal_SOURCES = src/bench_internal.c
bench_internal_LDADD = $(SECP_LIBS)
bench_internal_LDFLAGS = -static
bench_internal_CPPFLAGS = $(SECP_INCLUDES)
bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB)
bench_internal_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES)
endif
TESTS =
if USE_TESTS
noinst_PROGRAMS += tests
tests_SOURCES = src/tests.c
tests_CPPFLAGS = -DVERIFY -I$(top_srcdir)/src $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS)
tests_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
if !ENABLE_COVERAGE
tests_CPPFLAGS += -DVERIFY
endif
tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
tests_LDFLAGS = -static
TESTS = tests
TESTS += tests
endif
if USE_EXHAUSTIVE_TESTS
noinst_PROGRAMS += exhaustive_tests
exhaustive_tests_SOURCES = src/tests_exhaustive.c
exhaustive_tests_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/src $(SECP_INCLUDES)
if !ENABLE_COVERAGE
exhaustive_tests_CPPFLAGS += -DVERIFY
endif
exhaustive_tests_LDADD = $(SECP_LIBS)
exhaustive_tests_LDFLAGS = -static
TESTS += exhaustive_tests
endif
JAVAROOT=src/java
JAVAORG=org/bitcoin
JAVA_GUAVA=$(srcdir)/$(JAVAROOT)/guava/guava-18.0.jar
CLASSPATH_ENV=CLASSPATH=$(JAVA_GUAVA)
JAVA_FILES= \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1.java \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Test.java \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Util.java \
$(JAVAROOT)/$(JAVAORG)/Secp256k1Context.java
if USE_JNI
$(JAVA_GUAVA):
@echo Guava is missing. Fetch it via: \
wget https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar -O $(@)
@false
.stamp-java: $(JAVA_FILES)
@echo Compiling $^
$(AM_V_at)$(CLASSPATH_ENV) javac $^
@touch $@
if USE_TESTS
check-java: libsecp256k1.la $(JAVA_GUAVA) .stamp-java
$(AM_V_at)java -Djava.library.path="./:./src:./src/.libs:.libs/" -cp "$(JAVA_GUAVA):$(JAVAROOT)" $(JAVAORG)/NativeSecp256k1Test
endif
endif
if USE_ECMULT_STATIC_PRECOMPUTATION
CPPFLAGS_FOR_BUILD +=-I$(top_srcdir)/
CPPFLAGS_FOR_BUILD +=-I$(top_srcdir)
CFLAGS_FOR_BUILD += -Wall -Wextra -Wno-unused-function
gen_context_OBJECTS = gen_context.o
......@@ -92,19 +163,15 @@ $(bench_internal_OBJECTS): src/ecmult_static_context.h
src/ecmult_static_context.h: $(gen_context_BIN)
./$(gen_context_BIN)
CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h
CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h $(JAVAROOT)/$(JAVAORG)/*.class .stamp-java
endif
EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h
EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h $(JAVA_FILES)
if ENABLE_MODULE_ECDH
include src/modules/ecdh/Makefile.am.include
endif
if ENABLE_MODULE_SCHNORR
include src/modules/schnorr/Makefile.am.include
endif
if ENABLE_MODULE_RECOVERY
include src/modules/recovery/Makefile.am.include
endif
libsecp256k1
============
[![Build Status](https://travis-ci.org/bitcoin/secp256k1.svg?branch=master)](https://travis-ci.org/bitcoin/secp256k1)
[![Build Status](https://travis-ci.org/bitcoin-core/secp256k1.svg?branch=master)](https://travis-ci.org/bitcoin-core/secp256k1)
Optimized C library for EC operations on curve secp256k1.
......
# ===========================================================================
# http://www.gnu.org/software/autoconf-archive/ax_jni_include_dir.html
# ===========================================================================
#
# SYNOPSIS
#
# AX_JNI_INCLUDE_DIR
#
# DESCRIPTION
#
# AX_JNI_INCLUDE_DIR finds include directories needed for compiling
# programs using the JNI interface.
#
# JNI include directories are usually in the Java distribution. This is
# deduced from the value of $JAVA_HOME, $JAVAC, or the path to "javac", in
# that order. When this macro completes, a list of directories is left in
# the variable JNI_INCLUDE_DIRS.
#
# Example usage follows:
#
# AX_JNI_INCLUDE_DIR
#
# for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS
# do
# CPPFLAGS="$CPPFLAGS -I$JNI_INCLUDE_DIR"
# done
#
# If you want to force a specific compiler:
#
# - at the configure.in level, set JAVAC=yourcompiler before calling
# AX_JNI_INCLUDE_DIR
#
# - at the configure level, setenv JAVAC
#
# Note: This macro can work with the autoconf M4 macros for Java programs.
# This particular macro is not part of the original set of macros.
#
# LICENSE
#
# Copyright (c) 2008 Don Anderson <dda@sleepycat.com>
#
# Copying and distribution of this file, with or without modification, are
# permitted in any medium without royalty provided the copyright notice
# and this notice are preserved. This file is offered as-is, without any
# warranty.
#serial 10
AU_ALIAS([AC_JNI_INCLUDE_DIR], [AX_JNI_INCLUDE_DIR])
AC_DEFUN([AX_JNI_INCLUDE_DIR],[
JNI_INCLUDE_DIRS=""
if test "x$JAVA_HOME" != x; then
_JTOPDIR="$JAVA_HOME"
else
if test "x$JAVAC" = x; then
JAVAC=javac
fi
AC_PATH_PROG([_ACJNI_JAVAC], [$JAVAC], [no])
if test "x$_ACJNI_JAVAC" = xno; then
AC_MSG_WARN([cannot find JDK; try setting \$JAVAC or \$JAVA_HOME])
fi
_ACJNI_FOLLOW_SYMLINKS("$_ACJNI_JAVAC")
_JTOPDIR=`echo "$_ACJNI_FOLLOWED" | sed -e 's://*:/:g' -e 's:/[[^/]]*$::'`
fi
case "$host_os" in
darwin*) _JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'`
_JINC="$_JTOPDIR/Headers";;
*) _JINC="$_JTOPDIR/include";;
esac
_AS_ECHO_LOG([_JTOPDIR=$_JTOPDIR])
_AS_ECHO_LOG([_JINC=$_JINC])
# On Mac OS X 10.6.4, jni.h is a symlink:
# /System/Library/Frameworks/JavaVM.framework/Versions/Current/Headers/jni.h
# -> ../../CurrentJDK/Headers/jni.h.
AC_CACHE_CHECK(jni headers, ac_cv_jni_header_path,
[
if test -f "$_JINC/jni.h"; then
ac_cv_jni_header_path="$_JINC"
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path"
else
_JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'`
if test -f "$_JTOPDIR/include/jni.h"; then
ac_cv_jni_header_path="$_JTOPDIR/include"
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path"
else
ac_cv_jni_header_path=none
fi
fi
])
# get the likely subdirectories for system specific java includes
case "$host_os" in
bsdi*) _JNI_INC_SUBDIRS="bsdos";;
darwin*) _JNI_INC_SUBDIRS="darwin";;
freebsd*) _JNI_INC_SUBDIRS="freebsd";;
linux*) _JNI_INC_SUBDIRS="linux genunix";;
osf*) _JNI_INC_SUBDIRS="alpha";;
solaris*) _JNI_INC_SUBDIRS="solaris";;
mingw*) _JNI_INC_SUBDIRS="win32";;
cygwin*) _JNI_INC_SUBDIRS="win32";;
*) _JNI_INC_SUBDIRS="genunix";;
esac
if test "x$ac_cv_jni_header_path" != "xnone"; then
# add any subdirectories that are present
for JINCSUBDIR in $_JNI_INC_SUBDIRS
do
if test -d "$_JTOPDIR/include/$JINCSUBDIR"; then
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $_JTOPDIR/include/$JINCSUBDIR"
fi
done
fi
])
# _ACJNI_FOLLOW_SYMLINKS <path>
# Follows symbolic links on <path>,
# finally setting variable _ACJNI_FOLLOWED
# ----------------------------------------
AC_DEFUN([_ACJNI_FOLLOW_SYMLINKS],[
# find the include directory relative to the javac executable
_cur="$1"
while ls -ld "$_cur" 2>/dev/null | grep " -> " >/dev/null; do
AC_MSG_CHECKING([symlink for $_cur])
_slink=`ls -ld "$_cur" | sed 's/.* -> //'`
case "$_slink" in
/*) _cur="$_slink";;
# 'X' avoids triggering unwanted echo options.
*) _cur=`echo "X$_cur" | sed -e 's/^X//' -e 's:[[^/]]*$::'`"$_slink";;
esac
AC_MSG_RESULT([$_cur])
done
_ACJNI_FOLLOWED="$_cur"
])# _ACJNI
# ===========================================================================
# http://www.gnu.org/software/autoconf-archive/ax_prog_cc_for_build.html
# ===========================================================================
#
# SYNOPSIS
#
# AX_PROG_CC_FOR_BUILD
#
# DESCRIPTION
#
# This macro searches for a C compiler that generates native executables,
# that is a C compiler that surely is not a cross-compiler. This can be
# useful if you have to generate source code at compile-time like for
# example GCC does.
#
# The macro sets the CC_FOR_BUILD and CPP_FOR_BUILD macros to anything
# needed to compile or link (CC_FOR_BUILD) and preprocess (CPP_FOR_BUILD).
# The value of these variables can be overridden by the user by specifying
# a compiler with an environment variable (like you do for standard CC).
#
# It also sets BUILD_EXEEXT and BUILD_OBJEXT to the executable and object
# file extensions for the build platform, and GCC_FOR_BUILD to `yes' if
# the compiler we found is GCC. All these variables but GCC_FOR_BUILD are
# substituted in the Makefile.
#
# LICENSE
#
# Copyright (c) 2008 Paolo Bonzini <bonzini@gnu.org>
#
# Copying and distribution of this file, with or without modification, are
# permitted in any medium without royalty provided the copyright notice
# and this notice are preserved. This file is offered as-is, without any
# warranty.
#serial 8
AU_ALIAS([AC_PROG_CC_FOR_BUILD], [AX_PROG_CC_FOR_BUILD])
AC_DEFUN([AX_PROG_CC_FOR_BUILD], [dnl
AC_REQUIRE([AC_PROG_CC])dnl
AC_REQUIRE([AC_PROG_CPP])dnl
AC_REQUIRE([AC_EXEEXT])dnl
AC_REQUIRE([AC_CANONICAL_HOST])dnl
dnl Use the standard macros, but make them use other variable names
dnl
pushdef([ac_cv_prog_CPP], ac_cv_build_prog_CPP)dnl
pushdef([ac_cv_prog_gcc], ac_cv_build_prog_gcc)dnl
pushdef([ac_cv_prog_cc_works], ac_cv_build_prog_cc_works)dnl
pushdef([ac_cv_prog_cc_cross], ac_cv_build_prog_cc_cross)dnl
pushdef([ac_cv_prog_cc_g], ac_cv_build_prog_cc_g)dnl
pushdef([ac_cv_exeext], ac_cv_build_exeext)dnl
pushdef([ac_cv_objext], ac_cv_build_objext)dnl
pushdef([ac_exeext], ac_build_exeext)dnl
pushdef([ac_objext], ac_build_objext)dnl
pushdef([CC], CC_FOR_BUILD)dnl
pushdef([CPP], CPP_FOR_BUILD)dnl
pushdef([CFLAGS], CFLAGS_FOR_BUILD)dnl
pushdef([CPPFLAGS], CPPFLAGS_FOR_BUILD)dnl
pushdef([LDFLAGS], LDFLAGS_FOR_BUILD)dnl
pushdef([host], build)dnl
pushdef([host_alias], build_alias)dnl
pushdef([host_cpu], build_cpu)dnl
pushdef([host_vendor], build_vendor)dnl
pushdef([host_os], build_os)dnl
pushdef([ac_cv_host], ac_cv_build)dnl
pushdef([ac_cv_host_alias], ac_cv_build_alias)dnl
pushdef([ac_cv_host_cpu], ac_cv_build_cpu)dnl
pushdef([ac_cv_host_vendor], ac_cv_build_vendor)dnl
pushdef([ac_cv_host_os], ac_cv_build_os)dnl
pushdef([ac_cpp], ac_build_cpp)dnl
pushdef([ac_compile], ac_build_compile)dnl
pushdef([ac_link], ac_build_link)dnl
save_cross_compiling=$cross_compiling
save_ac_tool_prefix=$ac_tool_prefix
cross_compiling=no
ac_tool_prefix=
AC_PROG_CC
AC_PROG_CPP
AC_EXEEXT
ac_tool_prefix=$save_ac_tool_prefix
cross_compiling=$save_cross_compiling
dnl Restore the old definitions
dnl
popdef([ac_link])dnl
popdef([ac_compile])dnl
popdef([ac_cpp])dnl
popdef([ac_cv_host_os])dnl
popdef([ac_cv_host_vendor])dnl
popdef([ac_cv_host_cpu])dnl
popdef([ac_cv_host_alias])dnl
popdef([ac_cv_host])dnl
popdef([host_os])dnl
popdef([host_vendor])dnl
popdef([host_cpu])dnl
popdef([host_alias])dnl
popdef([host])dnl
popdef([LDFLAGS])dnl
popdef([CPPFLAGS])dnl
popdef([CFLAGS])dnl
popdef([CPP])dnl
popdef([CC])dnl
popdef([ac_objext])dnl
popdef([ac_exeext])dnl
popdef([ac_cv_objext])dnl
popdef([ac_cv_exeext])dnl
popdef([ac_cv_prog_cc_g])dnl
popdef([ac_cv_prog_cc_cross])dnl
popdef([ac_cv_prog_cc_works])dnl
popdef([ac_cv_prog_gcc])dnl
popdef([ac_cv_prog_CPP])dnl
dnl Finally, set Makefile variables
dnl
BUILD_EXEEXT=$ac_build_exeext
BUILD_OBJEXT=$ac_build_objext
AC_SUBST(BUILD_EXEEXT)dnl
AC_SUBST(BUILD_OBJEXT)dnl
AC_SUBST([CFLAGS_FOR_BUILD])dnl
AC_SUBST([CPPFLAGS_FOR_BUILD])dnl
AC_SUBST([LDFLAGS_FOR_BUILD])dnl
])
dnl libsecp25k1 helper checks
AC_DEFUN([SECP_INT128_CHECK],[
has_int128=$ac_cv_type___int128
])
dnl escape "$0x" below using the m4 quadrigaph @S|@, and escape it again with a \ for the shell.
AC_DEFUN([SECP_64BIT_ASM_CHECK],[
AC_MSG_CHECKING(for x86_64 assembly availability)
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <stdint.h>]],[[
uint64_t a = 11, tmp;
__asm__ __volatile__("movq \@S|@0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx");
]])],[has_64bit_asm=yes],[has_64bit_asm=no])
AC_MSG_RESULT([$has_64bit_asm])
])
dnl
AC_DEFUN([SECP_OPENSSL_CHECK],[
has_libcrypto=no
m4_ifdef([PKG_CHECK_MODULES],[
PKG_CHECK_MODULES([CRYPTO], [libcrypto], [has_libcrypto=yes],[has_libcrypto=no])
if test x"$has_libcrypto" = x"yes"; then
TEMP_LIBS="$LIBS"
LIBS="$LIBS $CRYPTO_LIBS"
AC_CHECK_LIB(crypto, main,[AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])],[has_libcrypto=no])
LIBS="$TEMP_LIBS"
fi
])
if test x$has_libcrypto = xno; then
AC_CHECK_HEADER(openssl/crypto.h,[
AC_CHECK_LIB(crypto, main,[
has_libcrypto=yes
CRYPTO_LIBS=-lcrypto
AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])
])
])
LIBS=
fi
if test x"$has_libcrypto" = x"yes" && test x"$has_openssl_ec" = x; then
AC_MSG_CHECKING(for EC functions in libcrypto)
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <openssl/ec.h>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>]],[[
EC_KEY *eckey = EC_KEY_new_by_curve_name(NID_secp256k1);
ECDSA_sign(0, NULL, 0, NULL, NULL, eckey);
ECDSA_verify(0, NULL, 0, NULL, 0, eckey);
EC_KEY_free(eckey);
ECDSA_SIG *sig_openssl;
sig_openssl = ECDSA_SIG_new();
(void)sig_openssl->r;
ECDSA_SIG_free(sig_openssl);
]])],[has_openssl_ec=yes],[has_openssl_ec=no])
AC_MSG_RESULT([$has_openssl_ec])
fi
])
dnl
AC_DEFUN([SECP_GMP_CHECK],[
if test x"$has_gmp" != x"yes"; then
CPPFLAGS_TEMP="$CPPFLAGS"
CPPFLAGS="$GMP_CPPFLAGS $CPPFLAGS"
LIBS_TEMP="$LIBS"
LIBS="$GMP_LIBS $LIBS"
AC_CHECK_HEADER(gmp.h,[AC_CHECK_LIB(gmp, __gmpz_init,[has_gmp=yes; GMP_LIBS="$GMP_LIBS -lgmp"; AC_DEFINE(HAVE_LIBGMP,1,[Define this symbol if libgmp is installed])])])
CPPFLAGS="$CPPFLAGS_TEMP"
LIBS="$LIBS_TEMP"
fi
])
This diff is collapsed.
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <string.h>
#include <secp256k1.h>
#include "lax_der_parsing.h"
int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
size_t rpos, rlen, spos, slen;
size_t pos = 0;
size_t lenbyte;
unsigned char tmpsig[64] = {0};
int overflow = 0;
/* Hack to initialize sig with a correctly-parsed but invalid signature. */
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
/* Sequence tag byte */
if (pos == inputlen || input[pos] != 0x30) {
return 0;
}
pos++;
/* Sequence length bytes */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (pos + lenbyte > inputlen) {
return 0;
}
pos += lenbyte;
}
/* Integer tag byte for R */
if (pos == inputlen || input[pos] != 0x02) {
return 0;
}
pos++;
/* Integer length for R */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (pos + lenbyte > inputlen) {
return 0;
}
while (lenbyte > 0 && input[pos] == 0) {
pos++;
lenbyte--;
}
if (lenbyte >= sizeof(size_t)) {
return 0;
}
rlen = 0;
while (lenbyte > 0) {
rlen = (rlen << 8) + input[pos];
pos++;
lenbyte--;
}
} else {
rlen = lenbyte;
}
if (rlen > inputlen - pos) {
return 0;
}
rpos = pos;
pos += rlen;
/* Integer tag byte for S */
if (pos == inputlen || input[pos] != 0x02) {
return 0;
}
pos++;
/* Integer length for S */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (pos + lenbyte > inputlen) {
return 0;
}
while (lenbyte > 0 && input[pos] == 0) {
pos++;
lenbyte--;
}
if (lenbyte >= sizeof(size_t)) {
return 0;
}
slen = 0;
while (lenbyte > 0) {
slen = (slen << 8) + input[pos];
pos++;
lenbyte--;
}
} else {
slen = lenbyte;
}
if (slen > inputlen - pos) {
return 0;
}
spos = pos;
pos += slen;
/* Ignore leading zeroes in R */
while (rlen > 0 && input[rpos] == 0) {
rlen--;
rpos++;
}
/* Copy R value */
if (rlen > 32) {
overflow = 1;
} else {
memcpy(tmpsig + 32 - rlen, input + rpos, rlen);
}
/* Ignore leading zeroes in S */
while (slen > 0 && input[spos] == 0) {
slen--;
spos++;
}
/* Copy S value */
if (slen > 32) {
overflow = 1;
} else {
memcpy(tmpsig + 64 - slen, input + spos, slen);
}
if (!overflow) {
overflow = !secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
}
if (overflow) {
memset(tmpsig, 0, 64);
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
}
return 1;
}
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/****
* Please do not link this file directly. It is not part of the libsecp256k1
* project and does not promise any stability in its API, functionality or
* presence. Projects which use this code should instead copy this header
* and its accompanying .c file directly into their codebase.
****/
/* This file defines a function that parses DER with various errors and
* violations. This is not a part of the library itself, because the allowed
* violations are chosen arbitrarily and do not follow or establish any
* standard.
*
* In many places it matters that different implementations do not only accept
* the same set of valid signatures, but also reject the same set of signatures.
* The only means to accomplish that is by strictly obeying a standard, and not
* accepting anything else.
*
* Nonetheless, sometimes there is a need for compatibility with systems that
* use signatures which do not strictly obey DER. The snippet below shows how
* certain violations are easily supported. You may need to adapt it.
*
* Do not use this for new systems. Use well-defined DER or compact signatures
* instead if you have the choice (see secp256k1_ecdsa_signature_parse_der and
* secp256k1_ecdsa_signature_parse_compact).
*
* The supported violations are:
* - All numbers are parsed as nonnegative integers, even though X.609-0207
* section 8.3.3 specifies that integers are always encoded as two's
* complement.
* - Integers can have length 0, even though section 8.3.1 says they can't.
* - Integers with overly long padding are accepted, violation section
* 8.3.2.
* - 127-byte long length descriptors are accepted, even though section
* 8.1.3.5.c says that they are not.
* - Trailing garbage data inside or after the signature is ignored.
* - The length descriptor of the sequence is ignored.
*
* Compared to for example OpenSSL, many violations are NOT supported:
* - Using overly long tag descriptors for the sequence or integers inside,
* violating section 8.1.2.2.
* - Encoding primitive integers as constructed values, violating section
* 8.3.1.
*/
#ifndef _SECP256K1_CONTRIB_LAX_DER_PARSING_H_
#define _SECP256K1_CONTRIB_LAX_DER_PARSING_H_
#include <secp256k1.h>
# ifdef __cplusplus
extern "C" {
# endif
/** Parse a signature in "lax DER" format
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input: a pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
*
* This function will accept any valid DER encoded signature, even if the
* encoded numbers are out of range. In addition, it will accept signatures
* which violate the DER spec in various ways. Its purpose is to allow
* validation of the Bitcoin blockchain, which includes non-DER signatures
* from before the network rules were updated to enforce DER. Note that
* the set of supported violations is a strict subset of what OpenSSL will
* accept.
*
* After the call, sig will always be initialized. If parsing failed or the
* encoded numbers are out of range, signature validation with it is
* guaranteed to fail for every message and public key.
*/
int ecdsa_signature_parse_der_lax(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif
/**********************************************************************
* Copyright (c) 2014, 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <string.h>
#include <secp256k1.h>
#include "lax_der_privatekey_parsing.h"
int ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) {
const unsigned char *end = privkey + privkeylen;
int lenb = 0;
int len = 0;
memset(out32, 0, 32);
/* sequence header */
if (end < privkey+1 || *privkey != 0x30) {
return 0;
}
privkey++;
/* sequence length constructor */
if (end < privkey+1 || !(*privkey & 0x80)) {
return 0;
}
lenb = *privkey & ~0x80; privkey++;
if (lenb < 1 || lenb > 2) {
return 0;
}
if (end < privkey+lenb) {
return 0;
}
/* sequence length */
len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0);
privkey += lenb;
if (end < privkey+len) {
return 0;
}
/* sequence element 0: version number (=1) */
if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) {
return 0;
}
privkey += 3;
/* sequence element 1: octet string, up to 32 bytes */
if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) {
return 0;
}
memcpy(out32 + 32 - privkey[1], privkey + 2, privkey[1]);
if (!secp256k1_ec_seckey_verify(ctx, out32)) {
memset(out32, 0, 32);
return 0;
}
return 1;
}
int ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) {
secp256k1_pubkey pubkey;
size_t pubkeylen = 0;
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
*privkeylen = 0;
return 0;
}
if (compressed) {
static const unsigned char begin[] = {
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = 33;
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
ptr += pubkeylen;
*privkeylen = ptr - privkey;
} else {
static const unsigned char begin[] = {
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = 65;
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
ptr += pubkeylen;
*privkeylen = ptr - privkey;
}
return 1;
}
/**********************************************************************
* Copyright (c) 2014, 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/****
* Please do not link this file directly. It is not part of the libsecp256k1
* project and does not promise any stability in its API, functionality or
* presence. Projects which use this code should instead copy this header
* and its accompanying .c file directly into their codebase.
****/
/* This file contains code snippets that parse DER private keys with
* various errors and violations. This is not a part of the library
* itself, because the allowed violations are chosen arbitrarily and
* do not follow or establish any standard.
*
* It also contains code to serialize private keys in a compatible
* manner.
*
* These functions are meant for compatibility with applications
* that require BER encoded keys. When working with secp256k1-specific
* code, the simple 32-byte private keys normally used by the
* library are sufficient.
*/
#ifndef _SECP256K1_CONTRIB_BER_PRIVATEKEY_H_
#define _SECP256K1_CONTRIB_BER_PRIVATEKEY_H_
#include <secp256k1.h>
# ifdef __cplusplus
extern "C" {
# endif
/** Export a private key in DER format.
*
* Returns: 1 if the private key was valid.
* Args: ctx: pointer to a context object, initialized for signing (cannot
* be NULL)
* Out: privkey: pointer to an array for storing the private key in BER.
* Should have space for 279 bytes, and cannot be NULL.
* privkeylen: Pointer to an int where the length of the private key in
* privkey will be stored.
* In: seckey: pointer to a 32-byte secret key to export.
* compressed: 1 if the key should be exported in
* compressed format, 0 otherwise
*
* This function is purely meant for compatibility with applications that
* require BER encoded keys. When working with secp256k1-specific code, the
* simple 32-byte private keys are sufficient.
*
* Note that this function does not guarantee correct DER output. It is
* guaranteed to be parsable by secp256k1_ec_privkey_import_der
*/
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_export_der(
const secp256k1_context* ctx,
unsigned char *privkey,
size_t *privkeylen,
const unsigned char *seckey,
int compressed
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Import a private key in DER format.
* Returns: 1 if a private key was extracted.
* Args: ctx: pointer to a context object (cannot be NULL).
* Out: seckey: pointer to a 32-byte array for storing the private key.
* (cannot be NULL).
* In: privkey: pointer to a private key in DER format (cannot be NULL).
* privkeylen: length of the DER private key pointed to be privkey.
*
* This function will accept more than just strict DER, and even allow some BER
* violations. The public key stored inside the DER-encoded private key is not
* verified for correctness, nor are the curve parameters. Use this function
* only if you know in advance it is supposed to contain a secp256k1 private
* key.
*/
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_import_der(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *privkey,
size_t privkeylen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif
......@@ -10,17 +10,18 @@ extern "C" {
/** Compute an EC Diffie-Hellman secret in constant time
* Returns: 1: exponentiation was successful
* 0: scalar was invalid (zero or overflow)
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: result: a 32-byte array which will be populated by an ECDH
* secret computed from the point and scalar
* In: point: pointer to a public point
* scalar: a 32-byte scalar with which to multiply the point
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: result: a 32-byte array which will be populated by an ECDH
* secret computed from the point and scalar
* In: pubkey: a pointer to a secp256k1_pubkey containing an
* initialized public key
* privkey: a 32-byte scalar with which to multiply the point
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh(
const secp256k1_context* ctx,
unsigned char *result,
const secp256k1_pubkey *point,
const unsigned char *scalar
const secp256k1_pubkey *pubkey,
const unsigned char *privkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
# ifdef __cplusplus
......
......@@ -65,7 +65,7 @@ SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact(
unsigned char *output64,
int *recid,
const secp256k1_ecdsa_recoverable_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Create a recoverable ECDSA signature.
*
......@@ -92,7 +92,7 @@ SECP256K1_API int secp256k1_ecdsa_sign_recoverable(
* Returns: 1: public key successfully recovered (which guarantees a correct signature).
* 0: otherwise.
* Args: ctx: pointer to a context object, initialized for verification (cannot be NULL)
* Out: pubkey: pointer to the recoved public key (cannot be NULL)
* Out: pubkey: pointer to the recovered public key (cannot be NULL)
* In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL)
* msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
*/
......
#ifndef _SECP256K1_SCHNORR_
# define _SECP256K1_SCHNORR_
# include "secp256k1.h"
# ifdef __cplusplus
extern "C" {
# endif
/** Create a signature using a custom EC-Schnorr-SHA256 construction. It
* produces non-malleable 64-byte signatures which support public key recovery
* batch validation, and multiparty signing.
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was
* invalid.
* Args: ctx: pointer to a context object, initialized for signing
* (cannot be NULL)
* Out: sig64: pointer to a 64-byte array where the signature will be
* placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation
* function (can be NULL)
*/
SECP256K1_API int secp256k1_schnorr_sign(
const secp256k1_context* ctx,
unsigned char *sig64,
const unsigned char *msg32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify a signature created by secp256k1_schnorr_sign.
* Returns: 1: correct signature
* 0: incorrect signature
* Args: ctx: a secp256k1 context object, initialized for verification.
* In: sig64: the 64-byte signature being verified (cannot be NULL)
* msg32: the 32-byte message hash being verified (cannot be NULL)
* pubkey: the public key to verify with (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_verify(
const secp256k1_context* ctx,
const unsigned char *sig64,
const unsigned char *msg32,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Recover an EC public key from a Schnorr signature created using
* secp256k1_schnorr_sign.
* Returns: 1: public key successfully recovered (which guarantees a correct
* signature).
* 0: otherwise.
* Args: ctx: pointer to a context object, initialized for
* verification (cannot be NULL)
* Out: pubkey: pointer to a pubkey to set to the recovered public key
* (cannot be NULL).
* In: sig64: signature as 64 byte array (cannot be NULL)
* msg32: the 32-byte message hash assumed to be signed (cannot
* be NULL)
*/
SECP256K1_API int secp256k1_schnorr_recover(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *sig64,
const unsigned char *msg32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Generate a nonce pair deterministically for use with
* secp256k1_schnorr_partial_sign.
* Returns: 1: valid nonce pair was generated.
* 0: otherwise (nonce generation function failed)
* Args: ctx: pointer to a context object, initialized for signing
* (cannot be NULL)
* Out: pubnonce: public side of the nonce (cannot be NULL)
* privnonce32: private side of the nonce (32 byte) (cannot be NULL)
* In: msg32: the 32-byte message hash assumed to be signed (cannot
* be NULL)
* sec32: the 32-byte private key (cannot be NULL)
* noncefp: pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_default is used
* noncedata: pointer to arbitrary data used by the nonce generation
* function (can be NULL)
*
* Do not use the output as a private/public key pair for signing/validation.
*/
SECP256K1_API int secp256k1_schnorr_generate_nonce_pair(
const secp256k1_context* ctx,
secp256k1_pubkey *pubnonce,
unsigned char *privnonce32,
const unsigned char *msg32,
const unsigned char *sec32,
secp256k1_nonce_function noncefp,
const void* noncedata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Produce a partial Schnorr signature, which can be combined using
* secp256k1_schnorr_partial_combine, to end up with a full signature that is
* verifiable using secp256k1_schnorr_verify.
* Returns: 1: signature created successfully.
* 0: no valid signature exists with this combination of keys, nonces
* and message (chance around 1 in 2^128)
* -1: invalid private key, nonce, or public nonces.
* Args: ctx: pointer to context object, initialized for signing (cannot
* be NULL)
* Out: sig64: pointer to 64-byte array to put partial signature in
* In: msg32: pointer to 32-byte message to sign
* sec32: pointer to 32-byte private key
* pubnonce_others: pointer to pubkey containing the sum of the other's
* nonces (see secp256k1_ec_pubkey_combine)
* secnonce32: pointer to 32-byte array containing our nonce
*
* The intended procedure for creating a multiparty signature is:
* - Each signer S[i] with private key x[i] and public key Q[i] runs
* secp256k1_schnorr_generate_nonce_pair to produce a pair (k[i],R[i]) of
* private/public nonces.
* - All signers communicate their public nonces to each other (revealing your
* private nonce can lead to discovery of your private key, so it should be
* considered secret).
* - All signers combine all the public nonces they received (excluding their
* own) using secp256k1_ec_pubkey_combine to obtain an
* Rall[i] = sum(R[0..i-1,i+1..n]).
* - All signers produce a partial signature using
* secp256k1_schnorr_partial_sign, passing in their own private key x[i],
* their own private nonce k[i], and the sum of the others' public nonces
* Rall[i].
* - All signers communicate their partial signatures to each other.
* - Someone combines all partial signatures using
* secp256k1_schnorr_partial_combine, to obtain a full signature.
* - The resulting signature is validatable using secp256k1_schnorr_verify, with
* public key equal to the result of secp256k1_ec_pubkey_combine of the
* signers' public keys (sum(Q[0..n])).
*
* Note that secp256k1_schnorr_partial_combine and secp256k1_ec_pubkey_combine
* function take their arguments in any order, and it is possible to
* pre-combine several inputs already with one call, and add more inputs later
* by calling the function again (they are commutative and associative).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_sign(
const secp256k1_context* ctx,
unsigned char *sig64,
const unsigned char *msg32,
const unsigned char *sec32,
const secp256k1_pubkey *pubnonce_others,
const unsigned char *secnonce32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
/** Combine multiple Schnorr partial signatures.
* Returns: 1: the passed signatures were successfully combined.
* 0: the resulting signature is not valid (chance of 1 in 2^256)
* -1: some inputs were invalid, or the signatures were not created
* using the same set of nonces
* Args: ctx: pointer to a context object
* Out: sig64: pointer to a 64-byte array to place the combined signature
* (cannot be NULL)
* In: sig64sin: pointer to an array of n pointers to 64-byte input
* signatures
* n: the number of signatures to combine (at least 1)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_combine(
const secp256k1_context* ctx,
unsigned char *sig64,
const unsigned char * const * sig64sin,
int n
) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
# ifdef __cplusplus
}
# endif
#endif
......@@ -5,7 +5,7 @@ includedir=@includedir@
Name: libsecp256k1
Description: Optimized C library for EC operations on curve secp256k1
URL: https://github.com/bitcoin/secp256k1
URL: https://github.com/bitcoin-core/secp256k1
Version: @PACKAGE_VERSION@
Cflags: -I${includedir}
Libs.private: @SECP_LIBS@
......
This diff is collapsed.
# Test libsecp256k1' group operation implementations using prover.sage
import sys
load("group_prover.sage")
load("weierstrass_prover.sage")
def formula_secp256k1_gej_double_var(a):
"""libsecp256k1's secp256k1_gej_double_var, used by various addition functions"""
rz = a.Z * a.Y
rz = rz * 2
t1 = a.X^2
t1 = t1 * 3
t2 = t1^2
t3 = a.Y^2
t3 = t3 * 2
t4 = t3^2
t4 = t4 * 2
t3 = t3 * a.X
rx = t3
rx = rx * 4
rx = -rx
rx = rx + t2
t2 = -t2
t3 = t3 * 6
t3 = t3 + t2
ry = t1 * t3
t2 = -t4
ry = ry + t2
return jacobianpoint(rx, ry, rz)
def formula_secp256k1_gej_add_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_var"""
if branch == 0:
return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
if branch == 1:
return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
z22 = b.Z^2
z12 = a.Z^2
u1 = a.X * z22
u2 = b.X * z12
s1 = a.Y * z22
s1 = s1 * b.Z
s2 = b.Y * z12
s2 = s2 * a.Z
h = -u1
h = h + u2
i = -s1
i = i + s2
if branch == 2:
r = formula_secp256k1_gej_double_var(a)
return (constraints(), constraints(zero={h : 'h=0', i : 'i=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}), r)
if branch == 3:
return (constraints(), constraints(zero={h : 'h=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={i : 'i!=0'}), point_at_infinity())
i2 = i^2
h2 = h^2
h3 = h2 * h
h = h * b.Z
rz = a.Z * h
t = u1 * h2
rx = t
rx = rx * 2
rx = rx + h3
rx = -rx
rx = rx + i2
ry = -rx
ry = ry + t
ry = ry * i
h3 = h3 * s1
h3 = -h3
ry = ry + h3
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_ge_var, which assume bz==1"""
if branch == 0:
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
if branch == 1:
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
z12 = a.Z^2
u1 = a.X
u2 = b.X * z12
s1 = a.Y
s2 = b.Y * z12
s2 = s2 * a.Z
h = -u1
h = h + u2
i = -s1
i = i + s2
if (branch == 2):
r = formula_secp256k1_gej_double_var(a)
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
if (branch == 3):
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
i2 = i^2
h2 = h^2
h3 = h * h2
rz = a.Z * h
t = u1 * h2
rx = t
rx = rx * 2
rx = rx + h3
rx = -rx
rx = rx + i2
ry = -rx
ry = ry + t
ry = ry * i
h3 = h3 * s1
h3 = -h3
ry = ry + h3
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_zinv_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_zinv_var"""
bzinv = b.Z^(-1)
if branch == 0:
return (constraints(), constraints(nonzero={b.Infinity : 'b_infinite'}), a)
if branch == 1:
bzinv2 = bzinv^2
bzinv3 = bzinv2 * bzinv
rx = b.X * bzinv2
ry = b.Y * bzinv3
rz = 1
return (constraints(), constraints(zero={b.Infinity : 'b_finite'}, nonzero={a.Infinity : 'a_infinite'}), jacobianpoint(rx, ry, rz))
azz = a.Z * bzinv
z12 = azz^2
u1 = a.X
u2 = b.X * z12
s1 = a.Y
s2 = b.Y * z12
s2 = s2 * azz
h = -u1
h = h + u2
i = -s1
i = i + s2
if branch == 2:
r = formula_secp256k1_gej_double_var(a)
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
if branch == 3:
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
i2 = i^2
h2 = h^2
h3 = h * h2
rz = a.Z
rz = rz * h
t = u1 * h2
rx = t
rx = rx * 2
rx = rx + h3
rx = -rx
rx = rx + i2
ry = -rx
ry = ry + t
ry = ry * i
h3 = h3 * s1
h3 = -h3
ry = ry + h3
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_ge"""
zeroes = {}
nonzeroes = {}
a_infinity = False
if (branch & 4) != 0:
nonzeroes.update({a.Infinity : 'a_infinite'})
a_infinity = True
else:
zeroes.update({a.Infinity : 'a_finite'})
zz = a.Z^2
u1 = a.X
u2 = b.X * zz
s1 = a.Y
s2 = b.Y * zz
s2 = s2 * a.Z
t = u1
t = t + u2
m = s1
m = m + s2
rr = t^2
m_alt = -u2
tt = u1 * m_alt
rr = rr + tt
degenerate = (branch & 3) == 3
if (branch & 1) != 0:
zeroes.update({m : 'm_zero'})
else:
nonzeroes.update({m : 'm_nonzero'})
if (branch & 2) != 0:
zeroes.update({rr : 'rr_zero'})
else:
nonzeroes.update({rr : 'rr_nonzero'})
rr_alt = s1
rr_alt = rr_alt * 2
m_alt = m_alt + u1
if not degenerate:
rr_alt = rr
m_alt = m
n = m_alt^2
q = n * t
n = n^2
if degenerate:
n = m
t = rr_alt^2
rz = a.Z * m_alt
infinity = False
if (branch & 8) != 0:
if not a_infinity:
infinity = True
zeroes.update({rz : 'r.z=0'})
else:
nonzeroes.update({rz : 'r.z!=0'})
rz = rz * 2
q = -q
t = t + q
rx = t
t = t * 2
t = t + q
t = t * rr_alt
t = t + n
ry = -t
rx = rx * 4
ry = ry * 4
if a_infinity:
rx = b.X
ry = b.Y
rz = 1
if infinity:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity())
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge_old(branch, a, b):
"""libsecp256k1's old secp256k1_gej_add_ge, which fails when ay+by=0 but ax!=bx"""
a_infinity = (branch & 1) != 0
zero = {}
nonzero = {}
if a_infinity:
nonzero.update({a.Infinity : 'a_infinite'})
else:
zero.update({a.Infinity : 'a_finite'})
zz = a.Z^2
u1 = a.X
u2 = b.X * zz
s1 = a.Y
s2 = b.Y * zz
s2 = s2 * a.Z
z = a.Z
t = u1
t = t + u2
m = s1
m = m + s2
n = m^2
q = n * t
n = n^2
rr = t^2
t = u1 * u2
t = -t
rr = rr + t
t = rr^2
rz = m * z
infinity = False
if (branch & 2) != 0:
if not a_infinity:
infinity = True
else:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(nonzero={z : 'conflict_a'}, zero={z : 'conflict_b'}), point_at_infinity())
zero.update({rz : 'r.z=0'})
else:
nonzero.update({rz : 'r.z!=0'})
rz = rz * (0 if a_infinity else 2)
rx = t
q = -q
rx = rx + q
q = q * 3
t = t * 2
t = t + q
t = t * rr
t = t + n
ry = -t
rx = rx * (0 if a_infinity else 4)
ry = ry * (0 if a_infinity else 4)
t = b.X
t = t * (1 if a_infinity else 0)
rx = rx + t
t = b.Y
t = t * (1 if a_infinity else 0)
ry = ry + t
t = (1 if a_infinity else 0)
rz = rz + t
if infinity:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), point_at_infinity())
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), jacobianpoint(rx, ry, rz))
if __name__ == "__main__":
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old)
if len(sys.argv) >= 2 and sys.argv[1] == "--exhaustive":
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old, 43)
# Prover implementation for Weierstrass curves of the form
# y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws
# operating on affine and Jacobian coordinates, including the point at infinity
# represented by a 4th variable in coordinates.
load("group_prover.sage")
class affinepoint:
def __init__(self, x, y, infinity=0):
self.x = x
self.y = y
self.infinity = infinity
def __str__(self):
return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity)
class jacobianpoint:
def __init__(self, x, y, z, infinity=0):
self.X = x
self.Y = y
self.Z = z
self.Infinity = infinity
def __str__(self):
return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity)
def point_at_infinity():
return jacobianpoint(1, 1, 1, 1)
def negate(p):
if p.__class__ == affinepoint:
return affinepoint(p.x, -p.y)
if p.__class__ == jacobianpoint:
return jacobianpoint(p.X, -p.Y, p.Z)
assert(False)
def on_weierstrass_curve(A, B, p):
"""Return a set of zero-expressions for an affine point to be on the curve"""
return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'})
def tangential_to_weierstrass_curve(A, B, p12, p3):
"""Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)"""
return constraints(zero={
(p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve'
})
def colinear(p1, p2, p3):
"""Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear"""
return constraints(zero={
(p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1',
(p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2',
(p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3'
})
def good_affine_point(p):
return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'})
def good_jacobian_point(p):
return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'})
def good_point(p):
return constraints(nonzero={p.Z^6 : 'nonzero_X'})
def finite(p, *affine_fns):
con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'})
if p.Z != 0:
return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con)
else:
return con
def infinite(p):
return constraints(nonzero={p.Infinity : 'infinite_point'})
def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian add, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(nonzero={pa.x - pb.x : 'different_x'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
colinear(pa, pb, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
tangential_to_weierstrass_curve(A, B, pa, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'}))
require = infinite(pC)
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pb) +
infinite(pA) +
finite(pB))
require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
infinite(pB) +
finite(pA))
require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
infinite(pA) +
infinite(pB))
require = infinite(pC)
return (assumeLaw, require)
laws_jacobian_weierstrass = {
'add': law_jacobian_weierstrass_add,
'double': law_jacobian_weierstrass_double,
'add_opposite': law_jacobian_weierstrass_add_opposites,
'add_infinite_a': law_jacobian_weierstrass_add_infinite_a,
'add_infinite_b': law_jacobian_weierstrass_add_infinite_b,
'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab
}
def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field"""
F = Integers(p)
print "Formula %s on Z%i:" % (name, p)
points = []
for x in xrange(0, p):
for y in xrange(0, p):
point = affinepoint(F(x), F(y))
r, e = concrete_verify(on_weierstrass_curve(A, B, point))
if r:
points.append(point)
for za in xrange(1, p):
for zb in xrange(1, p):
for pa in points:
for pb in points:
for ia in xrange(2):
for ib in xrange(2):
pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia)
pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib)
for branch in xrange(0, branches):
assumeAssert, assumeBranch, pC = formula(branch, pA, pB)
pC.X = F(pC.X)
pC.Y = F(pC.Y)
pC.Z = F(pC.Z)
pC.Infinity = F(pC.Infinity)
r, e = concrete_verify(assumeAssert + assumeBranch)
if r:
match = False
for key in laws_jacobian_weierstrass:
assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC)
r, e = concrete_verify(assumeLaw)
if r:
if match:
print " multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity)
else:
match = True
r, e = concrete_verify(require)
if not r:
print " failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e)
print
def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC):
assumeLaw, require = f(A, B, pa, pb, pA, pB, pC)
return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require)
def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically"""
R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
lift = lambda x: fastfrac(R,x)
ax = lift(ax)
ay = lift(ay)
Az = lift(Az)
bx = lift(bx)
by = lift(by)
Bz = lift(Bz)
Ai = lift(Ai)
Bi = lift(Bi)
pa = affinepoint(ax, ay, Ai)
pb = affinepoint(bx, by, Bi)
pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai)
pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi)
res = {}
for key in laws_jacobian_weierstrass:
res[key] = []
print ("Formula " + name + ":")
count = 0
for branch in xrange(branches):
assumeFormula, assumeBranch, pC = formula(branch, pA, pB)
pC.X = lift(pC.X)
pC.Y = lift(pC.Y)
pC.Z = lift(pC.Z)
pC.Infinity = lift(pC.Infinity)
for key in laws_jacobian_weierstrass:
res[key].append((check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC), branch))
for key in res:
print " %s:" % key
val = res[key]
for x in val:
if x[0] is not None:
print " branch %i: %s" % (x[1], x[0])
print
This diff is collapsed.
......@@ -28,7 +28,8 @@ static void bench_ecdh_setup(void* arg) {
0xa2, 0xba, 0xd1, 0x84, 0xf8, 0x83, 0xc6, 0x9f
};
data->ctx = secp256k1_context_create(0);
/* create a context with no capabilities */
data->ctx = secp256k1_context_create(SECP256K1_FLAGS_TYPE_CONTEXT);
for (i = 0; i < 32; i++) {
data->scalar[i] = i + 1;
}
......
......@@ -181,12 +181,12 @@ void bench_field_inverse_var(void* arg) {
}
}
void bench_field_sqrt_var(void* arg) {
void bench_field_sqrt(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_fe_sqrt_var(&data->fe_x, &data->fe_x);
secp256k1_fe_sqrt(&data->fe_x, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}
......@@ -227,6 +227,15 @@ void bench_group_add_affine_var(void* arg) {
}
}
void bench_group_jacobi_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_gej_has_quad_y_var(&data->gej_x);
}
}
void bench_ecmult_wnaf(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
......@@ -299,6 +308,21 @@ void bench_context_sign(void* arg) {
}
}
#ifndef USE_NUM_NONE
void bench_num_jacobi(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
secp256k1_num nx, norder;
secp256k1_scalar_get_num(&nx, &data->scalar_x);
secp256k1_scalar_order_get_num(&norder);
secp256k1_scalar_get_num(&norder, &data->scalar_y);
for (i = 0; i < 200000; i++) {
secp256k1_num_jacobi(&nx, &norder);
}
}
#endif
int have_flag(int argc, char** argv, char *flag) {
char** argm = argv + argc;
......@@ -333,12 +357,13 @@ int main(int argc, char **argv) {
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt_var", bench_field_sqrt_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, 20000);
......@@ -350,5 +375,8 @@ int main(int argc, char **argv) {
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 20);
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 200);
#ifndef USE_NUM_NONE
if (have_flag(argc, argv, "num") || have_flag(argc, argv, "jacobi")) run_benchmark("num_jacobi", bench_num_jacobi, bench_setup, NULL, &data, 10, 200000);
#endif
return 0;
}
......@@ -11,6 +11,12 @@
#include "util.h"
#include "bench.h"
#ifdef ENABLE_OPENSSL_TESTS
#include <openssl/bn.h>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>
#endif
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
......@@ -19,6 +25,9 @@ typedef struct {
size_t siglen;
unsigned char pubkey[33];
size_t pubkeylen;
#ifdef ENABLE_OPENSSL_TESTS
EC_GROUP* ec_group;
#endif
} benchmark_verify_t;
static void benchmark_verify(void* arg) {
......@@ -40,6 +49,36 @@ static void benchmark_verify(void* arg) {
}
}
#ifdef ENABLE_OPENSSL_TESTS
static void benchmark_verify_openssl(void* arg) {
int i;
benchmark_verify_t* data = (benchmark_verify_t*)arg;
for (i = 0; i < 20000; i++) {
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
{
EC_KEY *pkey = EC_KEY_new();
const unsigned char *pubkey = &data->pubkey[0];
int result;
CHECK(pkey != NULL);
result = EC_KEY_set_group(pkey, data->ec_group);
CHECK(result);
result = (o2i_ECPublicKey(&pkey, &pubkey, data->pubkeylen)) != NULL;
CHECK(result);
result = ECDSA_verify(0, &data->msg[0], sizeof(data->msg), &data->sig[0], data->siglen, pkey) == (i == 0);
CHECK(result);
EC_KEY_free(pkey);
}
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
}
}
#endif
int main(void) {
int i;
secp256k1_pubkey pubkey;
......@@ -58,9 +97,15 @@ int main(void) {
CHECK(secp256k1_ecdsa_sign(data.ctx, &sig, data.msg, data.key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig));
CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key));
data.pubkeylen = 33;
CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
run_benchmark("ecdsa_verify", benchmark_verify, NULL, NULL, &data, 10, 20000);
#ifdef ENABLE_OPENSSL_TESTS
data.ec_group = EC_GROUP_new_by_curve_name(NID_secp256k1);
run_benchmark("ecdsa_verify_openssl", benchmark_verify_openssl, NULL, NULL, &data, 10, 20000);
EC_GROUP_free(data.ec_group);
#endif
secp256k1_context_destroy(data.ctx);
return 0;
......
......@@ -17,6 +17,5 @@ static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, c
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s);
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message);
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid);
static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid);
#endif
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
......@@ -46,66 +46,133 @@ static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CON
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
);
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
unsigned char ra[32] = {0}, sa[32] = {0};
const unsigned char *rp;
const unsigned char *sp;
size_t lenr;
size_t lens;
int overflow;
if (sig[0] != 0x30) {
return 0;
static int secp256k1_der_read_len(const unsigned char **sigp, const unsigned char *sigend) {
int lenleft, b1;
size_t ret = 0;
if (*sigp >= sigend) {
return -1;
}
lenr = sig[3];
if (5+lenr >= size) {
return 0;
b1 = *((*sigp)++);
if (b1 == 0xFF) {
/* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
return -1;
}
lens = sig[lenr+5];
if (sig[1] != lenr+lens+4) {
return 0;
if ((b1 & 0x80) == 0) {
/* X.690-0207 8.1.3.4 short form length octets */
return b1;
}
if (lenr+lens+6 > size) {
return 0;
if (b1 == 0x80) {
/* Indefinite length is not allowed in DER. */
return -1;
}
/* X.690-207 8.1.3.5 long form length octets */
lenleft = b1 & 0x7F;
if (lenleft > sigend - *sigp) {
return -1;
}
if (**sigp == 0) {
/* Not the shortest possible length encoding. */
return -1;
}
if (sig[2] != 0x02) {
if ((size_t)lenleft > sizeof(size_t)) {
/* The resulting length would exceed the range of a size_t, so
* certainly longer than the passed array size.
*/
return -1;
}
while (lenleft > 0) {
if ((ret >> ((sizeof(size_t) - 1) * 8)) != 0) {
}
ret = (ret << 8) | **sigp;
if (ret + lenleft > (size_t)(sigend - *sigp)) {
/* Result exceeds the length of the passed array. */
return -1;
}
(*sigp)++;
lenleft--;
}
if (ret < 128) {
/* Not the shortest possible length encoding. */
return -1;
}
return ret;
}
static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
int overflow = 0;
unsigned char ra[32] = {0};
int rlen;
if (*sig == sigend || **sig != 0x02) {
/* Not a primitive integer (X.690-0207 8.3.1). */
return 0;
}
if (lenr == 0) {
(*sig)++;
rlen = secp256k1_der_read_len(sig, sigend);
if (rlen <= 0 || (*sig) + rlen > sigend) {
/* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */
return 0;
}
if (sig[lenr+4] != 0x02) {
if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
/* Excessive 0x00 padding. */
return 0;
}
if (lens == 0) {
if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
/* Excessive 0xFF padding. */
return 0;
}
sp = sig + 6 + lenr;
while (lens > 0 && sp[0] == 0) {
lens--;
sp++;
if ((**sig & 0x80) == 0x80) {
/* Negative. */
overflow = 1;
}
while (rlen > 0 && **sig == 0) {
/* Skip leading zero bytes */
rlen--;
(*sig)++;
}
if (rlen > 32) {
overflow = 1;
}
if (!overflow) {
memcpy(ra + 32 - rlen, *sig, rlen);
secp256k1_scalar_set_b32(r, ra, &overflow);
}
if (overflow) {
secp256k1_scalar_set_int(r, 0);
}
(*sig) += rlen;
return 1;
}
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
const unsigned char *sigend = sig + size;
int rlen;
if (sig == sigend || *(sig++) != 0x30) {
/* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
return 0;
}
if (lens > 32) {
rlen = secp256k1_der_read_len(&sig, sigend);
if (rlen < 0 || sig + rlen > sigend) {
/* Tuple exceeds bounds */
return 0;
}
rp = sig + 4;
while (lenr > 0 && rp[0] == 0) {
lenr--;
rp++;
if (sig + rlen != sigend) {
/* Garbage after tuple. */
return 0;
}
if (lenr > 32) {
if (!secp256k1_der_parse_integer(rr, &sig, sigend)) {
return 0;
}
memcpy(ra + 32 - lenr, rp, lenr);
memcpy(sa + 32 - lens, sp, lens);
overflow = 0;
secp256k1_scalar_set_b32(rr, ra, &overflow);
if (overflow) {
if (!secp256k1_der_parse_integer(rs, &sig, sigend)) {
return 0;
}
secp256k1_scalar_set_b32(rs, sa, &overflow);
if (overflow) {
if (sig != sigend) {
/* Trailing garbage inside tuple. */
return 0;
}
return 1;
}
......@@ -136,7 +203,9 @@ static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
unsigned char c[32];
secp256k1_scalar sn, u1, u2;
#if !defined(EXHAUSTIVE_TEST_ORDER)
secp256k1_fe xr;
#endif
secp256k1_gej pubkeyj;
secp256k1_gej pr;
......@@ -152,6 +221,19 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const
if (secp256k1_gej_is_infinity(&pr)) {
return 0;
}
#if defined(EXHAUSTIVE_TEST_ORDER)
{
secp256k1_scalar computed_r;
secp256k1_ge pr_ge;
secp256k1_ge_set_gej(&pr_ge, &pr);
secp256k1_fe_normalize(&pr_ge.x);
secp256k1_fe_get_b32(c, &pr_ge.x);
secp256k1_scalar_set_b32(&computed_r, c, NULL);
return secp256k1_scalar_eq(sigr, &computed_r);
}
#else
secp256k1_scalar_get_b32(c, sigr);
secp256k1_fe_set_b32(&xr, c);
......@@ -172,11 +254,11 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const
* secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
*/
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* xr.x == xr * xr.z^2 mod p, so the signature is valid. */
/* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
/* xr + p >= n, so we can skip testing the second case. */
/* xr + n >= p, so we can skip testing the second case. */
return 0;
}
secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
......@@ -185,39 +267,7 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const
return 1;
}
return 0;
}
static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar* sigs, secp256k1_ge *pubkey, const secp256k1_scalar *message, int recid) {
unsigned char brx[32];
secp256k1_fe fx;
secp256k1_ge x;
secp256k1_gej xj;
secp256k1_scalar rn, u1, u2;
secp256k1_gej qj;
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
secp256k1_scalar_get_b32(brx, sigr);
VERIFY_CHECK(secp256k1_fe_set_b32(&fx, brx)); /* brx comes from a scalar, so is less than the order; certainly less than p */
if (recid & 2) {
if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
return 0;
}
secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe);
}
if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) {
return 0;
}
secp256k1_gej_set_ge(&xj, &x);
secp256k1_scalar_inverse_var(&rn, sigr);
secp256k1_scalar_mul(&u1, &rn, message);
secp256k1_scalar_negate(&u1, &u1);
secp256k1_scalar_mul(&u2, &rn, sigs);
secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1);
secp256k1_ge_set_gej_var(pubkey, &qj);
return !secp256k1_gej_is_infinity(&qj);
#endif
}
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
......@@ -233,13 +283,14 @@ static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, sec
secp256k1_fe_normalize(&r.y);
secp256k1_fe_get_b32(b, &r.x);
secp256k1_scalar_set_b32(sigr, b, &overflow);
if (secp256k1_scalar_is_zero(sigr)) {
/* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
return 0;
}
/* These two conditions should be checked before calling */
VERIFY_CHECK(!secp256k1_scalar_is_zero(sigr));
VERIFY_CHECK(overflow == 0);
if (recid) {
/* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
* of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
*/
*recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
}
secp256k1_scalar_mul(&n, sigr, seckey);
......
......@@ -15,10 +15,7 @@
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size);
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, unsigned int flags);
static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen);
static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, unsigned int flags);
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed);
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
......
......@@ -33,14 +33,14 @@ static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char
}
}
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, unsigned int flags) {
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed) {
if (secp256k1_ge_is_infinity(elem)) {
return 0;
}
secp256k1_fe_normalize_var(&elem->x);
secp256k1_fe_normalize_var(&elem->y);
secp256k1_fe_get_b32(&pub[1], &elem->x);
if (flags & SECP256K1_EC_COMPRESSED) {
if (compressed) {
*size = 33;
pub[0] = 0x02 | (secp256k1_fe_is_odd(&elem->y) ? 0x01 : 0x00);
} else {
......@@ -51,109 +51,6 @@ static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *p
return 1;
}
static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen) {
unsigned char c[32] = {0};
const unsigned char *end = privkey + privkeylen;
int lenb = 0;
int len = 0;
int overflow = 0;
/* sequence header */
if (end < privkey+1 || *privkey != 0x30) {
return 0;
}
privkey++;
/* sequence length constructor */
if (end < privkey+1 || !(*privkey & 0x80)) {
return 0;
}
lenb = *privkey & ~0x80; privkey++;
if (lenb < 1 || lenb > 2) {
return 0;
}
if (end < privkey+lenb) {
return 0;
}
/* sequence length */
len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0);
privkey += lenb;
if (end < privkey+len) {
return 0;
}
/* sequence element 0: version number (=1) */
if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) {
return 0;
}
privkey += 3;
/* sequence element 1: octet string, up to 32 bytes */
if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) {
return 0;
}
memcpy(c + 32 - privkey[1], privkey + 2, privkey[1]);
secp256k1_scalar_set_b32(key, c, &overflow);
memset(c, 0, 32);
return !overflow;
}
static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, unsigned int flags) {
secp256k1_gej rp;
secp256k1_ge r;
size_t pubkeylen = 0;
secp256k1_ecmult_gen(ctx, &rp, key);
secp256k1_ge_set_gej(&r, &rp);
if (flags & SECP256K1_EC_COMPRESSED) {
static const unsigned char begin[] = {
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
secp256k1_scalar_get_b32(ptr, key); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
if (!secp256k1_eckey_pubkey_serialize(&r, ptr, &pubkeylen, 1)) {
return 0;
}
ptr += pubkeylen;
*privkeylen = ptr - privkey;
} else {
static const unsigned char begin[] = {
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
secp256k1_scalar_get_b32(ptr, key); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
if (!secp256k1_eckey_pubkey_serialize(&r, ptr, &pubkeylen, 0)) {
return 0;
}
ptr += pubkeylen;
*privkeylen = ptr - privkey;
}
return 1;
}
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
secp256k1_scalar_add(key, key, tweak);
if (secp256k1_scalar_is_zero(key)) {
......
......@@ -58,25 +58,27 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
int global_sign;
int skew = 0;
int word = 0;
/* 1 2 3 */
int u_last;
int u;
#ifdef USE_ENDOMORPHISM
int flip;
int bit;
secp256k1_scalar neg_s;
int not_neg_one;
/* If we are using the endomorphism, we cannot handle even numbers by negating
* them, since we are working with 128-bit numbers whose negations would be 256
* bits, eliminating the performance advantage. Instead we use a technique from
/* Note that we cannot handle even numbers by negating them to be odd, as is
* done in other implementations, since if our scalars were specified to have
* width < 256 for performance reasons, their negations would have width 256
* and we'd lose any performance benefit. Instead, we use a technique from
* Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
* or 2 (for odd) to the number we are encoding, then compensating after the
* multiplication. */
/* Negative 128-bit numbers will be negated, since otherwise they are 256-bit */
* or 2 (for odd) to the number we are encoding, returning a skew value indicating
* this, and having the caller compensate after doing the multiplication. */
/* Negative numbers will be negated to keep their bit representation below the maximum width */
flip = secp256k1_scalar_is_high(&s);
/* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
bit = flip ^ (s.d[0] & 1);
bit = flip ^ !secp256k1_scalar_is_even(&s);
/* We check for negative one, since adding 2 to it will cause an overflow */
secp256k1_scalar_negate(&neg_s, &s);
not_neg_one = !secp256k1_scalar_is_one(&neg_s);
......@@ -89,11 +91,6 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
global_sign = secp256k1_scalar_cond_negate(&s, flip);
global_sign *= not_neg_one * 2 - 1;
skew = 1 << bit;
#else
/* Otherwise, we just negate to force oddness */
int is_even = secp256k1_scalar_is_even(&s);
global_sign = secp256k1_scalar_cond_negate(&s, is_even);
#endif
/* 4 */
u_last = secp256k1_scalar_shr_int(&s, w);
......@@ -127,15 +124,13 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
secp256k1_ge tmpa;
secp256k1_fe Z;
int skew_1;
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
#ifdef USE_ENDOMORPHISM
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
int skew_1;
int skew_lam;
secp256k1_scalar q_1, q_lam;
#else
int wnaf[1 + WNAF_SIZE(WINDOW_A - 1)];
#endif
int i;
......@@ -145,18 +140,10 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
#ifdef USE_ENDOMORPHISM
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
/* no need for zero correction when using endomorphism since even
* numbers have one added to them anyway */
skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1);
skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1);
#else
int is_zero = secp256k1_scalar_is_zero(scalar);
/* the wNAF ladder cannot handle zero, so bump this to one .. we will
* correct the result after the fact */
sc.d[0] += is_zero;
VERIFY_CHECK(!secp256k1_scalar_is_zero(&sc));
secp256k1_wnaf_const(wnaf, sc, WINDOW_A - 1);
skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1);
#endif
/* Calculate odd multiples of a.
......@@ -179,21 +166,15 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
/* first loop iteration (separated out so we can directly set r, rather
* than having it start at infinity, get doubled several times, then have
* its new value added to it) */
#ifdef USE_ENDOMORPHISM
i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
secp256k1_gej_set_ge(r, &tmpa);
#ifdef USE_ENDOMORPHISM
i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
secp256k1_gej_add_ge(r, r, &tmpa);
#else
i = wnaf[WNAF_SIZE(WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
secp256k1_gej_set_ge(r, &tmpa);
#endif
/* remaining loop iterations */
for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
......@@ -202,59 +183,57 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
for (j = 0; j < WINDOW_A - 1; ++j) {
secp256k1_gej_double_nonzero(r, r, NULL);
}
#ifdef USE_ENDOMORPHISM
n = wnaf_1[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
#ifdef USE_ENDOMORPHISM
n = wnaf_lam[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
#else
n = wnaf[i];
VERIFY_CHECK(n != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
secp256k1_gej_add_ge(r, r, &tmpa);
#endif
}
secp256k1_fe_mul(&r->z, &r->z, &Z);
#ifdef USE_ENDOMORPHISM
{
/* Correct for wNAF skew */
secp256k1_ge correction = *a;
secp256k1_ge_storage correction_1_stor;
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage correction_lam_stor;
#endif
secp256k1_ge_storage a2_stor;
secp256k1_gej tmpj;
secp256k1_gej_set_ge(&tmpj, &correction);
secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
secp256k1_ge_set_gej(&correction, &tmpj);
secp256k1_ge_to_storage(&correction_1_stor, a);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_to_storage(&correction_lam_stor, a);
#endif
secp256k1_ge_to_storage(&a2_stor, &correction);
/* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
#endif
/* Apply the correction */
secp256k1_ge_from_storage(&correction, &correction_1_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_from_storage(&correction, &correction_lam_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_ge_mul_lambda(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
}
#else
/* correct for zero */
r->infinity |= is_zero;
#endif
}
}
#endif
......@@ -40,8 +40,13 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx
static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
secp256k1_fe nums_x;
secp256k1_ge nums_ge;
VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32));
VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0));
int r;
r = secp256k1_fe_set_b32(&nums_x, nums_b32);
(void)r;
VERIFY_CHECK(r);
r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
(void)r;
VERIFY_CHECK(r);
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
/* Add G to make the bits in x uniformly distributed. */
secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
......@@ -72,7 +77,7 @@ static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
}
}
secp256k1_ge_set_all_gej_var(1024, prec, precj, cb);
secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb);
}
for (j = 0; j < 64; j++) {
for (i = 0; i < 16; i++) {
......@@ -182,7 +187,7 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
retry = !secp256k1_fe_set_b32(&s, nonce32);
retry |= secp256k1_fe_is_zero(&s);
} while (retry);
} while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */
/* Randomize the projection to defend against multiplier sidechannels. */
secp256k1_gej_rescale(&ctx->initial, &s);
secp256k1_fe_clear(&s);
......@@ -191,7 +196,7 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const
secp256k1_scalar_set_b32(&b, nonce32, &retry);
/* A blinding value of 0 works, but would undermine the projection hardening. */
retry |= secp256k1_scalar_is_zero(&b);
} while (retry);
} while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
memset(nonce32, 0, 32);
secp256k1_ecmult_gen(ctx, &gb, &b);
......
......@@ -7,13 +7,29 @@
#ifndef _SECP256K1_ECMULT_IMPL_H_
#define _SECP256K1_ECMULT_IMPL_H_
#include <string.h>
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
/* We need to lower these values for exhaustive tests because
* the tables cannot have infinities in them (this breaks the
* affine-isomorphism stuff which tracks z-ratios) */
# if EXHAUSTIVE_TEST_ORDER > 128
# define WINDOW_A 5
# define WINDOW_G 8
# elif EXHAUSTIVE_TEST_ORDER > 8
# define WINDOW_A 4
# define WINDOW_G 4
# else
# define WINDOW_A 2
# define WINDOW_G 2
# endif
#else
/* optimal for 128-bit and 256-bit exponents. */
#define WINDOW_A 5
/** larger numbers may result in slightly better performance, at the cost of
exponentially larger precomputed tables. */
#ifdef USE_ENDOMORPHISM
......@@ -23,6 +39,7 @@
/** One table for window size 16: 1.375 MiB. */
#define WINDOW_G 16
#endif
#endif
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
......@@ -101,7 +118,7 @@ static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge
/* Compute the odd multiples in Jacobian form. */
secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
/* Convert them in batch to affine coordinates. */
secp256k1_ge_set_table_gej_var(n, prea, prej, zr);
secp256k1_ge_set_table_gej_var(prea, prej, zr, n);
/* Convert them to compact storage form. */
for (i = 0; i < n; i++) {
secp256k1_ge_to_storage(&pre[i], &prea[i]);
......
......@@ -10,7 +10,7 @@
/** Field element module.
*
* Field elements can be represented in several ways, but code accessing
* it (and implementations) need to take certain properaties into account:
* it (and implementations) need to take certain properties into account:
* - Each field element can be normalized or not.
* - Each field element has a magnitude, which represents how far away
* its representation is away from normalization. Normalized elements
......@@ -30,6 +30,8 @@
#error "Please select field implementation"
#endif
#include "util.h"
/** Normalize a field element. */
static void secp256k1_fe_normalize(secp256k1_fe *r);
......@@ -50,6 +52,9 @@ static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
/** Sets a field element equal to zero, initializing all fields. */
static void secp256k1_fe_clear(secp256k1_fe *a);
/** Verify whether a field element is zero. Requires the input to be normalized. */
static int secp256k1_fe_is_zero(const secp256k1_fe *a);
......@@ -57,6 +62,9 @@ static int secp256k1_fe_is_zero(const secp256k1_fe *a);
static int secp256k1_fe_is_odd(const secp256k1_fe *a);
/** Compare two field elements. Requires magnitude-1 inputs. */
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
/** Same as secp256k1_fe_equal, but may be variable time. */
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Compare two field elements. Requires both inputs to be normalized */
......@@ -87,10 +95,15 @@ static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp2
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
/** Sets a field element to be the (modular) square root (if any exist) of another. Requires the
* input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be
* normalized). Return value indicates whether a square root was found. */
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a);
/** If a has a square root, it is computed in r and 1 is returned. If a does not
* have a square root, the root of its negation is computed and 0 is returned.
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
* guaranteed to be normalized). The result in r will always be a square
* itself. */
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a);
/** Checks whether a field element is a quadratic residue. */
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
......@@ -102,7 +115,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
* outputs must not overlap in memory. */
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a);
static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len);
/** Convert a field element to the storage type. */
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
......
......@@ -7,8 +7,6 @@
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
#define _SECP256K1_FIELD_REPR_IMPL_H_
#include <stdio.h>
#include <string.h>
#include "util.h"
#include "num.h"
#include "field.h"
......@@ -40,10 +38,6 @@ static void secp256k1_fe_verify(const secp256k1_fe *a) {
}
VERIFY_CHECK(r == 1);
}
#else
static void secp256k1_fe_verify(const secp256k1_fe *a) {
(void)a;
}
#endif
static void secp256k1_fe_normalize(secp256k1_fe *r) {
......@@ -429,6 +423,14 @@ SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_f
#endif
}
#if defined(USE_EXTERNAL_ASM)
/* External assembler implementation */
void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t *a, const uint32_t * SECP256K1_RESTRICT b);
void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t *a);
#else
#ifdef VERIFY
#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
#else
......@@ -1037,7 +1039,7 @@ SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t
VERIFY_BITS(r[2], 27);
/* [r9 r8 r7 r6 r5 r4 r3 r2 r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
#endif
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
#ifdef VERIFY
......
......@@ -11,7 +11,6 @@
#include "libsecp256k1-config.h"
#endif
#include <string.h>
#include "util.h"
#include "num.h"
#include "field.h"
......@@ -50,10 +49,6 @@ static void secp256k1_fe_verify(const secp256k1_fe *a) {
}
VERIFY_CHECK(r == 1);
}
#else
static void secp256k1_fe_verify(const secp256k1_fe *a) {
(void)a;
}
#endif
static void secp256k1_fe_normalize(secp256k1_fe *r) {
......
......@@ -137,7 +137,7 @@ SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t
VERIFY_BITS(r[2], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += d * R + t3;;
c += d * R + t3;
VERIFY_BITS(c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = c & M; c >>= 52;
......@@ -259,7 +259,7 @@ SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t
VERIFY_BITS(c, 63);
/* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += d * R + t3;;
c += d * R + t3;
VERIFY_BITS(c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = c & M; c >>= 52;
......
......@@ -21,6 +21,13 @@
#error "Please select field implementation"
#endif
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero(&na);
}
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
......@@ -28,7 +35,16 @@ SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const
return secp256k1_fe_normalizes_to_zero_var(&na);
}
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
/** Given that p is congruent to 3 mod 4, we can compute the square root of
* a mod p as the (p+1)/4'th power of a.
*
* As (p+1)/4 is an even number, it will have the same result for a and for
* (-a). Only one of these two numbers actually has a square root however,
* so we test at the end by squaring and comparing to the input.
* Also because (p+1)/4 is an even number, the computed square root is
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
*/
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;
......@@ -114,7 +130,7 @@ static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
/* Check that a square root was actually calculated */
secp256k1_fe_sqr(&t1, r);
return secp256k1_fe_equal_var(&t1, a);
return secp256k1_fe_equal(&t1, a);
}
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
......@@ -224,6 +240,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
unsigned char b[32];
int res;
secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
......@@ -231,7 +248,9 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_num_set_bin(&m, prime, 32);
secp256k1_num_mod_inverse(&n, &n, &m);
secp256k1_num_get_bin(b, 32, &n);
VERIFY_CHECK(secp256k1_fe_set_b32(r, b));
res = secp256k1_fe_set_b32(r, b);
(void)res;
VERIFY_CHECK(res);
/* Verify the result is the (unique) valid inverse using non-GMP code. */
secp256k1_fe_mul(&c, &c, r);
secp256k1_fe_add(&c, &negone);
......@@ -241,7 +260,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
#endif
}
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a) {
static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) {
secp256k1_fe u;
size_t i;
if (len < 1) {
......@@ -268,4 +287,29 @@ static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k
r[0] = u;
}
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
#ifndef USE_NUM_NONE
unsigned char b[32];
secp256k1_num n;
secp256k1_num m;
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
static const unsigned char prime[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_set_bin(&m, prime, 32);
return secp256k1_num_jacobi(&n, &m) >= 0;
#else
secp256k1_fe r;
return secp256k1_fe_sqrt(&r, a);
#endif
}
#endif
......@@ -40,12 +40,15 @@ typedef struct {
#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
/** Set a group element equal to the point at infinity */
static void secp256k1_ge_set_infinity(secp256k1_ge *r);
/** Set a group element equal to the point with given X and Y coordinates */
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
/** Set a group element (affine) equal to the point with the given X coordinate
* and a Y coordinate that is a quadratic residue modulo p. The return value
* is true iff a coordinate with the given X coordinate exists.
*/
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x);
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
......@@ -62,12 +65,12 @@ static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb);
static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb);
/** Set a batch of group elements equal to the inputs given in jacobian
* coordinates (with known z-ratios). zr must contain the known z-ratios such
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr);
static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len);
/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
* the same global z "denominator". zr must contain the known z-ratios such
......@@ -79,9 +82,6 @@ static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp
/** Set a group element (jacobian) equal to the point at infinity. */
static void secp256k1_gej_set_infinity(secp256k1_gej *r);
/** Set a group element (jacobian) equal to the point with given X and Y coordinates. */
static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y);
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
......@@ -94,6 +94,9 @@ static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
/** Check whether a group element is the point at infinity. */
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
/** Check whether a group element's y coordinate is a quadratic residue. */
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a);
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
* a may not be zero. Constant time. */
static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
......
......@@ -11,7 +11,7 @@
#include <stdint.h>
typedef struct {
uint32_t s[32];
uint32_t s[8];
uint32_t buf[16]; /* In big endian */
size_t bytes;
} secp256k1_sha256_t;
......
......@@ -269,15 +269,13 @@ static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256
rng->retry = 0;
}
#undef BE32
#undef Round
#undef sigma0
#undef sigma1
#undef Sigma0
#undef sigma0
#undef Sigma1
#undef Ch
#undef Sigma0
#undef Maj
#undef ReadBE32
#undef WriteBE32
#undef Ch
#endif
#include <stdlib.h>
#include <stdint.h>
#include "org_bitcoin_Secp256k1Context.h"
#include "include/secp256k1.h"
SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context
(JNIEnv* env, jclass classObject)
{
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
(void)classObject;(void)env;
return (uintptr_t)ctx;
}
......@@ -4,6 +4,5 @@ noinst_HEADERS += src/modules/ecdh/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_ecdh
bench_ecdh_SOURCES = src/bench_ecdh.c
bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_ecdh_LDFLAGS = -static
bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif
......@@ -4,6 +4,5 @@ noinst_HEADERS += src/modules/recovery/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_recover
bench_recover_SOURCES = src/bench_recover.c
bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_recover_LDFLAGS = -static
bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment