Unverified Commit 4fabd9cb authored by gary rong's avatar gary rong Committed by GitHub

les: separate peer into clientPeer and serverPeer (#19991)

* les: separate peer into clientPeer and serverPeer

* les: address comments
parent fadf84a7
......@@ -42,7 +42,7 @@ type requestBenchmark interface {
// init initializes the generator for generating the given number of randomized requests
init(h *serverHandler, count int) error
// request initiates sending a single request to the given peer
request(peer *peer, index int) error
request(peer *serverPeer, index int) error
}
// benchmarkBlockHeaders implements requestBenchmark
......@@ -72,11 +72,11 @@ func (b *benchmarkBlockHeaders) init(h *serverHandler, count int) error {
return nil
}
func (b *benchmarkBlockHeaders) request(peer *peer, index int) error {
func (b *benchmarkBlockHeaders) request(peer *serverPeer, index int) error {
if b.byHash {
return peer.RequestHeadersByHash(0, 0, b.hashes[index], b.amount, b.skip, b.reverse)
return peer.requestHeadersByHash(0, b.hashes[index], b.amount, b.skip, b.reverse)
} else {
return peer.RequestHeadersByNumber(0, 0, uint64(b.offset+rand.Int63n(b.randMax)), b.amount, b.skip, b.reverse)
return peer.requestHeadersByNumber(0, uint64(b.offset+rand.Int63n(b.randMax)), b.amount, b.skip, b.reverse)
}
}
......@@ -95,11 +95,11 @@ func (b *benchmarkBodiesOrReceipts) init(h *serverHandler, count int) error {
return nil
}
func (b *benchmarkBodiesOrReceipts) request(peer *peer, index int) error {
func (b *benchmarkBodiesOrReceipts) request(peer *serverPeer, index int) error {
if b.receipts {
return peer.RequestReceipts(0, 0, []common.Hash{b.hashes[index]})
return peer.requestReceipts(0, []common.Hash{b.hashes[index]})
} else {
return peer.RequestBodies(0, 0, []common.Hash{b.hashes[index]})
return peer.requestBodies(0, []common.Hash{b.hashes[index]})
}
}
......@@ -114,13 +114,13 @@ func (b *benchmarkProofsOrCode) init(h *serverHandler, count int) error {
return nil
}
func (b *benchmarkProofsOrCode) request(peer *peer, index int) error {
func (b *benchmarkProofsOrCode) request(peer *serverPeer, index int) error {
key := make([]byte, 32)
rand.Read(key)
if b.code {
return peer.RequestCode(0, 0, []CodeReq{{BHash: b.headHash, AccKey: key}})
return peer.requestCode(0, []CodeReq{{BHash: b.headHash, AccKey: key}})
} else {
return peer.RequestProofs(0, 0, []ProofReq{{BHash: b.headHash, Key: key}})
return peer.requestProofs(0, []ProofReq{{BHash: b.headHash, Key: key}})
}
}
......@@ -144,7 +144,7 @@ func (b *benchmarkHelperTrie) init(h *serverHandler, count int) error {
return nil
}
func (b *benchmarkHelperTrie) request(peer *peer, index int) error {
func (b *benchmarkHelperTrie) request(peer *serverPeer, index int) error {
reqs := make([]HelperTrieReq, b.reqCount)
if b.bloom {
......@@ -163,7 +163,7 @@ func (b *benchmarkHelperTrie) request(peer *peer, index int) error {
}
}
return peer.RequestHelperTrieProofs(0, 0, reqs)
return peer.requestHelperTrieProofs(0, reqs)
}
// benchmarkTxSend implements requestBenchmark
......@@ -189,9 +189,9 @@ func (b *benchmarkTxSend) init(h *serverHandler, count int) error {
return nil
}
func (b *benchmarkTxSend) request(peer *peer, index int) error {
func (b *benchmarkTxSend) request(peer *serverPeer, index int) error {
enc, _ := rlp.EncodeToBytes(types.Transactions{b.txs[index]})
return peer.SendTxs(0, 0, enc)
return peer.sendTxs(0, enc)
}
// benchmarkTxStatus implements requestBenchmark
......@@ -201,10 +201,10 @@ func (b *benchmarkTxStatus) init(h *serverHandler, count int) error {
return nil
}
func (b *benchmarkTxStatus) request(peer *peer, index int) error {
func (b *benchmarkTxStatus) request(peer *serverPeer, index int) error {
var hash common.Hash
rand.Read(hash[:])
return peer.RequestTxStatus(0, 0, []common.Hash{hash})
return peer.requestTxStatus(0, []common.Hash{hash})
}
// benchmarkSetup stores measurement data for a single benchmark type
......@@ -283,18 +283,17 @@ func (h *serverHandler) measure(setup *benchmarkSetup, count int) error {
var id enode.ID
rand.Read(id[:])
clientPeer := newPeer(lpv2, NetworkId, false, p2p.NewPeer(id, "client", nil), clientMeteredPipe)
serverPeer := newPeer(lpv2, NetworkId, false, p2p.NewPeer(id, "server", nil), serverMeteredPipe)
serverPeer.sendQueue = newExecQueue(count)
serverPeer.announceType = announceTypeNone
serverPeer.fcCosts = make(requestCostTable)
peer1 := newServerPeer(lpv2, NetworkId, false, p2p.NewPeer(id, "client", nil), clientMeteredPipe)
peer2 := newClientPeer(lpv2, NetworkId, p2p.NewPeer(id, "server", nil), serverMeteredPipe)
peer2.announceType = announceTypeNone
peer2.fcCosts = make(requestCostTable)
c := &requestCosts{}
for code := range requests {
serverPeer.fcCosts[code] = c
peer2.fcCosts[code] = c
}
serverPeer.fcParams = flowcontrol.ServerParams{BufLimit: 1, MinRecharge: 1}
serverPeer.fcClient = flowcontrol.NewClientNode(h.server.fcManager, serverPeer.fcParams)
defer serverPeer.fcClient.Disconnect()
peer2.fcParams = flowcontrol.ServerParams{BufLimit: 1, MinRecharge: 1}
peer2.fcClient = flowcontrol.NewClientNode(h.server.fcManager, peer2.fcParams)
defer peer2.fcClient.Disconnect()
if err := setup.req.init(h, count); err != nil {
return err
......@@ -305,7 +304,7 @@ func (h *serverHandler) measure(setup *benchmarkSetup, count int) error {
go func() {
for i := 0; i < count; i++ {
if err := setup.req.request(clientPeer, i); err != nil {
if err := setup.req.request(peer1, i); err != nil {
errCh <- err
return
}
......@@ -313,7 +312,7 @@ func (h *serverHandler) measure(setup *benchmarkSetup, count int) error {
}()
go func() {
for i := 0; i < count; i++ {
if err := h.handleMsg(serverPeer, &sync.WaitGroup{}); err != nil {
if err := h.handleMsg(peer2, &sync.WaitGroup{}); err != nil {
errCh <- err
return
}
......
......@@ -49,6 +49,7 @@ import (
type LightEthereum struct {
lesCommons
peers *serverPeerSet
reqDist *requestDistributor
retriever *retrieveManager
odr *LesOdr
......@@ -80,7 +81,7 @@ func New(ctx *node.ServiceContext, config *eth.Config) (*LightEthereum, error) {
}
log.Info("Initialised chain configuration", "config", chainConfig)
peers := newPeerSet()
peers := newServerPeerSet()
leth := &LightEthereum{
lesCommons: lesCommons{
genesis: genesisHash,
......@@ -88,9 +89,9 @@ func New(ctx *node.ServiceContext, config *eth.Config) (*LightEthereum, error) {
chainConfig: chainConfig,
iConfig: light.DefaultClientIndexerConfig,
chainDb: chainDb,
peers: peers,
closeCh: make(chan struct{}),
},
peers: peers,
eventMux: ctx.EventMux,
reqDist: newRequestDistributor(peers, &mclock.System{}),
accountManager: ctx.AccountManager,
......@@ -225,7 +226,7 @@ func (s *LightEthereum) EventMux() *event.TypeMux { return s.eventMux
// network protocols to start.
func (s *LightEthereum) Protocols() []p2p.Protocol {
return s.makeProtocols(ClientProtocolVersions, s.handler.runPeer, func(id enode.ID) interface{} {
if p := s.peers.Peer(peerIdToString(id)); p != nil {
if p := s.peers.peer(peerIdToString(id)); p != nil {
return p.Info()
}
return nil
......@@ -253,7 +254,7 @@ func (s *LightEthereum) Start(srvr *p2p.Server) error {
// Ethereum protocol.
func (s *LightEthereum) Stop() error {
close(s.closeCh)
s.peers.Close()
s.peers.close()
s.reqDist.close()
s.odr.Stop()
s.relay.Stop()
......
......@@ -65,7 +65,7 @@ func newClientHandler(ulcServers []string, ulcFraction int, checkpoint *params.T
}
handler.fetcher = newLightFetcher(handler)
handler.downloader = downloader.New(height, backend.chainDb, nil, backend.eventMux, nil, backend.blockchain, handler.removePeer)
handler.backend.peers.notify((*downloaderPeerNotify)(handler))
handler.backend.peers.subscribe((*downloaderPeerNotify)(handler))
return handler
}
......@@ -82,7 +82,8 @@ func (h *clientHandler) runPeer(version uint, p *p2p.Peer, rw p2p.MsgReadWriter)
if h.ulc != nil {
trusted = h.ulc.trusted(p.ID())
}
peer := newPeer(int(version), h.backend.config.NetworkId, trusted, p, newMeteredMsgWriter(rw, int(version)))
peer := newServerPeer(int(version), h.backend.config.NetworkId, trusted, p, newMeteredMsgWriter(rw, int(version)))
defer peer.close()
peer.poolEntry = h.backend.serverPool.connect(peer, peer.Node())
if peer.poolEntry == nil {
return p2p.DiscRequested
......@@ -94,8 +95,8 @@ func (h *clientHandler) runPeer(version uint, p *p2p.Peer, rw p2p.MsgReadWriter)
return err
}
func (h *clientHandler) handle(p *peer) error {
if h.backend.peers.Len() >= h.backend.config.LightPeers && !p.Peer.Info().Network.Trusted {
func (h *clientHandler) handle(p *serverPeer) error {
if h.backend.peers.len() >= h.backend.config.LightPeers && !p.Peer.Info().Network.Trusted {
return p2p.DiscTooManyPeers
}
p.Log().Debug("Light Ethereum peer connected", "name", p.Name())
......@@ -112,20 +113,20 @@ func (h *clientHandler) handle(p *peer) error {
return err
}
// Register the peer locally
if err := h.backend.peers.Register(p); err != nil {
if err := h.backend.peers.register(p); err != nil {
p.Log().Error("Light Ethereum peer registration failed", "err", err)
return err
}
serverConnectionGauge.Update(int64(h.backend.peers.Len()))
serverConnectionGauge.Update(int64(h.backend.peers.len()))
connectedAt := mclock.Now()
defer func() {
h.backend.peers.Unregister(p.id)
h.backend.peers.unregister(p.id)
connectionTimer.Update(time.Duration(mclock.Now() - connectedAt))
serverConnectionGauge.Update(int64(h.backend.peers.Len()))
serverConnectionGauge.Update(int64(h.backend.peers.len()))
}()
h.fetcher.announce(p, p.headInfo)
h.fetcher.announce(p, &announceData{Hash: p.headInfo.Hash, Number: p.headInfo.Number, Td: p.headInfo.Td})
// pool entry can be nil during the unit test.
if p.poolEntry != nil {
......@@ -143,7 +144,7 @@ func (h *clientHandler) handle(p *peer) error {
// handleMsg is invoked whenever an inbound message is received from a remote
// peer. The remote connection is torn down upon returning any error.
func (h *clientHandler) handleMsg(p *peer) error {
func (h *clientHandler) handleMsg(p *serverPeer) error {
// Read the next message from the remote peer, and ensure it's fully consumed
msg, err := p.rw.ReadMsg()
if err != nil {
......@@ -297,7 +298,7 @@ func (h *clientHandler) handleMsg(p *peer) error {
Obj: resp.Status,
}
case StopMsg:
p.freezeServer(true)
p.freeze()
h.backend.retriever.frozen(p)
p.Log().Debug("Service stopped")
case ResumeMsg:
......@@ -306,7 +307,7 @@ func (h *clientHandler) handleMsg(p *peer) error {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
p.fcServer.ResumeFreeze(bv)
p.freezeServer(false)
p.unfreeze()
p.Log().Debug("Service resumed")
default:
p.Log().Trace("Received invalid message", "code", msg.Code)
......@@ -315,8 +316,8 @@ func (h *clientHandler) handleMsg(p *peer) error {
// Deliver the received response to retriever.
if deliverMsg != nil {
if err := h.backend.retriever.deliver(p, deliverMsg); err != nil {
p.responseErrors++
if p.responseErrors > maxResponseErrors {
p.errCount++
if p.errCount > maxResponseErrors {
return err
}
}
......@@ -325,12 +326,12 @@ func (h *clientHandler) handleMsg(p *peer) error {
}
func (h *clientHandler) removePeer(id string) {
h.backend.peers.Unregister(id)
h.backend.peers.unregister(id)
}
type peerConnection struct {
handler *clientHandler
peer *peer
peer *serverPeer
}
func (pc *peerConnection) Head() (common.Hash, *big.Int) {
......@@ -340,18 +341,18 @@ func (pc *peerConnection) Head() (common.Hash, *big.Int) {
func (pc *peerConnection) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool) error {
rq := &distReq{
getCost: func(dp distPeer) uint64 {
peer := dp.(*peer)
return peer.GetRequestCost(GetBlockHeadersMsg, amount)
peer := dp.(*serverPeer)
return peer.getRequestCost(GetBlockHeadersMsg, amount)
},
canSend: func(dp distPeer) bool {
return dp.(*peer) == pc.peer
return dp.(*serverPeer) == pc.peer
},
request: func(dp distPeer) func() {
reqID := genReqID()
peer := dp.(*peer)
cost := peer.GetRequestCost(GetBlockHeadersMsg, amount)
peer := dp.(*serverPeer)
cost := peer.getRequestCost(GetBlockHeadersMsg, amount)
peer.fcServer.QueuedRequest(reqID, cost)
return func() { peer.RequestHeadersByHash(reqID, cost, origin, amount, skip, reverse) }
return func() { peer.requestHeadersByHash(reqID, origin, amount, skip, reverse) }
},
}
_, ok := <-pc.handler.backend.reqDist.queue(rq)
......@@ -364,18 +365,18 @@ func (pc *peerConnection) RequestHeadersByHash(origin common.Hash, amount int, s
func (pc *peerConnection) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool) error {
rq := &distReq{
getCost: func(dp distPeer) uint64 {
peer := dp.(*peer)
return peer.GetRequestCost(GetBlockHeadersMsg, amount)
peer := dp.(*serverPeer)
return peer.getRequestCost(GetBlockHeadersMsg, amount)
},
canSend: func(dp distPeer) bool {
return dp.(*peer) == pc.peer
return dp.(*serverPeer) == pc.peer
},
request: func(dp distPeer) func() {
reqID := genReqID()
peer := dp.(*peer)
cost := peer.GetRequestCost(GetBlockHeadersMsg, amount)
peer := dp.(*serverPeer)
cost := peer.getRequestCost(GetBlockHeadersMsg, amount)
peer.fcServer.QueuedRequest(reqID, cost)
return func() { peer.RequestHeadersByNumber(reqID, cost, origin, amount, skip, reverse) }
return func() { peer.requestHeadersByNumber(reqID, origin, amount, skip, reverse) }
},
}
_, ok := <-pc.handler.backend.reqDist.queue(rq)
......@@ -388,7 +389,7 @@ func (pc *peerConnection) RequestHeadersByNumber(origin uint64, amount int, skip
// downloaderPeerNotify implements peerSetNotify
type downloaderPeerNotify clientHandler
func (d *downloaderPeerNotify) registerPeer(p *peer) {
func (d *downloaderPeerNotify) registerPeer(p *serverPeer) {
h := (*clientHandler)(d)
pc := &peerConnection{
handler: h,
......@@ -397,7 +398,7 @@ func (d *downloaderPeerNotify) registerPeer(p *peer) {
h.downloader.RegisterLightPeer(p.id, ethVersion, pc)
}
func (d *downloaderPeerNotify) unregisterPeer(p *peer) {
func (d *downloaderPeerNotify) unregisterPeer(p *serverPeer) {
h := (*clientHandler)(d)
h.downloader.UnregisterPeer(p.id)
}
......@@ -97,12 +97,12 @@ type clientPool struct {
disableBias bool // Disable connection bias(used in testing)
}
// clientPeer represents a client in the pool.
// clientPoolPeer represents a client peer in the pool.
// Positive balances are assigned to node key while negative balances are assigned
// to freeClientId. Currently network IP address without port is used because
// clients have a limited access to IP addresses while new node keys can be easily
// generated so it would be useless to assign a negative value to them.
type clientPeer interface {
type clientPoolPeer interface {
ID() enode.ID
freeClientId() string
updateCapacity(uint64)
......@@ -117,7 +117,7 @@ type clientInfo struct {
capacity uint64
priority bool
pool *clientPool
peer clientPeer
peer clientPoolPeer
queueIndex int // position in connectedQueue
balanceTracker balanceTracker
posFactors, negFactors priceFactors
......@@ -207,7 +207,7 @@ func (f *clientPool) stop() {
// connect should be called after a successful handshake. If the connection was
// rejected, there is no need to call disconnect.
func (f *clientPool) connect(peer clientPeer, capacity uint64) bool {
func (f *clientPool) connect(peer clientPoolPeer, capacity uint64) bool {
f.lock.Lock()
defer f.lock.Unlock()
......@@ -322,7 +322,7 @@ func (f *clientPool) connect(peer clientPeer, capacity uint64) bool {
// disconnect should be called when a connection is terminated. If the disconnection
// was initiated by the pool itself using disconnectFn then calling disconnect is
// not necessary but permitted.
func (f *clientPool) disconnect(p clientPeer) {
func (f *clientPool) disconnect(p clientPoolPeer) {
f.lock.Lock()
defer f.lock.Unlock()
......@@ -516,7 +516,7 @@ func (f *clientPool) setCapacity(c *clientInfo, capacity uint64) error {
}
// requestCost feeds request cost after serving a request from the given peer.
func (f *clientPool) requestCost(p *peer, cost uint64) {
func (f *clientPool) requestCost(p *clientPeer, cost uint64) {
f.lock.Lock()
defer f.lock.Unlock()
......
......@@ -61,7 +61,6 @@ type lesCommons struct {
chainConfig *params.ChainConfig
iConfig *light.IndexerConfig
chainDb ethdb.Database
peers *peerSet
chainReader chainReader
chtIndexer, bloomTrieIndexer *core.ChainIndexer
oracle *checkpointoracle.CheckpointOracle
......
......@@ -49,7 +49,7 @@ type requestDistributor struct {
type distPeer interface {
waitBefore(uint64) (time.Duration, float64)
canQueue() bool
queueSend(f func())
queueSend(f func()) bool
}
// distReq is the request abstraction used by the distributor. It is based on
......@@ -73,7 +73,7 @@ type distReq struct {
}
// newRequestDistributor creates a new request distributor
func newRequestDistributor(peers *peerSet, clock mclock.Clock) *requestDistributor {
func newRequestDistributor(peers *serverPeerSet, clock mclock.Clock) *requestDistributor {
d := &requestDistributor{
clock: clock,
reqQueue: list.New(),
......@@ -82,7 +82,7 @@ func newRequestDistributor(peers *peerSet, clock mclock.Clock) *requestDistribut
peers: make(map[distPeer]struct{}),
}
if peers != nil {
peers.notify(d)
peers.subscribe(d)
}
d.wg.Add(1)
go d.loop()
......@@ -90,14 +90,14 @@ func newRequestDistributor(peers *peerSet, clock mclock.Clock) *requestDistribut
}
// registerPeer implements peerSetNotify
func (d *requestDistributor) registerPeer(p *peer) {
func (d *requestDistributor) registerPeer(p *serverPeer) {
d.peerLock.Lock()
d.peers[p] = struct{}{}
d.peerLock.Unlock()
}
// unregisterPeer implements peerSetNotify
func (d *requestDistributor) unregisterPeer(p *peer) {
func (d *requestDistributor) unregisterPeer(p *serverPeer) {
d.peerLock.Lock()
delete(d.peers, p)
d.peerLock.Unlock()
......
......@@ -105,8 +105,9 @@ func (p *testDistPeer) canQueue() bool {
return true
}
func (p *testDistPeer) queueSend(f func()) {
func (p *testDistPeer) queueSend(f func()) bool {
f()
return true
}
func TestRequestDistributor(t *testing.T) {
......
......@@ -45,10 +45,10 @@ type lightFetcher struct {
lock sync.Mutex // lock protects access to the fetcher's internal state variables except sent requests
maxConfirmedTd *big.Int
peers map[*peer]*fetcherPeerInfo
peers map[*serverPeer]*fetcherPeerInfo
lastUpdateStats *updateStatsEntry
syncing bool
syncDone chan *peer
syncDone chan *serverPeer
reqMu sync.RWMutex // reqMu protects access to sent header fetch requests
requested map[uint64]fetchRequest
......@@ -96,7 +96,7 @@ type fetcherTreeNode struct {
type fetchRequest struct {
hash common.Hash
amount uint64
peer *peer
peer *serverPeer
sent mclock.AbsTime
timeout bool
}
......@@ -105,7 +105,7 @@ type fetchRequest struct {
type fetchResponse struct {
reqID uint64
headers []*types.Header
peer *peer
peer *serverPeer
}
// newLightFetcher creates a new light fetcher
......@@ -113,16 +113,16 @@ func newLightFetcher(h *clientHandler) *lightFetcher {
f := &lightFetcher{
handler: h,
chain: h.backend.blockchain,
peers: make(map[*peer]*fetcherPeerInfo),
peers: make(map[*serverPeer]*fetcherPeerInfo),
deliverChn: make(chan fetchResponse, 100),
requested: make(map[uint64]fetchRequest),
timeoutChn: make(chan uint64),
requestTrigger: make(chan struct{}, 1),
syncDone: make(chan *peer),
syncDone: make(chan *serverPeer),
closeCh: make(chan struct{}),
maxConfirmedTd: big.NewInt(0),
}
h.backend.peers.notify(f)
h.backend.peers.subscribe(f)
f.wg.Add(1)
go f.syncLoop()
......@@ -222,7 +222,7 @@ func (f *lightFetcher) syncLoop() {
}
// registerPeer adds a new peer to the fetcher's peer set
func (f *lightFetcher) registerPeer(p *peer) {
func (f *lightFetcher) registerPeer(p *serverPeer) {
p.lock.Lock()
p.hasBlock = func(hash common.Hash, number uint64, hasState bool) bool {
return f.peerHasBlock(p, hash, number, hasState)
......@@ -235,7 +235,7 @@ func (f *lightFetcher) registerPeer(p *peer) {
}
// unregisterPeer removes a new peer from the fetcher's peer set
func (f *lightFetcher) unregisterPeer(p *peer) {
func (f *lightFetcher) unregisterPeer(p *serverPeer) {
p.lock.Lock()
p.hasBlock = nil
p.lock.Unlock()
......@@ -250,7 +250,7 @@ func (f *lightFetcher) unregisterPeer(p *peer) {
// announce processes a new announcement message received from a peer, adding new
// nodes to the peer's block tree and removing old nodes if necessary
func (f *lightFetcher) announce(p *peer, head *announceData) {
func (f *lightFetcher) announce(p *serverPeer, head *announceData) {
f.lock.Lock()
defer f.lock.Unlock()
p.Log().Debug("Received new announcement", "number", head.Number, "hash", head.Hash, "reorg", head.ReorgDepth)
......@@ -346,7 +346,7 @@ func (f *lightFetcher) announce(p *peer, head *announceData) {
f.checkKnownNode(p, n)
p.lock.Lock()
p.headInfo = head
p.headInfo = blockInfo{Number: head.Number, Hash: head.Hash, Td: head.Td}
fp.lastAnnounced = n
p.lock.Unlock()
f.checkUpdateStats(p, nil)
......@@ -358,7 +358,7 @@ func (f *lightFetcher) announce(p *peer, head *announceData) {
// peerHasBlock returns true if we can assume the peer knows the given block
// based on its announcements
func (f *lightFetcher) peerHasBlock(p *peer, hash common.Hash, number uint64, hasState bool) bool {
func (f *lightFetcher) peerHasBlock(p *serverPeer, hash common.Hash, number uint64, hasState bool) bool {
f.lock.Lock()
defer f.lock.Unlock()
......@@ -395,7 +395,7 @@ func (f *lightFetcher) peerHasBlock(p *peer, hash common.Hash, number uint64, ha
// requestAmount calculates the amount of headers to be downloaded starting
// from a certain head backwards
func (f *lightFetcher) requestAmount(p *peer, n *fetcherTreeNode) uint64 {
func (f *lightFetcher) requestAmount(p *serverPeer, n *fetcherTreeNode) uint64 {
amount := uint64(0)
nn := n
for nn != nil && !f.checkKnownNode(p, nn) {
......@@ -488,7 +488,7 @@ func (f *lightFetcher) newFetcherDistReqForSync(bestHash common.Hash) *distReq {
return 0
},
canSend: func(dp distPeer) bool {
p := dp.(*peer)
p := dp.(*serverPeer)
f.lock.Lock()
defer f.lock.Unlock()
......@@ -504,7 +504,7 @@ func (f *lightFetcher) newFetcherDistReqForSync(bestHash common.Hash) *distReq {
f.setLastTrustedHeader(f.chain.CurrentHeader())
}
go func() {
p := dp.(*peer)
p := dp.(*serverPeer)
p.Log().Debug("Synchronisation started")
f.handler.synchronise(p)
f.syncDone <- p
......@@ -518,11 +518,11 @@ func (f *lightFetcher) newFetcherDistReqForSync(bestHash common.Hash) *distReq {
func (f *lightFetcher) newFetcherDistReq(bestHash common.Hash, reqID uint64, bestAmount uint64) *distReq {
return &distReq{
getCost: func(dp distPeer) uint64 {
p := dp.(*peer)
return p.GetRequestCost(GetBlockHeadersMsg, int(bestAmount))
p := dp.(*serverPeer)
return p.getRequestCost(GetBlockHeadersMsg, int(bestAmount))
},
canSend: func(dp distPeer) bool {
p := dp.(*peer)
p := dp.(*serverPeer)
f.lock.Lock()
defer f.lock.Unlock()
......@@ -537,7 +537,7 @@ func (f *lightFetcher) newFetcherDistReq(bestHash common.Hash, reqID uint64, bes
return n != nil && !n.requested
},
request: func(dp distPeer) func() {
p := dp.(*peer)
p := dp.(*serverPeer)
f.lock.Lock()
fp := f.peers[p]
if fp != nil {
......@@ -548,7 +548,7 @@ func (f *lightFetcher) newFetcherDistReq(bestHash common.Hash, reqID uint64, bes
}
f.lock.Unlock()
cost := p.GetRequestCost(GetBlockHeadersMsg, int(bestAmount))
cost := p.getRequestCost(GetBlockHeadersMsg, int(bestAmount))
p.fcServer.QueuedRequest(reqID, cost)
f.reqMu.Lock()
f.requested[reqID] = fetchRequest{hash: bestHash, amount: bestAmount, peer: p, sent: mclock.Now()}
......@@ -557,13 +557,13 @@ func (f *lightFetcher) newFetcherDistReq(bestHash common.Hash, reqID uint64, bes
time.Sleep(hardRequestTimeout)
f.timeoutChn <- reqID
}()
return func() { p.RequestHeadersByHash(reqID, cost, bestHash, int(bestAmount), 0, true) }
return func() { p.requestHeadersByHash(reqID, bestHash, int(bestAmount), 0, true) }
},
}
}
// deliverHeaders delivers header download request responses for processing
func (f *lightFetcher) deliverHeaders(peer *peer, reqID uint64, headers []*types.Header) {
func (f *lightFetcher) deliverHeaders(peer *serverPeer, reqID uint64, headers []*types.Header) {
f.deliverChn <- fetchResponse{reqID: reqID, headers: headers, peer: peer}
}
......@@ -694,7 +694,7 @@ func (f *lightFetcher) checkAnnouncedHeaders(fp *fetcherPeerInfo, headers []*typ
// checkSyncedHeaders updates peer's block tree after synchronisation by marking
// downloaded headers as known. If none of the announced headers are found after
// syncing, the peer is dropped.
func (f *lightFetcher) checkSyncedHeaders(p *peer) {
func (f *lightFetcher) checkSyncedHeaders(p *serverPeer) {
fp := f.peers[p]
if fp == nil {
p.Log().Debug("Unknown peer to check sync headers")
......@@ -728,7 +728,7 @@ func (f *lightFetcher) checkSyncedHeaders(p *peer) {
}
// lastTrustedTreeNode return last approved treeNode and a list of unapproved hashes
func (f *lightFetcher) lastTrustedTreeNode(p *peer) (*types.Header, []common.Hash) {
func (f *lightFetcher) lastTrustedTreeNode(p *serverPeer) (*types.Header, []common.Hash) {
unapprovedHashes := make([]common.Hash, 0)
current := f.chain.CurrentHeader()
......@@ -764,7 +764,7 @@ func (f *lightFetcher) setLastTrustedHeader(h *types.Header) {
// checkKnownNode checks if a block tree node is known (downloaded and validated)
// If it was not known previously but found in the database, sets its known flag
func (f *lightFetcher) checkKnownNode(p *peer, n *fetcherTreeNode) bool {
func (f *lightFetcher) checkKnownNode(p *serverPeer, n *fetcherTreeNode) bool {
if n.known {
return true
}
......@@ -867,7 +867,7 @@ func (f *lightFetcher) updateMaxConfirmedTd(td *big.Int) {
// If a new entry has been added to the global tail, it is passed as a parameter here even though this function
// assumes that it has already been added, so that if the peer's list is empty (all heads confirmed, head is nil),
// it can set the new head to newEntry.
func (f *lightFetcher) checkUpdateStats(p *peer, newEntry *updateStatsEntry) {
func (f *lightFetcher) checkUpdateStats(p *serverPeer, newEntry *updateStatsEntry) {
now := mclock.Now()
fp := f.peers[p]
if fp == nil {
......
......@@ -168,8 +168,7 @@ func testGetBlockHeaders(t *testing.T, protocol int) {
// Send the hash request and verify the response
reqID++
cost := server.peer.peer.GetRequestCost(GetBlockHeadersMsg, int(tt.query.Amount))
sendRequest(server.peer.app, GetBlockHeadersMsg, reqID, cost, tt.query)
sendRequest(server.peer.app, GetBlockHeadersMsg, reqID, tt.query)
if err := expectResponse(server.peer.app, BlockHeadersMsg, reqID, testBufLimit, headers); err != nil {
t.Errorf("test %d: headers mismatch: %v", i, err)
}
......@@ -246,8 +245,7 @@ func testGetBlockBodies(t *testing.T, protocol int) {
reqID++
// Send the hash request and verify the response
cost := server.peer.peer.GetRequestCost(GetBlockBodiesMsg, len(hashes))
sendRequest(server.peer.app, GetBlockBodiesMsg, reqID, cost, hashes)
sendRequest(server.peer.app, GetBlockBodiesMsg, reqID, hashes)
if err := expectResponse(server.peer.app, BlockBodiesMsg, reqID, testBufLimit, bodies); err != nil {
t.Errorf("test %d: bodies mismatch: %v", i, err)
}
......@@ -278,8 +276,7 @@ func testGetCode(t *testing.T, protocol int) {
}
}
cost := server.peer.peer.GetRequestCost(GetCodeMsg, len(codereqs))
sendRequest(server.peer.app, GetCodeMsg, 42, cost, codereqs)
sendRequest(server.peer.app, GetCodeMsg, 42, codereqs)
if err := expectResponse(server.peer.app, CodeMsg, 42, testBufLimit, codes); err != nil {
t.Errorf("codes mismatch: %v", err)
}
......@@ -299,8 +296,7 @@ func testGetStaleCode(t *testing.T, protocol int) {
BHash: bc.GetHeaderByNumber(number).Hash(),
AccKey: crypto.Keccak256(testContractAddr[:]),
}
cost := server.peer.peer.GetRequestCost(GetCodeMsg, 1)
sendRequest(server.peer.app, GetCodeMsg, 42, cost, []*CodeReq{req})
sendRequest(server.peer.app, GetCodeMsg, 42, []*CodeReq{req})
if err := expectResponse(server.peer.app, CodeMsg, 42, testBufLimit, expected); err != nil {
t.Errorf("codes mismatch: %v", err)
}
......@@ -331,8 +327,7 @@ func testGetReceipt(t *testing.T, protocol int) {
receipts = append(receipts, rawdb.ReadRawReceipts(server.db, block.Hash(), block.NumberU64()))
}
// Send the hash request and verify the response
cost := server.peer.peer.GetRequestCost(GetReceiptsMsg, len(hashes))
sendRequest(server.peer.app, GetReceiptsMsg, 42, cost, hashes)
sendRequest(server.peer.app, GetReceiptsMsg, 42, hashes)
if err := expectResponse(server.peer.app, ReceiptsMsg, 42, testBufLimit, receipts); err != nil {
t.Errorf("receipts mismatch: %v", err)
}
......@@ -367,8 +362,7 @@ func testGetProofs(t *testing.T, protocol int) {
}
}
// Send the proof request and verify the response
cost := server.peer.peer.GetRequestCost(GetProofsV2Msg, len(proofreqs))
sendRequest(server.peer.app, GetProofsV2Msg, 42, cost, proofreqs)
sendRequest(server.peer.app, GetProofsV2Msg, 42, proofreqs)
if err := expectResponse(server.peer.app, ProofsV2Msg, 42, testBufLimit, proofsV2.NodeList()); err != nil {
t.Errorf("proofs mismatch: %v", err)
}
......@@ -392,8 +386,7 @@ func testGetStaleProof(t *testing.T, protocol int) {
BHash: header.Hash(),
Key: account,
}
cost := server.peer.peer.GetRequestCost(GetProofsV2Msg, 1)
sendRequest(server.peer.app, GetProofsV2Msg, 42, cost, []*ProofReq{req})
sendRequest(server.peer.app, GetProofsV2Msg, 42, []*ProofReq{req})
var expected []rlp.RawValue
if wantOK {
......@@ -453,8 +446,7 @@ func testGetCHTProofs(t *testing.T, protocol int) {
AuxReq: auxHeader,
}}
// Send the proof request and verify the response
cost := server.peer.peer.GetRequestCost(GetHelperTrieProofsMsg, len(requestsV2))
sendRequest(server.peer.app, GetHelperTrieProofsMsg, 42, cost, requestsV2)
sendRequest(server.peer.app, GetHelperTrieProofsMsg, 42, requestsV2)
if err := expectResponse(server.peer.app, HelperTrieProofsMsg, 42, testBufLimit, proofsV2); err != nil {
t.Errorf("proofs mismatch: %v", err)
}
......@@ -502,8 +494,7 @@ func testGetBloombitsProofs(t *testing.T, protocol int) {
trie.Prove(key, 0, &proofs.Proofs)
// Send the proof request and verify the response
cost := server.peer.peer.GetRequestCost(GetHelperTrieProofsMsg, len(requests))
sendRequest(server.peer.app, GetHelperTrieProofsMsg, 42, cost, requests)
sendRequest(server.peer.app, GetHelperTrieProofsMsg, 42, requests)
if err := expectResponse(server.peer.app, HelperTrieProofsMsg, 42, testBufLimit, proofs); err != nil {
t.Errorf("bit %d: proofs mismatch: %v", bit, err)
}
......@@ -525,11 +516,9 @@ func testTransactionStatus(t *testing.T, protocol int) {
test := func(tx *types.Transaction, send bool, expStatus light.TxStatus) {
reqID++
if send {
cost := server.peer.peer.GetRequestCost(SendTxV2Msg, 1)
sendRequest(server.peer.app, SendTxV2Msg, reqID, cost, types.Transactions{tx})
sendRequest(server.peer.app, SendTxV2Msg, reqID, types.Transactions{tx})
} else {
cost := server.peer.peer.GetRequestCost(GetTxStatusMsg, 1)
sendRequest(server.peer.app, GetTxStatusMsg, reqID, cost, []common.Hash{tx.Hash()})
sendRequest(server.peer.app, GetTxStatusMsg, reqID, []common.Hash{tx.Hash()})
}
if err := expectResponse(server.peer.app, TxStatusMsg, reqID, testBufLimit, []light.TxStatus{expStatus}); err != nil {
t.Errorf("transaction status mismatch")
......@@ -620,7 +609,7 @@ func TestStopResumeLes3(t *testing.T) {
header := server.handler.blockchain.CurrentHeader()
req := func() {
reqID++
sendRequest(server.peer.app, GetBlockHeadersMsg, reqID, testCost, &getBlockHeadersData{Origin: hashOrNumber{Hash: header.Hash()}, Amount: 1})
sendRequest(server.peer.app, GetBlockHeadersMsg, reqID, &getBlockHeadersData{Origin: hashOrNumber{Hash: header.Hash()}, Amount: 1})
}
for i := 1; i <= 5; i++ {
// send requests while we still have enough buffer and expect a response
......
......@@ -106,17 +106,17 @@ func (odr *LesOdr) Retrieve(ctx context.Context, req light.OdrRequest) (err erro
reqID := genReqID()
rq := &distReq{
getCost: func(dp distPeer) uint64 {
return lreq.GetCost(dp.(*peer))
return lreq.GetCost(dp.(*serverPeer))
},
canSend: func(dp distPeer) bool {
p := dp.(*peer)
p := dp.(*serverPeer)
if !p.onlyAnnounce {
return lreq.CanSend(p)
}
return false
},
request: func(dp distPeer) func() {
p := dp.(*peer)
p := dp.(*serverPeer)
cost := lreq.GetCost(p)
p.fcServer.QueuedRequest(reqID, cost)
return func() { lreq.Request(reqID, p) }
......
......@@ -46,9 +46,9 @@ var (
)
type LesOdrRequest interface {
GetCost(*peer) uint64
CanSend(*peer) bool
Request(uint64, *peer) error
GetCost(*serverPeer) uint64
CanSend(*serverPeer) bool
Request(uint64, *serverPeer) error
Validate(ethdb.Database, *Msg) error
}
......@@ -78,19 +78,19 @@ type BlockRequest light.BlockRequest
// GetCost returns the cost of the given ODR request according to the serving
// peer's cost table (implementation of LesOdrRequest)
func (r *BlockRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetBlockBodiesMsg, 1)
func (r *BlockRequest) GetCost(peer *serverPeer) uint64 {
return peer.getRequestCost(GetBlockBodiesMsg, 1)
}
// CanSend tells if a certain peer is suitable for serving the given request
func (r *BlockRequest) CanSend(peer *peer) bool {
func (r *BlockRequest) CanSend(peer *serverPeer) bool {
return peer.HasBlock(r.Hash, r.Number, false)
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (r *BlockRequest) Request(reqID uint64, peer *peer) error {
func (r *BlockRequest) Request(reqID uint64, peer *serverPeer) error {
peer.Log().Debug("Requesting block body", "hash", r.Hash)
return peer.RequestBodies(reqID, r.GetCost(peer), []common.Hash{r.Hash})
return peer.requestBodies(reqID, []common.Hash{r.Hash})
}
// Valid processes an ODR request reply message from the LES network
......@@ -134,19 +134,19 @@ type ReceiptsRequest light.ReceiptsRequest
// GetCost returns the cost of the given ODR request according to the serving
// peer's cost table (implementation of LesOdrRequest)
func (r *ReceiptsRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetReceiptsMsg, 1)
func (r *ReceiptsRequest) GetCost(peer *serverPeer) uint64 {
return peer.getRequestCost(GetReceiptsMsg, 1)
}
// CanSend tells if a certain peer is suitable for serving the given request
func (r *ReceiptsRequest) CanSend(peer *peer) bool {
func (r *ReceiptsRequest) CanSend(peer *serverPeer) bool {
return peer.HasBlock(r.Hash, r.Number, false)
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (r *ReceiptsRequest) Request(reqID uint64, peer *peer) error {
func (r *ReceiptsRequest) Request(reqID uint64, peer *serverPeer) error {
peer.Log().Debug("Requesting block receipts", "hash", r.Hash)
return peer.RequestReceipts(reqID, r.GetCost(peer), []common.Hash{r.Hash})
return peer.requestReceipts(reqID, []common.Hash{r.Hash})
}
// Valid processes an ODR request reply message from the LES network
......@@ -191,24 +191,24 @@ type TrieRequest light.TrieRequest
// GetCost returns the cost of the given ODR request according to the serving
// peer's cost table (implementation of LesOdrRequest)
func (r *TrieRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetProofsV2Msg, 1)
func (r *TrieRequest) GetCost(peer *serverPeer) uint64 {
return peer.getRequestCost(GetProofsV2Msg, 1)
}
// CanSend tells if a certain peer is suitable for serving the given request
func (r *TrieRequest) CanSend(peer *peer) bool {
func (r *TrieRequest) CanSend(peer *serverPeer) bool {
return peer.HasBlock(r.Id.BlockHash, r.Id.BlockNumber, true)
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (r *TrieRequest) Request(reqID uint64, peer *peer) error {
func (r *TrieRequest) Request(reqID uint64, peer *serverPeer) error {
peer.Log().Debug("Requesting trie proof", "root", r.Id.Root, "key", r.Key)
req := ProofReq{
BHash: r.Id.BlockHash,
AccKey: r.Id.AccKey,
Key: r.Key,
}
return peer.RequestProofs(reqID, r.GetCost(peer), []ProofReq{req})
return peer.requestProofs(reqID, []ProofReq{req})
}
// Valid processes an ODR request reply message from the LES network
......@@ -245,23 +245,23 @@ type CodeRequest light.CodeRequest
// GetCost returns the cost of the given ODR request according to the serving
// peer's cost table (implementation of LesOdrRequest)
func (r *CodeRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetCodeMsg, 1)
func (r *CodeRequest) GetCost(peer *serverPeer) uint64 {
return peer.getRequestCost(GetCodeMsg, 1)
}
// CanSend tells if a certain peer is suitable for serving the given request
func (r *CodeRequest) CanSend(peer *peer) bool {
func (r *CodeRequest) CanSend(peer *serverPeer) bool {
return peer.HasBlock(r.Id.BlockHash, r.Id.BlockNumber, true)
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (r *CodeRequest) Request(reqID uint64, peer *peer) error {
func (r *CodeRequest) Request(reqID uint64, peer *serverPeer) error {
peer.Log().Debug("Requesting code data", "hash", r.Hash)
req := CodeReq{
BHash: r.Id.BlockHash,
AccKey: r.Id.AccKey,
}
return peer.RequestCode(reqID, r.GetCost(peer), []CodeReq{req})
return peer.requestCode(reqID, []CodeReq{req})
}
// Valid processes an ODR request reply message from the LES network
......@@ -316,12 +316,12 @@ type ChtRequest light.ChtRequest
// GetCost returns the cost of the given ODR request according to the serving
// peer's cost table (implementation of LesOdrRequest)
func (r *ChtRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetHelperTrieProofsMsg, 1)
func (r *ChtRequest) GetCost(peer *serverPeer) uint64 {
return peer.getRequestCost(GetHelperTrieProofsMsg, 1)
}
// CanSend tells if a certain peer is suitable for serving the given request
func (r *ChtRequest) CanSend(peer *peer) bool {
func (r *ChtRequest) CanSend(peer *serverPeer) bool {
peer.lock.RLock()
defer peer.lock.RUnlock()
......@@ -333,7 +333,7 @@ func (r *ChtRequest) CanSend(peer *peer) bool {
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (r *ChtRequest) Request(reqID uint64, peer *peer) error {
func (r *ChtRequest) Request(reqID uint64, peer *serverPeer) error {
peer.Log().Debug("Requesting CHT", "cht", r.ChtNum, "block", r.BlockNum)
var encNum [8]byte
binary.BigEndian.PutUint64(encNum[:], r.BlockNum)
......@@ -343,7 +343,7 @@ func (r *ChtRequest) Request(reqID uint64, peer *peer) error {
Key: encNum[:],
AuxReq: auxHeader,
}
return peer.RequestHelperTrieProofs(reqID, r.GetCost(peer), []HelperTrieReq{req})
return peer.requestHelperTrieProofs(reqID, []HelperTrieReq{req})
}
// Valid processes an ODR request reply message from the LES network
......@@ -413,12 +413,12 @@ type BloomRequest light.BloomRequest
// GetCost returns the cost of the given ODR request according to the serving
// peer's cost table (implementation of LesOdrRequest)
func (r *BloomRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetHelperTrieProofsMsg, len(r.SectionIndexList))
func (r *BloomRequest) GetCost(peer *serverPeer) uint64 {
return peer.getRequestCost(GetHelperTrieProofsMsg, len(r.SectionIndexList))
}
// CanSend tells if a certain peer is suitable for serving the given request
func (r *BloomRequest) CanSend(peer *peer) bool {
func (r *BloomRequest) CanSend(peer *serverPeer) bool {
peer.lock.RLock()
defer peer.lock.RUnlock()
......@@ -429,7 +429,7 @@ func (r *BloomRequest) CanSend(peer *peer) bool {
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (r *BloomRequest) Request(reqID uint64, peer *peer) error {
func (r *BloomRequest) Request(reqID uint64, peer *serverPeer) error {
peer.Log().Debug("Requesting BloomBits", "bloomTrie", r.BloomTrieNum, "bitIdx", r.BitIdx, "sections", r.SectionIndexList)
reqs := make([]HelperTrieReq, len(r.SectionIndexList))
......@@ -444,7 +444,7 @@ func (r *BloomRequest) Request(reqID uint64, peer *peer) error {
Key: common.CopyBytes(encNumber[:]),
}
}
return peer.RequestHelperTrieProofs(reqID, r.GetCost(peer), reqs)
return peer.requestHelperTrieProofs(reqID, reqs)
}
// Valid processes an ODR request reply message from the LES network
......@@ -489,19 +489,19 @@ type TxStatusRequest light.TxStatusRequest
// GetCost returns the cost of the given ODR request according to the serving
// peer's cost table (implementation of LesOdrRequest)
func (r *TxStatusRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetTxStatusMsg, len(r.Hashes))
func (r *TxStatusRequest) GetCost(peer *serverPeer) uint64 {
return peer.getRequestCost(GetTxStatusMsg, len(r.Hashes))
}
// CanSend tells if a certain peer is suitable for serving the given request
func (r *TxStatusRequest) CanSend(peer *peer) bool {
func (r *TxStatusRequest) CanSend(peer *serverPeer) bool {
return peer.version >= lpv2
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (r *TxStatusRequest) Request(reqID uint64, peer *peer) error {
func (r *TxStatusRequest) Request(reqID uint64, peer *serverPeer) error {
peer.Log().Debug("Requesting transaction status", "count", len(r.Hashes))
return peer.RequestTxStatus(reqID, r.GetCost(peer), r.Hashes)
return peer.requestTxStatus(reqID, r.Hashes)
}
// Valid processes an ODR request reply message from the LES network
......
......@@ -186,7 +186,7 @@ func testOdr(t *testing.T, protocol int, expFail uint64, checkCached bool, fn od
server, client, tearDown := newClientServerEnv(t, 4, protocol, nil, nil, 0, false, true)
defer tearDown()
client.handler.synchronise(client.peer.peer)
client.handler.synchronise(client.peer.speer)
// Ensure the client has synced all necessary data.
clientHead := client.handler.backend.blockchain.CurrentHeader()
......@@ -224,19 +224,19 @@ func testOdr(t *testing.T, protocol int, expFail uint64, checkCached bool, fn od
// expect retrievals to fail (except genesis block) without a les peer
client.handler.backend.peers.lock.Lock()
client.peer.peer.hasBlock = func(common.Hash, uint64, bool) bool { return false }
client.peer.speer.hasBlock = func(common.Hash, uint64, bool) bool { return false }
client.handler.backend.peers.lock.Unlock()
test(expFail)
// expect all retrievals to pass
client.handler.backend.peers.lock.Lock()
client.peer.peer.hasBlock = func(common.Hash, uint64, bool) bool { return true }
client.peer.speer.hasBlock = func(common.Hash, uint64, bool) bool { return true }
client.handler.backend.peers.lock.Unlock()
test(5)
// still expect all retrievals to pass, now data should be cached locally
if checkCached {
client.handler.backend.peers.Unregister(client.peer.peer.id)
client.handler.backend.peers.unregister(client.peer.speer.id)
time.Sleep(time.Millisecond * 10) // ensure that all peerSetNotify callbacks are executed
test(5)
}
......
......@@ -48,24 +48,25 @@ var (
const (
maxRequestErrors = 20 // number of invalid requests tolerated (makes the protocol less brittle but still avoids spam)
maxResponseErrors = 50 // number of invalid responses tolerated (makes the protocol less brittle but still avoids spam)
)
// capacity limitation for parameter updates
const (
allowedUpdateBytes = 100000 // initial/maximum allowed update size
allowedUpdateRate = time.Millisecond * 10 // time constant for recharging one byte of allowance
)
const (
freezeTimeBase = time.Millisecond * 700 // fixed component of client freeze time
freezeTimeRandom = time.Millisecond * 600 // random component of client freeze time
freezeCheckPeriod = time.Millisecond * 100 // buffer value recheck period after initial freeze time has elapsed
)
// if the total encoded size of a sent transaction batch is over txSizeCostLimit
// per transaction then the request cost is calculated as proportional to the
// encoded size instead of the transaction count
const txSizeCostLimit = 0x4000
// If the total encoded size of a sent transaction batch is over txSizeCostLimit
// per transaction then the request cost is calculated as proportional to the
// encoded size instead of the transaction count
txSizeCostLimit = 0x4000
// handshakeTimeout is the timeout LES handshake will be treated as failed.
handshakeTimeout = 5 * time.Second
// retrySendCachePeriod is the time interval a caching retry is performed.
retrySendCachePeriod = time.Millisecond * 100
)
const (
announceTypeNone = iota
......@@ -73,72 +74,595 @@ const (
announceTypeSigned
)
type peer struct {
type keyValueEntry struct {
Key string
Value rlp.RawValue
}
type keyValueList []keyValueEntry
type keyValueMap map[string]rlp.RawValue
func (l keyValueList) add(key string, val interface{}) keyValueList {
var entry keyValueEntry
entry.Key = key
if val == nil {
val = uint64(0)
}
enc, err := rlp.EncodeToBytes(val)
if err == nil {
entry.Value = enc
}
return append(l, entry)
}
func (l keyValueList) decode() (keyValueMap, uint64) {
m := make(keyValueMap)
var size uint64
for _, entry := range l {
m[entry.Key] = entry.Value
size += uint64(len(entry.Key)) + uint64(len(entry.Value)) + 8
}
return m, size
}
func (m keyValueMap) get(key string, val interface{}) error {
enc, ok := m[key]
if !ok {
return errResp(ErrMissingKey, "%s", key)
}
if val == nil {
return nil
}
return rlp.DecodeBytes(enc, val)
}
// peerIdToString converts enode.ID to a string form
func peerIdToString(id enode.ID) string {
return fmt.Sprintf("%x", id.Bytes())
}
// peerCommons contains fields needed by both server peer and client peer.
type peerCommons struct {
*p2p.Peer
rw p2p.MsgReadWriter
version int // Protocol version negotiated
network uint64 // Network ID being on
id string // Peer identity.
version int // Protocol version negotiated.
network uint64 // Network ID being on.
frozen uint32 // Flag whether the peer is frozen.
announceType uint64 // New block announcement type.
headInfo blockInfo // Latest block information.
// Background task queue for caching peer tasks and executing in order.
sendQueue *execQueue
// Flow control agreement.
fcParams flowcontrol.ServerParams // The config for token bucket.
fcCosts requestCostTable // The Maximum request cost table.
closeCh chan struct{}
lock sync.RWMutex // Lock used to protect all thread-sensitive fields.
}
// isFrozen returns true if the client is frozen or the server has put our
// client in frozen state
func (p *peerCommons) isFrozen() bool {
return atomic.LoadUint32(&p.frozen) != 0
}
// canQueue returns an indicator whether the peer can queue a operation.
func (p *peerCommons) canQueue() bool {
return p.sendQueue.canQueue() && !p.isFrozen()
}
// queueSend caches a peer operation in the background task queue.
// Please ensure to check `canQueue` before call this function
func (p *peerCommons) queueSend(f func()) bool {
return p.sendQueue.queue(f)
}
// mustQueueSend starts a for loop and retry the caching if failed.
// If the stopCh is closed, then it returns.
func (p *peerCommons) mustQueueSend(f func()) {
for {
// Check whether the stopCh is closed.
select {
case <-p.closeCh:
return
default:
}
// If the function is successfully cached, return.
if p.canQueue() && p.queueSend(f) {
return
}
time.Sleep(retrySendCachePeriod)
}
}
// String implements fmt.Stringer.
func (p *peerCommons) String() string {
return fmt.Sprintf("Peer %s [%s]", p.id, fmt.Sprintf("les/%d", p.version))
}
// Info gathers and returns a collection of metadata known about a peer.
func (p *peerCommons) Info() *eth.PeerInfo {
return &eth.PeerInfo{
Version: p.version,
Difficulty: p.Td(),
Head: fmt.Sprintf("%x", p.Head()),
}
}
// Head retrieves a copy of the current head (most recent) hash of the peer.
func (p *peerCommons) Head() (hash common.Hash) {
p.lock.RLock()
defer p.lock.RUnlock()
return p.headInfo.Hash
}
// Td retrieves the current total difficulty of a peer.
func (p *peerCommons) Td() *big.Int {
p.lock.RLock()
defer p.lock.RUnlock()
return new(big.Int).Set(p.headInfo.Td)
}
// HeadAndTd retrieves the current head hash and total difficulty of a peer.
func (p *peerCommons) HeadAndTd() (hash common.Hash, td *big.Int) {
p.lock.RLock()
defer p.lock.RUnlock()
return p.headInfo.Hash, new(big.Int).Set(p.headInfo.Td)
}
// sendReceiveHandshake exchanges handshake packet with remote peer and returns any error
// if failed to send or receive packet.
func (p *peerCommons) sendReceiveHandshake(sendList keyValueList) (keyValueList, error) {
var (
errc = make(chan error, 2)
recvList keyValueList
)
// Send out own handshake in a new thread
go func() {
errc <- p2p.Send(p.rw, StatusMsg, sendList)
}()
go func() {
// In the mean time retrieve the remote status message
msg, err := p.rw.ReadMsg()
if err != nil {
errc <- err
return
}
if msg.Code != StatusMsg {
errc <- errResp(ErrNoStatusMsg, "first msg has code %x (!= %x)", msg.Code, StatusMsg)
return
}
if msg.Size > ProtocolMaxMsgSize {
errc <- errResp(ErrMsgTooLarge, "%v > %v", msg.Size, ProtocolMaxMsgSize)
return
}
// Decode the handshake
if err := msg.Decode(&recvList); err != nil {
errc <- errResp(ErrDecode, "msg %v: %v", msg, err)
return
}
errc <- nil
}()
timeout := time.NewTimer(handshakeTimeout)
defer timeout.Stop()
for i := 0; i < 2; i++ {
select {
case err := <-errc:
if err != nil {
return nil, err
}
case <-timeout.C:
return nil, p2p.DiscReadTimeout
}
}
return recvList, nil
}
// handshake executes the les protocol handshake, negotiating version number,
// network IDs, difficulties, head and genesis blocks. Besides the basic handshake
// fields, server and client can exchange and resolve some specified fields through
// two callback functions.
func (p *peerCommons) handshake(td *big.Int, head common.Hash, headNum uint64, genesis common.Hash, sendCallback func(*keyValueList), recvCallback func(keyValueMap) error) error {
p.lock.Lock()
defer p.lock.Unlock()
var send keyValueList
// Add some basic handshake fields
send = send.add("protocolVersion", uint64(p.version))
send = send.add("networkId", p.network)
send = send.add("headTd", td)
send = send.add("headHash", head)
send = send.add("headNum", headNum)
send = send.add("genesisHash", genesis)
// Add client-specified or server-specified fields
if sendCallback != nil {
sendCallback(&send)
}
// Exchange the handshake packet and resolve the received one.
recvList, err := p.sendReceiveHandshake(send)
if err != nil {
return err
}
recv, size := recvList.decode()
if size > allowedUpdateBytes {
return errResp(ErrRequestRejected, "")
}
var rGenesis, rHash common.Hash
var rVersion, rNetwork, rNum uint64
var rTd *big.Int
if err := recv.get("protocolVersion", &rVersion); err != nil {
return err
}
if err := recv.get("networkId", &rNetwork); err != nil {
return err
}
if err := recv.get("headTd", &rTd); err != nil {
return err
}
if err := recv.get("headHash", &rHash); err != nil {
return err
}
if err := recv.get("headNum", &rNum); err != nil {
return err
}
if err := recv.get("genesisHash", &rGenesis); err != nil {
return err
}
if rGenesis != genesis {
return errResp(ErrGenesisBlockMismatch, "%x (!= %x)", rGenesis[:8], genesis[:8])
}
if rNetwork != p.network {
return errResp(ErrNetworkIdMismatch, "%d (!= %d)", rNetwork, p.network)
}
if int(rVersion) != p.version {
return errResp(ErrProtocolVersionMismatch, "%d (!= %d)", rVersion, p.version)
}
p.headInfo = blockInfo{Hash: rHash, Number: rNum, Td: rTd}
if recvCallback != nil {
return recvCallback(recv)
}
return nil
}
// close closes the channel and notifies all background routines to exit.
func (p *peerCommons) close() {
close(p.closeCh)
p.sendQueue.quit()
}
// serverPeer represents each node to which the client is connected.
// The node here refers to the les server.
type serverPeer struct {
peerCommons
// Status fields
trusted bool // The flag whether the server is selected as trusted server.
onlyAnnounce bool // The flag whether the server sends announcement only.
chainSince, chainRecent uint64 // The range of chain server peer can serve.
stateSince, stateRecent uint64 // The range of state server peer can serve.
// Advertised checkpoint fields
checkpointNumber uint64 // The block height which the checkpoint is registered.
checkpoint params.TrustedCheckpoint // The advertised checkpoint sent by server.
poolEntry *poolEntry // Statistic for server peer.
fcServer *flowcontrol.ServerNode // Client side mirror token bucket.
// Statistics
errCount int // Counter the invalid responses server has replied
updateCount uint64
updateTime mclock.AbsTime
// Callbacks
hasBlock func(common.Hash, uint64, bool) bool // Used to determine whether the server has the specified block.
}
func newServerPeer(version int, network uint64, trusted bool, p *p2p.Peer, rw p2p.MsgReadWriter) *serverPeer {
return &serverPeer{
peerCommons: peerCommons{
Peer: p,
rw: rw,
id: peerIdToString(p.ID()),
version: version,
network: network,
sendQueue: newExecQueue(100),
closeCh: make(chan struct{}),
},
trusted: trusted,
}
}
// rejectUpdate returns true if a parameter update has to be rejected because
// the size and/or rate of updates exceed the capacity limitation
func (p *serverPeer) rejectUpdate(size uint64) bool {
now := mclock.Now()
if p.updateCount == 0 {
p.updateTime = now
} else {
dt := now - p.updateTime
p.updateTime = now
r := uint64(dt / mclock.AbsTime(allowedUpdateRate))
if p.updateCount > r {
p.updateCount -= r
} else {
p.updateCount = 0
}
}
p.updateCount += size
return p.updateCount > allowedUpdateBytes
}
// freeze processes Stop messages from the given server and set the status as
// frozen.
func (p *serverPeer) freeze() {
if atomic.CompareAndSwapUint32(&p.frozen, 0, 1) {
p.sendQueue.clear()
}
}
// unfreeze processes Resume messages from the given server and set the status
// as unfrozen.
func (p *serverPeer) unfreeze() {
atomic.StoreUint32(&p.frozen, 0)
}
// sendRequest send a request to the server based on the given message type
// and content.
func sendRequest(w p2p.MsgWriter, msgcode, reqID uint64, data interface{}) error {
type req struct {
ReqID uint64
Data interface{}
}
return p2p.Send(w, msgcode, req{reqID, data})
}
// requestHeadersByHash fetches a batch of blocks' headers corresponding to the
// specified header query, based on the hash of an origin block.
func (p *serverPeer) requestHeadersByHash(reqID uint64, origin common.Hash, amount int, skip int, reverse bool) error {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromhash", origin, "skip", skip, "reverse", reverse)
return sendRequest(p.rw, GetBlockHeadersMsg, reqID, &getBlockHeadersData{Origin: hashOrNumber{Hash: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse})
}
// requestHeadersByNumber fetches a batch of blocks' headers corresponding to the
// specified header query, based on the number of an origin block.
func (p *serverPeer) requestHeadersByNumber(reqID, origin uint64, amount int, skip int, reverse bool) error {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromnum", origin, "skip", skip, "reverse", reverse)
return sendRequest(p.rw, GetBlockHeadersMsg, reqID, &getBlockHeadersData{Origin: hashOrNumber{Number: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse})
}
// requestBodies fetches a batch of blocks' bodies corresponding to the hashes
// specified.
func (p *serverPeer) requestBodies(reqID uint64, hashes []common.Hash) error {
p.Log().Debug("Fetching batch of block bodies", "count", len(hashes))
return sendRequest(p.rw, GetBlockBodiesMsg, reqID, hashes)
}
// requestCode fetches a batch of arbitrary data from a node's known state
// data, corresponding to the specified hashes.
func (p *serverPeer) requestCode(reqID uint64, reqs []CodeReq) error {
p.Log().Debug("Fetching batch of codes", "count", len(reqs))
return sendRequest(p.rw, GetCodeMsg, reqID, reqs)
}
// requestReceipts fetches a batch of transaction receipts from a remote node.
func (p *serverPeer) requestReceipts(reqID uint64, hashes []common.Hash) error {
p.Log().Debug("Fetching batch of receipts", "count", len(hashes))
return sendRequest(p.rw, GetReceiptsMsg, reqID, hashes)
}
// requestProofs fetches a batch of merkle proofs from a remote node.
func (p *serverPeer) requestProofs(reqID uint64, reqs []ProofReq) error {
p.Log().Debug("Fetching batch of proofs", "count", len(reqs))
return sendRequest(p.rw, GetProofsV2Msg, reqID, reqs)
}
// requestHelperTrieProofs fetches a batch of HelperTrie merkle proofs from a remote node.
func (p *serverPeer) requestHelperTrieProofs(reqID uint64, reqs []HelperTrieReq) error {
p.Log().Debug("Fetching batch of HelperTrie proofs", "count", len(reqs))
return sendRequest(p.rw, GetHelperTrieProofsMsg, reqID, reqs)
}
// requestTxStatus fetches a batch of transaction status records from a remote node.
func (p *serverPeer) requestTxStatus(reqID uint64, txHashes []common.Hash) error {
p.Log().Debug("Requesting transaction status", "count", len(txHashes))
return sendRequest(p.rw, GetTxStatusMsg, reqID, txHashes)
}
// SendTxStatus creates a reply with a batch of transactions to be added to the remote transaction pool.
func (p *serverPeer) sendTxs(reqID uint64, txs rlp.RawValue) error {
p.Log().Debug("Sending batch of transactions", "size", len(txs))
return sendRequest(p.rw, SendTxV2Msg, reqID, txs)
}
// waitBefore implements distPeer interface
func (p *serverPeer) waitBefore(maxCost uint64) (time.Duration, float64) {
return p.fcServer.CanSend(maxCost)
}
// getRequestCost returns an estimated request cost according to the flow control
// rules negotiated between the server and the client.
func (p *serverPeer) getRequestCost(msgcode uint64, amount int) uint64 {
p.lock.RLock()
defer p.lock.RUnlock()
costs := p.fcCosts[msgcode]
if costs == nil {
return 0
}
cost := costs.baseCost + costs.reqCost*uint64(amount)
if cost > p.fcParams.BufLimit {
cost = p.fcParams.BufLimit
}
return cost
}
announceType uint64
// getTxRelayCost returns an estimated relay cost according to the flow control
// rules negotiated between the server and the client.
func (p *serverPeer) getTxRelayCost(amount, size int) uint64 {
p.lock.RLock()
defer p.lock.RUnlock()
// Checkpoint relative fields
checkpoint params.TrustedCheckpoint
checkpointNumber uint64
costs := p.fcCosts[SendTxV2Msg]
if costs == nil {
return 0
}
cost := costs.baseCost + costs.reqCost*uint64(amount)
sizeCost := costs.baseCost + costs.reqCost*uint64(size)/txSizeCostLimit
if sizeCost > cost {
cost = sizeCost
}
if cost > p.fcParams.BufLimit {
cost = p.fcParams.BufLimit
}
return cost
}
// HasBlock checks if the peer has a given block
func (p *serverPeer) HasBlock(hash common.Hash, number uint64, hasState bool) bool {
p.lock.RLock()
defer p.lock.RUnlock()
id string
head := p.headInfo.Number
var since, recent uint64
if hasState {
since = p.stateSince
recent = p.stateRecent
} else {
since = p.chainSince
recent = p.chainRecent
}
hasBlock := p.hasBlock
return head >= number && number >= since && (recent == 0 || number+recent+4 > head) && hasBlock != nil && hasBlock(hash, number, hasState)
}
// updateFlowControl updates the flow control parameters belonging to the server
// node if the announced key/value set contains relevant fields
func (p *serverPeer) updateFlowControl(update keyValueMap) {
p.lock.Lock()
defer p.lock.Unlock()
// If any of the flow control params is nil, refuse to update.
var params flowcontrol.ServerParams
if update.get("flowControl/BL", &params.BufLimit) == nil && update.get("flowControl/MRR", &params.MinRecharge) == nil {
// todo can light client set a minimal acceptable flow control params?
p.fcParams = params
p.fcServer.UpdateParams(params)
}
var MRC RequestCostList
if update.get("flowControl/MRC", &MRC) == nil {
costUpdate := MRC.decode(ProtocolLengths[uint(p.version)])
for code, cost := range costUpdate {
p.fcCosts[code] = cost
}
}
}
// Handshake executes the les protocol handshake, negotiating version number,
// network IDs, difficulties, head and genesis blocks.
func (p *serverPeer) Handshake(td *big.Int, head common.Hash, headNum uint64, genesis common.Hash, server *LesServer) error {
return p.handshake(td, head, headNum, genesis, func(lists *keyValueList) {
// Add some client-specific handshake fields
//
// Enable signed announcement randomly even the server is not trusted.
p.announceType = announceTypeSimple
if p.trusted {
p.announceType = announceTypeSigned
}
*lists = (*lists).add("announceType", p.announceType)
}, func(recv keyValueMap) error {
if recv.get("serveChainSince", &p.chainSince) != nil {
p.onlyAnnounce = true
}
if recv.get("serveRecentChain", &p.chainRecent) != nil {
p.chainRecent = 0
}
if recv.get("serveStateSince", &p.stateSince) != nil {
p.onlyAnnounce = true
}
if recv.get("serveRecentState", &p.stateRecent) != nil {
p.stateRecent = 0
}
if recv.get("txRelay", nil) != nil {
p.onlyAnnounce = true
}
if p.onlyAnnounce && !p.trusted {
return errResp(ErrUselessPeer, "peer cannot serve requests")
}
// Parse flow control handshake packet.
var sParams flowcontrol.ServerParams
if err := recv.get("flowControl/BL", &sParams.BufLimit); err != nil {
return err
}
if err := recv.get("flowControl/MRR", &sParams.MinRecharge); err != nil {
return err
}
var MRC RequestCostList
if err := recv.get("flowControl/MRC", &MRC); err != nil {
return err
}
p.fcParams = sParams
p.fcServer = flowcontrol.NewServerNode(sParams, &mclock.System{})
p.fcCosts = MRC.decode(ProtocolLengths[uint(p.version)])
headInfo *announceData
lock sync.RWMutex
recv.get("checkpoint/value", &p.checkpoint)
recv.get("checkpoint/registerHeight", &p.checkpointNumber)
sendQueue *execQueue
if !p.onlyAnnounce {
for msgCode := range reqAvgTimeCost {
if p.fcCosts[msgCode] == nil {
return errResp(ErrUselessPeer, "peer does not support message %d", msgCode)
}
}
}
return nil
})
}
errCh chan error
// clientPeer represents each node to which the les server is connected.
// The node here refers to the light client.
type clientPeer struct {
peerCommons
// responseLock ensures that responses are queued in the same order as
// RequestProcessed is called
responseLock sync.Mutex
responseCount uint64
invalidCount uint32
poolEntry *poolEntry
hasBlock func(common.Hash, uint64, bool) bool
responseErrors int
updateCounter uint64
updateTime mclock.AbsTime
frozen uint32 // 1 if client is in frozen state
fcClient *flowcontrol.ClientNode // nil if the peer is server only
fcServer *flowcontrol.ServerNode // nil if the peer is client only
fcParams flowcontrol.ServerParams
fcCosts requestCostTable
trusted, server bool
onlyAnnounce bool
chainSince, chainRecent uint64
stateSince, stateRecent uint64
server bool
invalidCount uint32 // Counter the invalid request the client peer has made.
responseCount uint64 // Counter to generate an unique id for request processing.
errCh chan error
fcClient *flowcontrol.ClientNode // Server side mirror token bucket.
balanceTracker *balanceTracker // set by clientPool.connect, used and removed by serverHandler
}
func newPeer(version int, network uint64, trusted bool, p *p2p.Peer, rw p2p.MsgReadWriter) *peer {
return &peer{
func newClientPeer(version int, network uint64, p *p2p.Peer, rw p2p.MsgReadWriter) *clientPeer {
return &clientPeer{
peerCommons: peerCommons{
Peer: p,
rw: rw,
id: peerIdToString(p.ID()),
version: version,
network: network,
id: peerIdToString(p.ID()),
trusted: trusted,
sendQueue: newExecQueue(100),
closeCh: make(chan struct{}),
},
errCh: make(chan error, 1),
}
}
// peerIdToString converts enode.ID to a string form
func peerIdToString(id enode.ID) string {
return fmt.Sprintf("%x", id.Bytes())
}
// freeClientId returns a string identifier for the peer. Multiple peers with the
// same identifier can not be connected in free mode simultaneously.
func (p *peer) freeClientId() string {
// freeClientId returns a string identifier for the peer. Multiple peers with
// the same identifier can not be connected in free mode simultaneously.
func (p *clientPeer) freeClientId() string {
if addr, ok := p.RemoteAddr().(*net.TCPAddr); ok {
if addr.IP.IsLoopback() {
// using peer id instead of loopback ip address allows multiple free
......@@ -151,33 +675,21 @@ func (p *peer) freeClientId() string {
return p.id
}
// rejectUpdate returns true if a parameter update has to be rejected because
// the size and/or rate of updates exceed the capacity limitation
func (p *peer) rejectUpdate(size uint64) bool {
now := mclock.Now()
if p.updateCounter == 0 {
p.updateTime = now
} else {
dt := now - p.updateTime
r := uint64(dt / mclock.AbsTime(allowedUpdateRate))
if p.updateCounter > r {
p.updateCounter -= r
p.updateTime += mclock.AbsTime(allowedUpdateRate * time.Duration(r))
} else {
p.updateCounter = 0
p.updateTime = now
}
}
p.updateCounter += size
return p.updateCounter > allowedUpdateBytes
// sendStop notifies the client about being in frozen state
func (p *clientPeer) sendStop() error {
return p2p.Send(p.rw, StopMsg, struct{}{})
}
// freezeClient temporarily puts the client in a frozen state which means all
// unprocessed and subsequent requests are dropped. Unfreezing happens automatically
// after a short time if the client's buffer value is at least in the slightly positive
// region. The client is also notified about being frozen/unfrozen with a Stop/Resume
// message.
func (p *peer) freezeClient() {
// sendResume notifies the client about getting out of frozen state
func (p *clientPeer) sendResume(bv uint64) error {
return p2p.Send(p.rw, ResumeMsg, bv)
}
// freeze temporarily puts the client in a frozen state which means all unprocessed
// and subsequent requests are dropped. Unfreezing happens automatically after a short
// time if the client's buffer value is at least in the slightly positive region.
// The client is also notified about being frozen/unfrozen with a Stop/Resume message.
func (p *clientPeer) freeze() {
if p.version < lpv3 {
// if Stop/Resume is not supported then just drop the peer after setting
// its frozen status permanently
......@@ -187,7 +699,7 @@ func (p *peer) freezeClient() {
}
if atomic.SwapUint32(&p.frozen, 1) == 0 {
go func() {
p.SendStop()
p.sendStop()
time.Sleep(freezeTimeBase + time.Duration(rand.Int63n(int64(freezeTimeRandom))))
for {
bufValue, bufLimit := p.fcClient.BufferStatus()
......@@ -196,114 +708,16 @@ func (p *peer) freezeClient() {
}
if bufValue <= bufLimit/8 {
time.Sleep(freezeCheckPeriod)
} else {
atomic.StoreUint32(&p.frozen, 0)
p.SendResume(bufValue)
break
continue
}
atomic.StoreUint32(&p.frozen, 0)
p.sendResume(bufValue)
return
}
}()
}
}
// freezeServer processes Stop/Resume messages from the given server
func (p *peer) freezeServer(frozen bool) {
var f uint32
if frozen {
f = 1
}
if atomic.SwapUint32(&p.frozen, f) != f && frozen {
p.sendQueue.clear()
}
}
// isFrozen returns true if the client is frozen or the server has put our
// client in frozen state
func (p *peer) isFrozen() bool {
return atomic.LoadUint32(&p.frozen) != 0
}
func (p *peer) canQueue() bool {
return p.sendQueue.canQueue() && !p.isFrozen()
}
func (p *peer) queueSend(f func()) {
p.sendQueue.queue(f)
}
// Info gathers and returns a collection of metadata known about a peer.
func (p *peer) Info() *eth.PeerInfo {
return &eth.PeerInfo{
Version: p.version,
Difficulty: p.Td(),
Head: fmt.Sprintf("%x", p.Head()),
}
}
// Head retrieves a copy of the current head (most recent) hash of the peer.
func (p *peer) Head() (hash common.Hash) {
p.lock.RLock()
defer p.lock.RUnlock()
copy(hash[:], p.headInfo.Hash[:])
return hash
}
func (p *peer) HeadAndTd() (hash common.Hash, td *big.Int) {
p.lock.RLock()
defer p.lock.RUnlock()
copy(hash[:], p.headInfo.Hash[:])
return hash, p.headInfo.Td
}
func (p *peer) headBlockInfo() blockInfo {
p.lock.RLock()
defer p.lock.RUnlock()
return blockInfo{Hash: p.headInfo.Hash, Number: p.headInfo.Number, Td: p.headInfo.Td}
}
// Td retrieves the current total difficulty of a peer.
func (p *peer) Td() *big.Int {
p.lock.RLock()
defer p.lock.RUnlock()
return new(big.Int).Set(p.headInfo.Td)
}
// waitBefore implements distPeer interface
func (p *peer) waitBefore(maxCost uint64) (time.Duration, float64) {
return p.fcServer.CanSend(maxCost)
}
// updateCapacity updates the request serving capacity assigned to a given client
// and also sends an announcement about the updated flow control parameters
func (p *peer) updateCapacity(cap uint64) {
p.responseLock.Lock()
defer p.responseLock.Unlock()
p.fcParams = flowcontrol.ServerParams{MinRecharge: cap, BufLimit: cap * bufLimitRatio}
p.fcClient.UpdateParams(p.fcParams)
var kvList keyValueList
kvList = kvList.add("flowControl/MRR", cap)
kvList = kvList.add("flowControl/BL", cap*bufLimitRatio)
p.queueSend(func() { p.SendAnnounce(announceData{Update: kvList}) })
}
func (p *peer) responseID() uint64 {
p.responseCount += 1
return p.responseCount
}
func sendRequest(w p2p.MsgWriter, msgcode, reqID, cost uint64, data interface{}) error {
type req struct {
ReqID uint64
Data interface{}
}
return p2p.Send(w, msgcode, req{reqID, data})
}
// reply struct represents a reply with the actual data already RLP encoded and
// only the bv (buffer value) missing. This allows the serving mechanism to
// calculate the bv value which depends on the data size before sending the reply.
......@@ -327,270 +741,114 @@ func (r *reply) size() uint32 {
return uint32(len(r.data))
}
func (p *peer) GetRequestCost(msgcode uint64, amount int) uint64 {
p.lock.RLock()
defer p.lock.RUnlock()
costs := p.fcCosts[msgcode]
if costs == nil {
return 0
}
cost := costs.baseCost + costs.reqCost*uint64(amount)
if cost > p.fcParams.BufLimit {
cost = p.fcParams.BufLimit
}
return cost
}
func (p *peer) GetTxRelayCost(amount, size int) uint64 {
p.lock.RLock()
defer p.lock.RUnlock()
costs := p.fcCosts[SendTxV2Msg]
if costs == nil {
return 0
}
cost := costs.baseCost + costs.reqCost*uint64(amount)
sizeCost := costs.baseCost + costs.reqCost*uint64(size)/txSizeCostLimit
if sizeCost > cost {
cost = sizeCost
}
if cost > p.fcParams.BufLimit {
cost = p.fcParams.BufLimit
}
return cost
}
// HasBlock checks if the peer has a given block
func (p *peer) HasBlock(hash common.Hash, number uint64, hasState bool) bool {
var head, since, recent uint64
p.lock.RLock()
if p.headInfo != nil {
head = p.headInfo.Number
}
if hasState {
since = p.stateSince
recent = p.stateRecent
} else {
since = p.chainSince
recent = p.chainRecent
}
hasBlock := p.hasBlock
p.lock.RUnlock()
return head >= number && number >= since && (recent == 0 || number+recent+4 > head) && hasBlock != nil && hasBlock(hash, number, hasState)
}
// SendAnnounce announces the availability of a number of blocks through
// a hash notification.
func (p *peer) SendAnnounce(request announceData) error {
return p2p.Send(p.rw, AnnounceMsg, request)
}
// SendStop notifies the client about being in frozen state
func (p *peer) SendStop() error {
return p2p.Send(p.rw, StopMsg, struct{}{})
}
// SendResume notifies the client about getting out of frozen state
func (p *peer) SendResume(bv uint64) error {
return p2p.Send(p.rw, ResumeMsg, bv)
}
// ReplyBlockHeaders creates a reply with a batch of block headers
func (p *peer) ReplyBlockHeaders(reqID uint64, headers []*types.Header) *reply {
// replyBlockHeaders creates a reply with a batch of block headers
func (p *clientPeer) replyBlockHeaders(reqID uint64, headers []*types.Header) *reply {
data, _ := rlp.EncodeToBytes(headers)
return &reply{p.rw, BlockHeadersMsg, reqID, data}
}
// ReplyBlockBodiesRLP creates a reply with a batch of block contents from
// replyBlockBodiesRLP creates a reply with a batch of block contents from
// an already RLP encoded format.
func (p *peer) ReplyBlockBodiesRLP(reqID uint64, bodies []rlp.RawValue) *reply {
func (p *clientPeer) replyBlockBodiesRLP(reqID uint64, bodies []rlp.RawValue) *reply {
data, _ := rlp.EncodeToBytes(bodies)
return &reply{p.rw, BlockBodiesMsg, reqID, data}
}
// ReplyCode creates a reply with a batch of arbitrary internal data, corresponding to the
// replyCode creates a reply with a batch of arbitrary internal data, corresponding to the
// hashes requested.
func (p *peer) ReplyCode(reqID uint64, codes [][]byte) *reply {
func (p *clientPeer) replyCode(reqID uint64, codes [][]byte) *reply {
data, _ := rlp.EncodeToBytes(codes)
return &reply{p.rw, CodeMsg, reqID, data}
}
// ReplyReceiptsRLP creates a reply with a batch of transaction receipts, corresponding to the
// replyReceiptsRLP creates a reply with a batch of transaction receipts, corresponding to the
// ones requested from an already RLP encoded format.
func (p *peer) ReplyReceiptsRLP(reqID uint64, receipts []rlp.RawValue) *reply {
func (p *clientPeer) replyReceiptsRLP(reqID uint64, receipts []rlp.RawValue) *reply {
data, _ := rlp.EncodeToBytes(receipts)
return &reply{p.rw, ReceiptsMsg, reqID, data}
}
// ReplyProofsV2 creates a reply with a batch of merkle proofs, corresponding to the ones requested.
func (p *peer) ReplyProofsV2(reqID uint64, proofs light.NodeList) *reply {
// replyProofsV2 creates a reply with a batch of merkle proofs, corresponding to the ones requested.
func (p *clientPeer) replyProofsV2(reqID uint64, proofs light.NodeList) *reply {
data, _ := rlp.EncodeToBytes(proofs)
return &reply{p.rw, ProofsV2Msg, reqID, data}
}
// ReplyHelperTrieProofs creates a reply with a batch of HelperTrie proofs, corresponding to the ones requested.
func (p *peer) ReplyHelperTrieProofs(reqID uint64, resp HelperTrieResps) *reply {
// replyHelperTrieProofs creates a reply with a batch of HelperTrie proofs, corresponding to the ones requested.
func (p *clientPeer) replyHelperTrieProofs(reqID uint64, resp HelperTrieResps) *reply {
data, _ := rlp.EncodeToBytes(resp)
return &reply{p.rw, HelperTrieProofsMsg, reqID, data}
}
// ReplyTxStatus creates a reply with a batch of transaction status records, corresponding to the ones requested.
func (p *peer) ReplyTxStatus(reqID uint64, stats []light.TxStatus) *reply {
// replyTxStatus creates a reply with a batch of transaction status records, corresponding to the ones requested.
func (p *clientPeer) replyTxStatus(reqID uint64, stats []light.TxStatus) *reply {
data, _ := rlp.EncodeToBytes(stats)
return &reply{p.rw, TxStatusMsg, reqID, data}
}
// RequestHeadersByHash fetches a batch of blocks' headers corresponding to the
// specified header query, based on the hash of an origin block.
func (p *peer) RequestHeadersByHash(reqID, cost uint64, origin common.Hash, amount int, skip int, reverse bool) error {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromhash", origin, "skip", skip, "reverse", reverse)
return sendRequest(p.rw, GetBlockHeadersMsg, reqID, cost, &getBlockHeadersData{Origin: hashOrNumber{Hash: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse})
}
// RequestHeadersByNumber fetches a batch of blocks' headers corresponding to the
// specified header query, based on the number of an origin block.
func (p *peer) RequestHeadersByNumber(reqID, cost, origin uint64, amount int, skip int, reverse bool) error {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromnum", origin, "skip", skip, "reverse", reverse)
return sendRequest(p.rw, GetBlockHeadersMsg, reqID, cost, &getBlockHeadersData{Origin: hashOrNumber{Number: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse})
}
// RequestBodies fetches a batch of blocks' bodies corresponding to the hashes
// specified.
func (p *peer) RequestBodies(reqID, cost uint64, hashes []common.Hash) error {
p.Log().Debug("Fetching batch of block bodies", "count", len(hashes))
return sendRequest(p.rw, GetBlockBodiesMsg, reqID, cost, hashes)
}
// RequestCode fetches a batch of arbitrary data from a node's known state
// data, corresponding to the specified hashes.
func (p *peer) RequestCode(reqID, cost uint64, reqs []CodeReq) error {
p.Log().Debug("Fetching batch of codes", "count", len(reqs))
return sendRequest(p.rw, GetCodeMsg, reqID, cost, reqs)
}
// RequestReceipts fetches a batch of transaction receipts from a remote node.
func (p *peer) RequestReceipts(reqID, cost uint64, hashes []common.Hash) error {
p.Log().Debug("Fetching batch of receipts", "count", len(hashes))
return sendRequest(p.rw, GetReceiptsMsg, reqID, cost, hashes)
}
// RequestProofs fetches a batch of merkle proofs from a remote node.
func (p *peer) RequestProofs(reqID, cost uint64, reqs []ProofReq) error {
p.Log().Debug("Fetching batch of proofs", "count", len(reqs))
return sendRequest(p.rw, GetProofsV2Msg, reqID, cost, reqs)
}
// RequestHelperTrieProofs fetches a batch of HelperTrie merkle proofs from a remote node.
func (p *peer) RequestHelperTrieProofs(reqID, cost uint64, reqs []HelperTrieReq) error {
p.Log().Debug("Fetching batch of HelperTrie proofs", "count", len(reqs))
return sendRequest(p.rw, GetHelperTrieProofsMsg, reqID, cost, reqs)
}
// RequestTxStatus fetches a batch of transaction status records from a remote node.
func (p *peer) RequestTxStatus(reqID, cost uint64, txHashes []common.Hash) error {
p.Log().Debug("Requesting transaction status", "count", len(txHashes))
return sendRequest(p.rw, GetTxStatusMsg, reqID, cost, txHashes)
}
// SendTxStatus creates a reply with a batch of transactions to be added to the remote transaction pool.
func (p *peer) SendTxs(reqID, cost uint64, txs rlp.RawValue) error {
p.Log().Debug("Sending batch of transactions", "size", len(txs))
return sendRequest(p.rw, SendTxV2Msg, reqID, cost, txs)
}
type keyValueEntry struct {
Key string
Value rlp.RawValue
// sendAnnounce announces the availability of a number of blocks through
// a hash notification.
func (p *clientPeer) sendAnnounce(request announceData) error {
return p2p.Send(p.rw, AnnounceMsg, request)
}
type keyValueList []keyValueEntry
type keyValueMap map[string]rlp.RawValue
func (l keyValueList) add(key string, val interface{}) keyValueList {
var entry keyValueEntry
entry.Key = key
if val == nil {
val = uint64(0)
}
enc, err := rlp.EncodeToBytes(val)
if err == nil {
entry.Value = enc
}
return append(l, entry)
}
// updateCapacity updates the request serving capacity assigned to a given client
// and also sends an announcement about the updated flow control parameters
func (p *clientPeer) updateCapacity(cap uint64) {
p.lock.Lock()
defer p.lock.Unlock()
func (l keyValueList) decode() (keyValueMap, uint64) {
m := make(keyValueMap)
var size uint64
for _, entry := range l {
m[entry.Key] = entry.Value
size += uint64(len(entry.Key)) + uint64(len(entry.Value)) + 8
}
return m, size
p.fcParams = flowcontrol.ServerParams{MinRecharge: cap, BufLimit: cap * bufLimitRatio}
p.fcClient.UpdateParams(p.fcParams)
var kvList keyValueList
kvList = kvList.add("flowControl/MRR", cap)
kvList = kvList.add("flowControl/BL", cap*bufLimitRatio)
p.mustQueueSend(func() { p.sendAnnounce(announceData{Update: kvList}) })
}
func (m keyValueMap) get(key string, val interface{}) error {
enc, ok := m[key]
if !ok {
return errResp(ErrMissingKey, "%s", key)
}
if val == nil {
return nil
// freezeClient temporarily puts the client in a frozen state which means all
// unprocessed and subsequent requests are dropped. Unfreezing happens automatically
// after a short time if the client's buffer value is at least in the slightly positive
// region. The client is also notified about being frozen/unfrozen with a Stop/Resume
// message.
func (p *clientPeer) freezeClient() {
if p.version < lpv3 {
// if Stop/Resume is not supported then just drop the peer after setting
// its frozen status permanently
atomic.StoreUint32(&p.frozen, 1)
p.Peer.Disconnect(p2p.DiscUselessPeer)
return
}
return rlp.DecodeBytes(enc, val)
}
func (p *peer) sendReceiveHandshake(sendList keyValueList) (keyValueList, error) {
// Send out own handshake in a new thread
errc := make(chan error, 1)
if atomic.SwapUint32(&p.frozen, 1) == 0 {
go func() {
errc <- p2p.Send(p.rw, StatusMsg, sendList)
}()
// In the mean time retrieve the remote status message
msg, err := p.rw.ReadMsg()
if err != nil {
return nil, err
}
if msg.Code != StatusMsg {
return nil, errResp(ErrNoStatusMsg, "first msg has code %x (!= %x)", msg.Code, StatusMsg)
p.sendStop()
time.Sleep(freezeTimeBase + time.Duration(rand.Int63n(int64(freezeTimeRandom))))
for {
bufValue, bufLimit := p.fcClient.BufferStatus()
if bufLimit == 0 {
return
}
if msg.Size > ProtocolMaxMsgSize {
return nil, errResp(ErrMsgTooLarge, "%v > %v", msg.Size, ProtocolMaxMsgSize)
if bufValue <= bufLimit/8 {
time.Sleep(freezeCheckPeriod)
} else {
atomic.StoreUint32(&p.frozen, 0)
p.sendResume(bufValue)
break
}
// Decode the handshake
var recvList keyValueList
if err := msg.Decode(&recvList); err != nil {
return nil, errResp(ErrDecode, "msg %v: %v", msg, err)
}
if err := <-errc; err != nil {
return nil, err
}()
}
return recvList, nil
}
// Handshake executes the les protocol handshake, negotiating version number,
// network IDs, difficulties, head and genesis blocks.
func (p *peer) Handshake(td *big.Int, head common.Hash, headNum uint64, genesis common.Hash, server *LesServer) error {
p.lock.Lock()
defer p.lock.Unlock()
var send keyValueList
// Add some basic handshake fields
send = send.add("protocolVersion", uint64(p.version))
send = send.add("networkId", p.network)
send = send.add("headTd", td)
send = send.add("headHash", head)
send = send.add("headNum", headNum)
send = send.add("genesisHash", genesis)
if server != nil {
func (p *clientPeer) Handshake(td *big.Int, head common.Hash, headNum uint64, genesis common.Hash, server *LesServer) error {
return p.handshake(td, head, headNum, genesis, func(lists *keyValueList) {
// Add some information which services server can offer.
if !server.config.UltraLightOnlyAnnounce {
send = send.add("serveHeaders", nil)
send = send.add("serveChainSince", uint64(0))
send = send.add("serveStateSince", uint64(0))
*lists = (*lists).add("serveHeaders", nil)
*lists = (*lists).add("serveChainSince", uint64(0))
*lists = (*lists).add("serveStateSince", uint64(0))
// If local ethereum node is running in archive mode, advertise ourselves we have
// all version state data. Otherwise only recent state is available.
......@@ -598,11 +856,11 @@ func (p *peer) Handshake(td *big.Int, head common.Hash, headNum uint64, genesis
if server.archiveMode {
stateRecent = 0
}
send = send.add("serveRecentState", stateRecent)
send = send.add("txRelay", nil)
*lists = (*lists).add("serveRecentState", stateRecent)
*lists = (*lists).add("txRelay", nil)
}
send = send.add("flowControl/BL", server.defParams.BufLimit)
send = send.add("flowControl/MRR", server.defParams.MinRecharge)
*lists = (*lists).add("flowControl/BL", server.defParams.BufLimit)
*lists = (*lists).add("flowControl/MRR", server.defParams.MinRecharge)
var costList RequestCostList
if server.costTracker.testCostList != nil {
......@@ -610,7 +868,7 @@ func (p *peer) Handshake(td *big.Int, head common.Hash, headNum uint64, genesis
} else {
costList = server.costTracker.makeCostList(server.costTracker.globalFactor())
}
send = send.add("flowControl/MRC", costList)
*lists = (*lists).add("flowControl/MRC", costList)
p.fcCosts = costList.decode(ProtocolLengths[uint(p.version)])
p.fcParams = server.defParams
......@@ -619,62 +877,11 @@ func (p *peer) Handshake(td *big.Int, head common.Hash, headNum uint64, genesis
if server.oracle != nil && server.oracle.IsRunning() {
cp, height := server.oracle.StableCheckpoint()
if cp != nil {
send = send.add("checkpoint/value", cp)
send = send.add("checkpoint/registerHeight", height)
}
}
} else {
// Add some client-specific handshake fields
p.announceType = announceTypeSimple
if p.trusted {
p.announceType = announceTypeSigned
}
send = send.add("announceType", p.announceType)
}
recvList, err := p.sendReceiveHandshake(send)
if err != nil {
return err
}
recv, size := recvList.decode()
if p.rejectUpdate(size) {
return errResp(ErrRequestRejected, "")
}
var rGenesis, rHash common.Hash
var rVersion, rNetwork, rNum uint64
var rTd *big.Int
if err := recv.get("protocolVersion", &rVersion); err != nil {
return err
}
if err := recv.get("networkId", &rNetwork); err != nil {
return err
}
if err := recv.get("headTd", &rTd); err != nil {
return err
}
if err := recv.get("headHash", &rHash); err != nil {
return err
}
if err := recv.get("headNum", &rNum); err != nil {
return err
}
if err := recv.get("genesisHash", &rGenesis); err != nil {
return err
}
if rGenesis != genesis {
return errResp(ErrGenesisBlockMismatch, "%x (!= %x)", rGenesis[:8], genesis[:8])
*lists = (*lists).add("checkpoint/value", cp)
*lists = (*lists).add("checkpoint/registerHeight", height)
}
if rNetwork != p.network {
return errResp(ErrNetworkIdMismatch, "%d (!= %d)", rNetwork, p.network)
}
if int(rVersion) != p.version {
return errResp(ErrProtocolVersionMismatch, "%d (!= %d)", rVersion, p.version)
}
if server != nil {
}, func(recv keyValueMap) error {
p.server = recv.get("flowControl/MRR", nil) == nil
if p.server {
p.announceType = announceTypeNone // connected to another server, send no messages
......@@ -685,237 +892,298 @@ func (p *peer) Handshake(td *big.Int, head common.Hash, headNum uint64, genesis
}
p.fcClient = flowcontrol.NewClientNode(server.fcManager, server.defParams)
}
} else {
if recv.get("serveChainSince", &p.chainSince) != nil {
p.onlyAnnounce = true
}
if recv.get("serveRecentChain", &p.chainRecent) != nil {
p.chainRecent = 0
}
if recv.get("serveStateSince", &p.stateSince) != nil {
p.onlyAnnounce = true
}
if recv.get("serveRecentState", &p.stateRecent) != nil {
p.stateRecent = 0
}
if recv.get("txRelay", nil) != nil {
p.onlyAnnounce = true
}
return nil
})
}
if p.onlyAnnounce && !p.trusted {
return errResp(ErrUselessPeer, "peer cannot serve requests")
}
// serverPeerSubscriber is an interface to notify services about added or
// removed server peers
type serverPeerSubscriber interface {
registerPeer(*serverPeer)
unregisterPeer(*serverPeer)
}
var sParams flowcontrol.ServerParams
if err := recv.get("flowControl/BL", &sParams.BufLimit); err != nil {
return err
// clientPeerSubscriber is an interface to notify services about added or
// removed client peers
type clientPeerSubscriber interface {
registerPeer(*clientPeer)
unregisterPeer(*clientPeer)
}
// clientPeerSet represents the set of active client peers currently
// participating in the Light Ethereum sub-protocol.
type clientPeerSet struct {
peers map[string]*clientPeer
// subscribers is a batch of subscribers and peerset will notify
// these subscribers when the peerset changes(new client peer is
// added or removed)
subscribers []clientPeerSubscriber
closed bool
lock sync.RWMutex
}
// newClientPeerSet creates a new peer set to track the client peers.
func newClientPeerSet() *clientPeerSet {
return &clientPeerSet{peers: make(map[string]*clientPeer)}
}
// subscribe adds a service to be notified about added or removed
// peers and also register all active peers into the given service.
func (ps *clientPeerSet) subscribe(sub clientPeerSubscriber) {
ps.lock.Lock()
defer ps.lock.Unlock()
ps.subscribers = append(ps.subscribers, sub)
for _, p := range ps.peers {
sub.registerPeer(p)
}
if err := recv.get("flowControl/MRR", &sParams.MinRecharge); err != nil {
return err
}
// unSubscribe removes the specified service from the subscriber pool.
func (ps *clientPeerSet) unSubscribe(sub clientPeerSubscriber) {
ps.lock.Lock()
defer ps.lock.Unlock()
for i, s := range ps.subscribers {
if s == sub {
ps.subscribers = append(ps.subscribers[:i], ps.subscribers[i+1:]...)
return
}
var MRC RequestCostList
if err := recv.get("flowControl/MRC", &MRC); err != nil {
return err
}
p.fcParams = sParams
p.fcServer = flowcontrol.NewServerNode(sParams, &mclock.System{})
p.fcCosts = MRC.decode(ProtocolLengths[uint(p.version)])
}
recv.get("checkpoint/value", &p.checkpoint)
recv.get("checkpoint/registerHeight", &p.checkpointNumber)
// register adds a new peer into the peer set, or returns an error if the
// peer is already known.
func (ps *clientPeerSet) register(peer *clientPeer) error {
ps.lock.Lock()
defer ps.lock.Unlock()
if !p.onlyAnnounce {
for msgCode := range reqAvgTimeCost {
if p.fcCosts[msgCode] == nil {
return errResp(ErrUselessPeer, "peer does not support message %d", msgCode)
}
if ps.closed {
return errClosed
}
if _, exist := ps.peers[peer.id]; exist {
return errAlreadyRegistered
}
p.server = true
ps.peers[peer.id] = peer
for _, sub := range ps.subscribers {
sub.registerPeer(peer)
}
p.headInfo = &announceData{Td: rTd, Hash: rHash, Number: rNum}
return nil
}
// updateFlowControl updates the flow control parameters belonging to the server
// node if the announced key/value set contains relevant fields
func (p *peer) updateFlowControl(update keyValueMap) {
if p.fcServer == nil {
return
}
// If any of the flow control params is nil, refuse to update.
var params flowcontrol.ServerParams
if update.get("flowControl/BL", &params.BufLimit) == nil && update.get("flowControl/MRR", &params.MinRecharge) == nil {
// todo can light client set a minimal acceptable flow control params?
p.fcParams = params
p.fcServer.UpdateParams(params)
// unregister removes a remote peer from the peer set, disabling any further
// actions to/from that particular entity. It also initiates disconnection
// at the networking layer.
func (ps *clientPeerSet) unregister(id string) error {
ps.lock.Lock()
defer ps.lock.Unlock()
p, ok := ps.peers[id]
if !ok {
return errNotRegistered
}
var MRC RequestCostList
if update.get("flowControl/MRC", &MRC) == nil {
costUpdate := MRC.decode(ProtocolLengths[uint(p.version)])
for code, cost := range costUpdate {
p.fcCosts[code] = cost
delete(ps.peers, id)
for _, sub := range ps.subscribers {
sub.unregisterPeer(p)
}
p.Peer.Disconnect(p2p.DiscRequested)
return nil
}
// ids returns a list of all registered peer IDs
func (ps *clientPeerSet) ids() []string {
ps.lock.RLock()
defer ps.lock.RUnlock()
var ids []string
for id := range ps.peers {
ids = append(ids, id)
}
return ids
}
// String implements fmt.Stringer.
func (p *peer) String() string {
return fmt.Sprintf("Peer %s [%s]", p.id,
fmt.Sprintf("les/%d", p.version),
)
// peer retrieves the registered peer with the given id.
func (ps *clientPeerSet) peer(id string) *clientPeer {
ps.lock.RLock()
defer ps.lock.RUnlock()
return ps.peers[id]
}
// peerSetNotify is a callback interface to notify services about added or
// removed peers
type peerSetNotify interface {
registerPeer(*peer)
unregisterPeer(*peer)
// len returns if the current number of peers in the set.
func (ps *clientPeerSet) len() int {
ps.lock.RLock()
defer ps.lock.RUnlock()
return len(ps.peers)
}
// peerSet represents the collection of active peers currently participating in
// the Light Ethereum sub-protocol.
type peerSet struct {
peers map[string]*peer
lock sync.RWMutex
notifyList []peerSetNotify
closed bool
// allClientPeers returns all client peers in a list.
func (ps *clientPeerSet) allPeers() []*clientPeer {
ps.lock.RLock()
defer ps.lock.RUnlock()
list := make([]*clientPeer, 0, len(ps.peers))
for _, p := range ps.peers {
list = append(list, p)
}
return list
}
// newPeerSet creates a new peer set to track the active participants.
func newPeerSet() *peerSet {
return &peerSet{
peers: make(map[string]*peer),
// close disconnects all peers. No new peers can be registered
// after close has returned.
func (ps *clientPeerSet) close() {
ps.lock.Lock()
defer ps.lock.Unlock()
for _, p := range ps.peers {
p.Disconnect(p2p.DiscQuitting)
}
ps.closed = true
}
// serverPeerSet represents the set of active server peers currently
// participating in the Light Ethereum sub-protocol.
type serverPeerSet struct {
peers map[string]*serverPeer
// subscribers is a batch of subscribers and peerset will notify
// these subscribers when the peerset changes(new server peer is
// added or removed)
subscribers []serverPeerSubscriber
closed bool
lock sync.RWMutex
}
// newServerPeerSet creates a new peer set to track the active server peers.
func newServerPeerSet() *serverPeerSet {
return &serverPeerSet{peers: make(map[string]*serverPeer)}
}
// notify adds a service to be notified about added or removed peers
func (ps *peerSet) notify(n peerSetNotify) {
// subscribe adds a service to be notified about added or removed
// peers and also register all active peers into the given service.
func (ps *serverPeerSet) subscribe(sub serverPeerSubscriber) {
ps.lock.Lock()
ps.notifyList = append(ps.notifyList, n)
peers := make([]*peer, 0, len(ps.peers))
defer ps.lock.Unlock()
ps.subscribers = append(ps.subscribers, sub)
for _, p := range ps.peers {
peers = append(peers, p)
sub.registerPeer(p)
}
ps.lock.Unlock()
}
for _, p := range peers {
n.registerPeer(p)
// unSubscribe removes the specified service from the subscriber pool.
func (ps *serverPeerSet) unSubscribe(sub serverPeerSubscriber) {
ps.lock.Lock()
defer ps.lock.Unlock()
for i, s := range ps.subscribers {
if s == sub {
ps.subscribers = append(ps.subscribers[:i], ps.subscribers[i+1:]...)
return
}
}
}
// Register injects a new peer into the working set, or returns an error if the
// register adds a new server peer into the set, or returns an error if the
// peer is already known.
func (ps *peerSet) Register(p *peer) error {
func (ps *serverPeerSet) register(peer *serverPeer) error {
ps.lock.Lock()
defer ps.lock.Unlock()
if ps.closed {
ps.lock.Unlock()
return errClosed
}
if _, ok := ps.peers[p.id]; ok {
ps.lock.Unlock()
if _, exist := ps.peers[peer.id]; exist {
return errAlreadyRegistered
}
ps.peers[p.id] = p
p.sendQueue = newExecQueue(100)
peers := make([]peerSetNotify, len(ps.notifyList))
copy(peers, ps.notifyList)
ps.lock.Unlock()
for _, n := range peers {
n.registerPeer(p)
ps.peers[peer.id] = peer
for _, sub := range ps.subscribers {
sub.registerPeer(peer)
}
return nil
}
// Unregister removes a remote peer from the active set, disabling any further
// actions to/from that particular entity. It also initiates disconnection at the networking layer.
func (ps *peerSet) Unregister(id string) error {
// unregister removes a remote peer from the active set, disabling any further
// actions to/from that particular entity. It also initiates disconnection at
// the networking layer.
func (ps *serverPeerSet) unregister(id string) error {
ps.lock.Lock()
if p, ok := ps.peers[id]; !ok {
ps.lock.Unlock()
defer ps.lock.Unlock()
p, ok := ps.peers[id]
if !ok {
return errNotRegistered
} else {
}
delete(ps.peers, id)
peers := make([]peerSetNotify, len(ps.notifyList))
copy(peers, ps.notifyList)
ps.lock.Unlock()
for _, n := range peers {
n.unregisterPeer(p)
for _, sub := range ps.subscribers {
sub.unregisterPeer(p)
}
p.sendQueue.quit()
p.Peer.Disconnect(p2p.DiscUselessPeer)
p.Peer.Disconnect(p2p.DiscRequested)
return nil
}
}
// AllPeerIDs returns a list of all registered peer IDs
func (ps *peerSet) AllPeerIDs() []string {
// ids returns a list of all registered peer IDs
func (ps *serverPeerSet) ids() []string {
ps.lock.RLock()
defer ps.lock.RUnlock()
res := make([]string, len(ps.peers))
idx := 0
var ids []string
for id := range ps.peers {
res[idx] = id
idx++
ids = append(ids, id)
}
return res
return ids
}
// Peer retrieves the registered peer with the given id.
func (ps *peerSet) Peer(id string) *peer {
// peer retrieves the registered peer with the given id.
func (ps *serverPeerSet) peer(id string) *serverPeer {
ps.lock.RLock()
defer ps.lock.RUnlock()
return ps.peers[id]
}
// Len returns if the current number of peers in the set.
func (ps *peerSet) Len() int {
// len returns if the current number of peers in the set.
func (ps *serverPeerSet) len() int {
ps.lock.RLock()
defer ps.lock.RUnlock()
return len(ps.peers)
}
// BestPeer retrieves the known peer with the currently highest total difficulty.
func (ps *peerSet) BestPeer() *peer {
// bestPeer retrieves the known peer with the currently highest total difficulty.
// If the peerset is "client peer set", then nothing meaningful will return. The
// reason is client peer never send back their latest status to server.
func (ps *serverPeerSet) bestPeer() *serverPeer {
ps.lock.RLock()
defer ps.lock.RUnlock()
var (
bestPeer *peer
bestPeer *serverPeer
bestTd *big.Int
)
for _, p := range ps.peers {
if td := p.Td(); bestPeer == nil || td.Cmp(bestTd) > 0 {
if td := p.Td(); bestTd == nil || td.Cmp(bestTd) > 0 {
bestPeer, bestTd = p, td
}
}
return bestPeer
}
// AllPeers returns all peers in a list
func (ps *peerSet) AllPeers() []*peer {
// allServerPeers returns all server peers in a list.
func (ps *serverPeerSet) allPeers() []*serverPeer {
ps.lock.RLock()
defer ps.lock.RUnlock()
list := make([]*peer, len(ps.peers))
i := 0
for _, peer := range ps.peers {
list[i] = peer
i++
list := make([]*serverPeer, 0, len(ps.peers))
for _, p := range ps.peers {
list = append(list, p)
}
return list
}
// Close disconnects all peers.
// No new peers can be registered after Close has returned.
func (ps *peerSet) Close() {
// close disconnects all peers. No new peers can be registered
// after close has returned.
func (ps *serverPeerSet) close() {
ps.lock.Lock()
defer ps.lock.Unlock()
......
......@@ -17,286 +17,131 @@
package les
import (
"crypto/rand"
"math/big"
"net"
"reflect"
"sort"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/eth"
"github.com/ethereum/go-ethereum/les/flowcontrol"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/rlp"
)
const protocolVersion = lpv2
var (
hash = common.HexToHash("deadbeef")
genesis = common.HexToHash("cafebabe")
headNum = uint64(1234)
td = big.NewInt(123)
)
type testServerPeerSub struct {
regCh chan *serverPeer
unregCh chan *serverPeer
}
func newNodeID(t *testing.T) *enode.Node {
key, err := crypto.GenerateKey()
if err != nil {
t.Fatal("generate key err:", err)
func newTestServerPeerSub() *testServerPeerSub {
return &testServerPeerSub{
regCh: make(chan *serverPeer, 1),
unregCh: make(chan *serverPeer, 1),
}
return enode.NewV4(&key.PublicKey, net.IP{}, 35000, 35000)
}
// ulc connects to trusted peer and send announceType=announceTypeSigned
func TestPeerHandshakeSetAnnounceTypeToAnnounceTypeSignedForTrustedPeer(t *testing.T) {
id := newNodeID(t).ID()
func (t *testServerPeerSub) registerPeer(p *serverPeer) { t.regCh <- p }
func (t *testServerPeerSub) unregisterPeer(p *serverPeer) { t.unregCh <- p }
// peer to connect(on ulc side)
p := peer{
Peer: p2p.NewPeer(id, "test peer", []p2p.Cap{}),
version: protocolVersion,
trusted: true,
rw: &rwStub{
WriteHook: func(recvList keyValueList) {
recv, _ := recvList.decode()
var reqType uint64
err := recv.get("announceType", &reqType)
if err != nil {
t.Fatal(err)
}
if reqType != announceTypeSigned {
t.Fatal("Expected announceTypeSigned")
}
},
ReadHook: func(l keyValueList) keyValueList {
l = l.add("serveHeaders", nil)
l = l.add("serveChainSince", uint64(0))
l = l.add("serveStateSince", uint64(0))
l = l.add("txRelay", nil)
l = l.add("flowControl/BL", uint64(0))
l = l.add("flowControl/MRR", uint64(0))
l = l.add("flowControl/MRC", testCostList(0))
return l
},
},
network: NetworkId,
}
err := p.Handshake(td, hash, headNum, genesis, nil)
if err != nil {
t.Fatalf("Handshake error: %s", err)
}
if p.announceType != announceTypeSigned {
t.Fatal("Incorrect announceType")
}
}
func TestPeerSubscription(t *testing.T) {
peers := newServerPeerSet()
defer peers.close()
func TestPeerHandshakeAnnounceTypeSignedForTrustedPeersPeerNotInTrusted(t *testing.T) {
id := newNodeID(t).ID()
p := peer{
Peer: p2p.NewPeer(id, "test peer", []p2p.Cap{}),
version: protocolVersion,
rw: &rwStub{
WriteHook: func(recvList keyValueList) {
// checking that ulc sends to peer allowedRequests=noRequests and announceType != announceTypeSigned
recv, _ := recvList.decode()
var reqType uint64
err := recv.get("announceType", &reqType)
if err != nil {
t.Fatal(err)
checkIds := func(expect []string) {
given := peers.ids()
if len(given) == 0 && len(expect) == 0 {
return
}
if reqType == announceTypeSigned {
t.Fatal("Expected not announceTypeSigned")
sort.Strings(given)
sort.Strings(expect)
if !reflect.DeepEqual(given, expect) {
t.Fatalf("all peer ids mismatch, want %v, given %v", expect, given)
}
},
ReadHook: func(l keyValueList) keyValueList {
l = l.add("serveHeaders", nil)
l = l.add("serveChainSince", uint64(0))
l = l.add("serveStateSince", uint64(0))
l = l.add("txRelay", nil)
l = l.add("flowControl/BL", uint64(0))
l = l.add("flowControl/MRR", uint64(0))
l = l.add("flowControl/MRC", testCostList(0))
return l
},
},
network: NetworkId,
}
err := p.Handshake(td, hash, headNum, genesis, nil)
if err != nil {
t.Fatal(err)
checkPeers := func(peerCh chan *serverPeer) {
select {
case <-peerCh:
case <-time.NewTimer(100 * time.Millisecond).C:
t.Fatalf("timeout, no event received")
}
if p.announceType == announceTypeSigned {
t.Fatal("Incorrect announceType")
select {
case <-peerCh:
t.Fatalf("unexpected event received")
case <-time.NewTimer(10 * time.Millisecond).C:
}
}
func TestPeerHandshakeDefaultAllRequests(t *testing.T) {
id := newNodeID(t).ID()
s := generateLesServer()
p := peer{
Peer: p2p.NewPeer(id, "test peer", []p2p.Cap{}),
version: protocolVersion,
rw: &rwStub{
ReadHook: func(l keyValueList) keyValueList {
l = l.add("announceType", uint64(announceTypeSigned))
l = l.add("allowedRequests", uint64(0))
return l
},
},
network: NetworkId,
}
err := p.Handshake(td, hash, headNum, genesis, s)
if err != nil {
t.Fatal(err)
}
checkIds([]string{})
if p.onlyAnnounce {
t.Fatal("Incorrect announceType")
}
}
sub := newTestServerPeerSub()
peers.subscribe(sub)
func TestPeerHandshakeServerSendOnlyAnnounceRequestsHeaders(t *testing.T) {
id := newNodeID(t).ID()
// Generate a random id and create the peer
var id enode.ID
rand.Read(id[:])
peer := newServerPeer(2, NetworkId, false, p2p.NewPeer(id, "name", nil), nil)
peers.register(peer)
s := generateLesServer()
s.config.UltraLightOnlyAnnounce = true
checkIds([]string{peer.id})
checkPeers(sub.regCh)
p := peer{
Peer: p2p.NewPeer(id, "test peer", []p2p.Cap{}),
version: protocolVersion,
rw: &rwStub{
ReadHook: func(l keyValueList) keyValueList {
l = l.add("announceType", uint64(announceTypeSigned))
return l
},
WriteHook: func(l keyValueList) {
for _, v := range l {
if v.Key == "serveHeaders" ||
v.Key == "serveChainSince" ||
v.Key == "serveStateSince" ||
v.Key == "txRelay" {
t.Fatalf("%v exists", v.Key)
}
}
},
},
network: NetworkId,
}
err := p.Handshake(td, hash, headNum, genesis, s)
if err != nil {
t.Fatal(err)
}
peers.unregister(peer.id)
checkIds([]string{})
checkPeers(sub.unregCh)
}
func TestPeerHandshakeClientReceiveOnlyAnnounceRequestsHeaders(t *testing.T) {
id := newNodeID(t).ID()
p := peer{
Peer: p2p.NewPeer(id, "test peer", []p2p.Cap{}),
version: protocolVersion,
rw: &rwStub{
ReadHook: func(l keyValueList) keyValueList {
l = l.add("flowControl/BL", uint64(0))
l = l.add("flowControl/MRR", uint64(0))
l = l.add("flowControl/MRC", RequestCostList{})
func TestHandshake(t *testing.T) {
// Create a message pipe to communicate through
app, net := p2p.MsgPipe()
l = l.add("announceType", uint64(announceTypeSigned))
// Generate a random id and create the peer
var id enode.ID
rand.Read(id[:])
return l
},
},
network: NetworkId,
trusted: true,
}
peer1 := newClientPeer(2, NetworkId, p2p.NewPeer(id, "name", nil), net)
peer2 := newServerPeer(2, NetworkId, true, p2p.NewPeer(id, "name", nil), app)
var (
errCh1 = make(chan error, 1)
errCh2 = make(chan error, 1)
err := p.Handshake(td, hash, headNum, genesis, nil)
td = big.NewInt(100)
head = common.HexToHash("deadbeef")
headNum = uint64(10)
genesis = common.HexToHash("cafebabe")
)
go func() {
errCh1 <- peer1.handshake(td, head, headNum, genesis, func(list *keyValueList) {
var announceType uint64 = announceTypeSigned
*list = (*list).add("announceType", announceType)
}, nil)
}()
go func() {
errCh2 <- peer2.handshake(td, head, headNum, genesis, nil, func(recv keyValueMap) error {
var reqType uint64
err := recv.get("announceType", &reqType)
if err != nil {
t.Fatal(err)
}
if !p.onlyAnnounce {
t.Fatal("onlyAnnounce must be true")
}
}
func TestPeerHandshakeClientReturnErrorOnUselessPeer(t *testing.T) {
id := newNodeID(t).ID()
p := peer{
Peer: p2p.NewPeer(id, "test peer", []p2p.Cap{}),
version: protocolVersion,
rw: &rwStub{
ReadHook: func(l keyValueList) keyValueList {
l = l.add("flowControl/BL", uint64(0))
l = l.add("flowControl/MRR", uint64(0))
l = l.add("flowControl/MRC", RequestCostList{})
l = l.add("announceType", uint64(announceTypeSigned))
return l
},
},
network: NetworkId,
}
err := p.Handshake(td, hash, headNum, genesis, nil)
if err == nil {
t.FailNow()
}
}
func generateLesServer() *LesServer {
s := &LesServer{
lesCommons: lesCommons{
config: &eth.Config{UltraLightOnlyAnnounce: true},
},
defParams: flowcontrol.ServerParams{
BufLimit: uint64(300000000),
MinRecharge: uint64(50000),
},
fcManager: flowcontrol.NewClientManager(nil, &mclock.System{}),
if reqType != announceTypeSigned {
t.Fatal("Expected announceTypeSigned")
}
s.costTracker, _ = newCostTracker(rawdb.NewMemoryDatabase(), s.config)
return s
}
type rwStub struct {
ReadHook func(l keyValueList) keyValueList
WriteHook func(l keyValueList)
}
func (s *rwStub) ReadMsg() (p2p.Msg, error) {
payload := keyValueList{}
payload = payload.add("protocolVersion", uint64(protocolVersion))
payload = payload.add("networkId", uint64(NetworkId))
payload = payload.add("headTd", td)
payload = payload.add("headHash", hash)
payload = payload.add("headNum", headNum)
payload = payload.add("genesisHash", genesis)
return nil
})
}()
if s.ReadHook != nil {
payload = s.ReadHook(payload)
for i := 0; i < 2; i++ {
select {
case err := <-errCh1:
if err != nil {
t.Fatalf("handshake failed, %v", err)
}
size, p, err := rlp.EncodeToReader(payload)
case err := <-errCh2:
if err != nil {
return p2p.Msg{}, err
t.Fatalf("handshake failed, %v", err)
}
return p2p.Msg{
Size: uint32(size),
Payload: p,
}, nil
}
func (s *rwStub) WriteMsg(m p2p.Msg) error {
recvList := keyValueList{}
if err := m.Decode(&recvList); err != nil {
return err
case <-time.NewTimer(100 * time.Millisecond).C:
t.Fatalf("timeout")
}
if s.WriteHook != nil {
s.WriteHook(recvList)
}
return nil
}
......@@ -81,8 +81,7 @@ func testAccess(t *testing.T, protocol int, fn accessTestFn) {
// Assemble the test environment
server, client, tearDown := newClientServerEnv(t, 4, protocol, nil, nil, 0, false, true)
defer tearDown()
client.handler.synchronise(client.peer.peer)
client.handler.synchronise(client.peer.speer)
// Ensure the client has synced all necessary data.
clientHead := client.handler.backend.blockchain.CurrentHeader()
......
......@@ -38,7 +38,7 @@ var (
// matching replies by request ID and handles timeouts and resends if necessary.
type retrieveManager struct {
dist *requestDistributor
peers *peerSet
peers *serverPeerSet
serverPool peerSelector
lock sync.RWMutex
......@@ -99,7 +99,7 @@ const (
)
// newRetrieveManager creates the retrieve manager
func newRetrieveManager(peers *peerSet, dist *requestDistributor, serverPool peerSelector) *retrieveManager {
func newRetrieveManager(peers *serverPeerSet, dist *requestDistributor, serverPool peerSelector) *retrieveManager {
return &retrieveManager{
peers: peers,
dist: dist,
......@@ -337,7 +337,7 @@ func (r *sentReq) tryRequest() {
defer func() {
// send feedback to server pool and remove peer if hard timeout happened
pp, ok := p.(*peer)
pp, ok := p.(*serverPeer)
if ok && r.rm.serverPool != nil {
respTime := time.Duration(mclock.Now() - reqSent)
r.rm.serverPool.adjustResponseTime(pp.poolEntry, respTime, srto)
......@@ -345,7 +345,7 @@ func (r *sentReq) tryRequest() {
if hrto {
pp.Log().Debug("Request timed out hard")
if r.rm.peers != nil {
r.rm.peers.Unregister(pp.id)
r.rm.peers.unregister(pp.id)
}
}
......
......@@ -40,6 +40,7 @@ type LesServer struct {
lesCommons
archiveMode bool // Flag whether the ethereum node runs in archive mode.
peers *clientPeerSet
handler *serverHandler
lesTopics []discv5.Topic
privateKey *ecdsa.PrivateKey
......@@ -75,13 +76,13 @@ func NewLesServer(e *eth.Ethereum, config *eth.Config) (*LesServer, error) {
chainConfig: e.BlockChain().Config(),
iConfig: light.DefaultServerIndexerConfig,
chainDb: e.ChainDb(),
peers: newPeerSet(),
chainReader: e.BlockChain(),
chtIndexer: light.NewChtIndexer(e.ChainDb(), nil, params.CHTFrequency, params.HelperTrieProcessConfirmations),
bloomTrieIndexer: light.NewBloomTrieIndexer(e.ChainDb(), nil, params.BloomBitsBlocks, params.BloomTrieFrequency),
closeCh: make(chan struct{}),
},
archiveMode: e.ArchiveMode(),
peers: newClientPeerSet(),
lesTopics: lesTopics,
fcManager: flowcontrol.NewClientManager(nil, &mclock.System{}),
servingQueue: newServingQueue(int64(time.Millisecond*10), float64(config.LightServ)/100),
......@@ -115,7 +116,7 @@ func NewLesServer(e *eth.Ethereum, config *eth.Config) (*LesServer, error) {
srv.maxCapacity = totalRecharge
}
srv.fcManager.SetCapacityLimits(srv.freeCapacity, srv.maxCapacity, srv.freeCapacity*2)
srv.clientPool = newClientPool(srv.chainDb, srv.freeCapacity, mclock.System{}, func(id enode.ID) { go srv.peers.Unregister(peerIdToString(id)) })
srv.clientPool = newClientPool(srv.chainDb, srv.freeCapacity, mclock.System{}, func(id enode.ID) { go srv.peers.unregister(peerIdToString(id)) })
srv.clientPool.setDefaultFactors(priceFactors{0, 1, 1}, priceFactors{0, 1, 1})
checkpoint := srv.latestLocalCheckpoint()
......@@ -152,7 +153,7 @@ func (s *LesServer) APIs() []rpc.API {
func (s *LesServer) Protocols() []p2p.Protocol {
ps := s.makeProtocols(ServerProtocolVersions, s.handler.runPeer, func(id enode.ID) interface{} {
if p := s.peers.Peer(peerIdToString(id)); p != nil {
if p := s.peers.peer(peerIdToString(id)); p != nil {
return p.Info()
}
return nil
......@@ -194,7 +195,7 @@ func (s *LesServer) Stop() {
// This also closes the gate for any new registrations on the peer set.
// sessions which are already established but not added to pm.peers yet
// will exit when they try to register.
s.peers.Close()
s.peers.close()
s.fcManager.Stop()
s.costTracker.stop()
......
......@@ -101,13 +101,14 @@ func (h *serverHandler) stop() {
// runPeer is the p2p protocol run function for the given version.
func (h *serverHandler) runPeer(version uint, p *p2p.Peer, rw p2p.MsgReadWriter) error {
peer := newPeer(int(version), h.server.config.NetworkId, false, p, newMeteredMsgWriter(rw, int(version)))
peer := newClientPeer(int(version), h.server.config.NetworkId, p, newMeteredMsgWriter(rw, int(version)))
defer peer.close()
h.wg.Add(1)
defer h.wg.Done()
return h.handle(peer)
}
func (h *serverHandler) handle(p *peer) error {
func (h *serverHandler) handle(p *clientPeer) error {
p.Log().Debug("Light Ethereum peer connected", "name", p.Name())
// Execute the LES handshake
......@@ -139,21 +140,21 @@ func (h *serverHandler) handle(p *peer) error {
return errFullClientPool
}
// Register the peer locally
if err := h.server.peers.Register(p); err != nil {
if err := h.server.peers.register(p); err != nil {
h.server.clientPool.disconnect(p)
p.Log().Error("Light Ethereum peer registration failed", "err", err)
return err
}
clientConnectionGauge.Update(int64(h.server.peers.Len()))
clientConnectionGauge.Update(int64(h.server.peers.len()))
var wg sync.WaitGroup // Wait group used to track all in-flight task routines.
connectedAt := mclock.Now()
defer func() {
wg.Wait() // Ensure all background task routines have exited.
h.server.peers.Unregister(p.id)
h.server.peers.unregister(p.id)
h.server.clientPool.disconnect(p)
clientConnectionGauge.Update(int64(h.server.peers.Len()))
clientConnectionGauge.Update(int64(h.server.peers.len()))
connectionTimer.Update(time.Duration(mclock.Now() - connectedAt))
}()
......@@ -174,7 +175,7 @@ func (h *serverHandler) handle(p *peer) error {
// handleMsg is invoked whenever an inbound message is received from a remote
// peer. The remote connection is torn down upon returning any error.
func (h *serverHandler) handleMsg(p *peer, wg *sync.WaitGroup) error {
func (h *serverHandler) handleMsg(p *clientPeer, wg *sync.WaitGroup) error {
// Read the next message from the remote peer, and ensure it's fully consumed
msg, err := p.rw.ReadMsg()
if err != nil {
......@@ -208,7 +209,7 @@ func (h *serverHandler) handleMsg(p *peer, wg *sync.WaitGroup) error {
maxCost = p.fcCosts.getMaxCost(msg.Code, reqCnt)
accepted, bufShort, priority := p.fcClient.AcceptRequest(reqID, responseCount, maxCost)
if !accepted {
p.freezeClient()
p.freeze()
p.Log().Error("Request came too early", "remaining", common.PrettyDuration(time.Duration(bufShort*1000000/p.fcParams.MinRecharge)))
p.fcClient.OneTimeCost(inSizeCost)
return false
......@@ -258,7 +259,7 @@ func (h *serverHandler) handleMsg(p *peer, wg *sync.WaitGroup) error {
h.server.clientPool.requestCost(p, realCost)
}
if reply != nil {
p.queueSend(func() {
p.mustQueueSend(func() {
if err := reply.send(bv); err != nil {
select {
case p.errCh <- err:
......@@ -372,8 +373,8 @@ func (h *serverHandler) handleMsg(p *peer, wg *sync.WaitGroup) error {
}
first = false
}
reply := p.ReplyBlockHeaders(req.ReqID, headers)
sendResponse(req.ReqID, query.Amount, p.ReplyBlockHeaders(req.ReqID, headers), task.done())
reply := p.replyBlockHeaders(req.ReqID, headers)
sendResponse(req.ReqID, query.Amount, p.replyBlockHeaders(req.ReqID, headers), task.done())
if metrics.EnabledExpensive {
miscOutHeaderPacketsMeter.Mark(1)
miscOutHeaderTrafficMeter.Mark(int64(reply.size()))
......@@ -421,7 +422,7 @@ func (h *serverHandler) handleMsg(p *peer, wg *sync.WaitGroup) error {
bodies = append(bodies, body)
bytes += len(body)
}
reply := p.ReplyBlockBodiesRLP(req.ReqID, bodies)
reply := p.replyBlockBodiesRLP(req.ReqID, bodies)
sendResponse(req.ReqID, uint64(reqCnt), reply, task.done())
if metrics.EnabledExpensive {
miscOutBodyPacketsMeter.Mark(1)
......@@ -493,7 +494,7 @@ func (h *serverHandler) handleMsg(p *peer, wg *sync.WaitGroup) error {
break
}
}
reply := p.ReplyCode(req.ReqID, data)
reply := p.replyCode(req.ReqID, data)
sendResponse(req.ReqID, uint64(reqCnt), reply, task.done())
if metrics.EnabledExpensive {
miscOutCodePacketsMeter.Mark(1)
......@@ -550,7 +551,7 @@ func (h *serverHandler) handleMsg(p *peer, wg *sync.WaitGroup) error {
bytes += len(encoded)
}
}
reply := p.ReplyReceiptsRLP(req.ReqID, receipts)
reply := p.replyReceiptsRLP(req.ReqID, receipts)
sendResponse(req.ReqID, uint64(reqCnt), reply, task.done())
if metrics.EnabledExpensive {
miscOutReceiptPacketsMeter.Mark(1)
......@@ -653,7 +654,7 @@ func (h *serverHandler) handleMsg(p *peer, wg *sync.WaitGroup) error {
break
}
}
reply := p.ReplyProofsV2(req.ReqID, nodes.NodeList())
reply := p.replyProofsV2(req.ReqID, nodes.NodeList())
sendResponse(req.ReqID, uint64(reqCnt), reply, task.done())
if metrics.EnabledExpensive {
miscOutTrieProofPacketsMeter.Mark(1)
......@@ -728,7 +729,7 @@ func (h *serverHandler) handleMsg(p *peer, wg *sync.WaitGroup) error {
break
}
}
reply := p.ReplyHelperTrieProofs(req.ReqID, HelperTrieResps{Proofs: nodes.NodeList(), AuxData: auxData})
reply := p.replyHelperTrieProofs(req.ReqID, HelperTrieResps{Proofs: nodes.NodeList(), AuxData: auxData})
sendResponse(req.ReqID, uint64(reqCnt), reply, task.done())
if metrics.EnabledExpensive {
miscOutHelperTriePacketsMeter.Mark(1)
......@@ -777,7 +778,7 @@ func (h *serverHandler) handleMsg(p *peer, wg *sync.WaitGroup) error {
stats[i] = h.txStatus(hash)
}
}
reply := p.ReplyTxStatus(req.ReqID, stats)
reply := p.replyTxStatus(req.ReqID, stats)
sendResponse(req.ReqID, uint64(reqCnt), reply, task.done())
if metrics.EnabledExpensive {
miscOutTxsPacketsMeter.Mark(1)
......@@ -814,7 +815,7 @@ func (h *serverHandler) handleMsg(p *peer, wg *sync.WaitGroup) error {
}
stats[i] = h.txStatus(hash)
}
reply := p.ReplyTxStatus(req.ReqID, stats)
reply := p.replyTxStatus(req.ReqID, stats)
sendResponse(req.ReqID, uint64(reqCnt), reply, task.done())
if metrics.EnabledExpensive {
miscOutTxStatusPacketsMeter.Mark(1)
......@@ -913,7 +914,7 @@ func (h *serverHandler) broadcastHeaders() {
for {
select {
case ev := <-headCh:
peers := h.server.peers.AllPeers()
peers := h.server.peers.allPeers()
if len(peers) == 0 {
continue
}
......@@ -939,14 +940,18 @@ func (h *serverHandler) broadcastHeaders() {
p := p
switch p.announceType {
case announceTypeSimple:
p.queueSend(func() { p.SendAnnounce(announce) })
if !p.queueSend(func() { p.sendAnnounce(announce) }) {
log.Debug("Drop announcement because queue is full", "number", number, "hash", hash)
}
case announceTypeSigned:
if !signed {
signedAnnounce = announce
signedAnnounce.sign(h.server.privateKey)
signed = true
}
p.queueSend(func() { p.SendAnnounce(signedAnnounce) })
if !p.queueSend(func() { p.sendAnnounce(signedAnnounce) }) {
log.Debug("Drop announcement because queue is full", "number", number, "hash", hash)
}
}
}
case <-h.closeCh:
......
......@@ -90,7 +90,7 @@ const (
// connReq represents a request for peer connection.
type connReq struct {
p *peer
p *serverPeer
node *enode.Node
result chan *poolEntry
}
......@@ -220,7 +220,7 @@ func (pool *serverPool) discoverNodes() {
// Otherwise, the connection should be rejected.
// Note that whenever a connection has been accepted and a pool entry has been returned,
// disconnect should also always be called.
func (pool *serverPool) connect(p *peer, node *enode.Node) *poolEntry {
func (pool *serverPool) connect(p *serverPeer, node *enode.Node) *poolEntry {
log.Debug("Connect new entry", "enode", p.id)
req := &connReq{p: p, node: node, result: make(chan *poolEntry, 1)}
select {
......@@ -679,7 +679,7 @@ const (
// poolEntry represents a server node and stores its current state and statistics.
type poolEntry struct {
peer *peer
peer *serverPeer
pubkey [64]byte // secp256k1 key of the node
addr map[string]*poolEntryAddress
node *enode.Node
......
......@@ -55,7 +55,7 @@ type servingQueue struct {
type servingTask struct {
sq *servingQueue
servingTime, timeAdded, maxTime, expTime uint64
peer *peer
peer *clientPeer
priority int64
biasAdded bool
token runToken
......@@ -142,7 +142,7 @@ func newServingQueue(suspendBias int64, utilTarget float64) *servingQueue {
}
// newTask creates a new task with the given priority
func (sq *servingQueue) newTask(peer *peer, maxTime uint64, priority int64) *servingTask {
func (sq *servingQueue) newTask(peer *clientPeer, maxTime uint64, priority int64) *servingTask {
return &servingTask{
sq: sq,
peer: peer,
......@@ -187,7 +187,7 @@ func (sq *servingQueue) threadController() {
type (
// peerTasks lists the tasks received from a given peer when selecting peers to freeze
peerTasks struct {
peer *peer
peer *clientPeer
list []*servingTask
sumTime uint64
priority float64
......@@ -211,7 +211,7 @@ func (l peerList) Swap(i, j int) {
// freezePeers selects the peers with the worst priority queued tasks and freezes
// them until burstTime goes under burstDropLimit or all peers are frozen
func (sq *servingQueue) freezePeers() {
peerMap := make(map[*peer]*peerTasks)
peerMap := make(map[*clientPeer]*peerTasks)
var peerList peerList
if sq.best != nil {
sq.queue.Push(sq.best, sq.best.priority)
......@@ -239,7 +239,7 @@ func (sq *servingQueue) freezePeers() {
drop := true
for _, tasks := range peerList {
if drop {
tasks.peer.freezeClient()
tasks.peer.freeze()
tasks.peer.fcClient.Freeze()
sq.queuedTime -= tasks.sumTime
sqQueuedGauge.Update(int64(sq.queuedTime))
......
......@@ -51,7 +51,7 @@ const (
// In addition to the checkpoint registered in the registrar contract, there are
// several legacy hardcoded checkpoints in our codebase. These checkpoints are
// also considered as valid.
func (h *clientHandler) validateCheckpoint(peer *peer) error {
func (h *clientHandler) validateCheckpoint(peer *serverPeer) error {
ctx, cancel := context.WithTimeout(context.Background(), time.Second*10)
defer cancel()
......@@ -87,7 +87,7 @@ func (h *clientHandler) validateCheckpoint(peer *peer) error {
}
// synchronise tries to sync up our local chain with a remote peer.
func (h *clientHandler) synchronise(peer *peer) {
func (h *clientHandler) synchronise(peer *serverPeer) {
// Short circuit if the peer is nil.
if peer == nil {
return
......@@ -95,7 +95,7 @@ func (h *clientHandler) synchronise(peer *peer) {
// Make sure the peer's TD is higher than our own.
latest := h.backend.blockchain.CurrentHeader()
currentTd := rawdb.ReadTd(h.backend.chainDb, latest.Hash(), latest.Number.Uint64())
if currentTd != nil && peer.headBlockInfo().Td.Cmp(currentTd) < 0 {
if currentTd != nil && peer.Td().Cmp(currentTd) < 0 {
return
}
// Recap the checkpoint.
......
......@@ -109,7 +109,9 @@ func testCheckpointSyncing(t *testing.T, protocol int, syncMode int) {
}
// Create connected peer pair.
_, err1, _, err2 := newTestPeerPair("peer", protocol, server.handler, client.handler)
peer1, err1, peer2, err2 := newTestPeerPair("peer", protocol, server.handler, client.handler)
defer peer1.close()
defer peer2.close()
select {
case <-time.After(time.Millisecond * 100):
case err := <-err1:
......
......@@ -166,7 +166,7 @@ func testIndexers(db ethdb.Database, odr light.OdrBackend, config *light.Indexer
return indexers[:]
}
func newTestClientHandler(backend *backends.SimulatedBackend, odr *LesOdr, indexers []*core.ChainIndexer, db ethdb.Database, peers *peerSet, ulcServers []string, ulcFraction int) *clientHandler {
func newTestClientHandler(backend *backends.SimulatedBackend, odr *LesOdr, indexers []*core.ChainIndexer, db ethdb.Database, peers *serverPeerSet, ulcServers []string, ulcFraction int) *clientHandler {
var (
evmux = new(event.TypeMux)
engine = ethash.NewFaker()
......@@ -206,9 +206,9 @@ func newTestClientHandler(backend *backends.SimulatedBackend, odr *LesOdr, index
chainDb: db,
oracle: oracle,
chainReader: chain,
peers: peers,
closeCh: make(chan struct{}),
},
peers: peers,
reqDist: odr.retriever.dist,
retriever: odr.retriever,
odr: odr,
......@@ -224,7 +224,7 @@ func newTestClientHandler(backend *backends.SimulatedBackend, odr *LesOdr, index
return client.handler
}
func newTestServerHandler(blocks int, indexers []*core.ChainIndexer, db ethdb.Database, peers *peerSet, clock mclock.Clock) (*serverHandler, *backends.SimulatedBackend) {
func newTestServerHandler(blocks int, indexers []*core.ChainIndexer, db ethdb.Database, peers *clientPeerSet, clock mclock.Clock) (*serverHandler, *backends.SimulatedBackend) {
var (
gspec = core.Genesis{
Config: params.AllEthashProtocolChanges,
......@@ -269,9 +269,9 @@ func newTestServerHandler(blocks int, indexers []*core.ChainIndexer, db ethdb.Da
chainDb: db,
chainReader: simulation.Blockchain(),
oracle: oracle,
peers: peers,
closeCh: make(chan struct{}),
},
peers: peers,
servingQueue: newServingQueue(int64(time.Millisecond*10), 1),
defParams: flowcontrol.ServerParams{
BufLimit: testBufLimit,
......@@ -294,7 +294,8 @@ func newTestServerHandler(blocks int, indexers []*core.ChainIndexer, db ethdb.Da
// testPeer is a simulated peer to allow testing direct network calls.
type testPeer struct {
peer *peer
cpeer *clientPeer
speer *serverPeer
net p2p.MsgReadWriter // Network layer reader/writer to simulate remote messaging
app *p2p.MsgPipeRW // Application layer reader/writer to simulate the local side
......@@ -308,7 +309,7 @@ func newTestPeer(t *testing.T, name string, version int, handler *serverHandler,
// Generate a random id and create the peer
var id enode.ID
rand.Read(id[:])
peer := newPeer(version, NetworkId, false, p2p.NewPeer(id, name, nil), net)
peer := newClientPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net)
// Start the peer on a new thread
errCh := make(chan error, 1)
......@@ -322,7 +323,7 @@ func newTestPeer(t *testing.T, name string, version int, handler *serverHandler,
tp := &testPeer{
app: app,
net: net,
peer: peer,
cpeer: peer,
}
// Execute any implicitly requested handshakes and return
if shake {
......@@ -354,8 +355,8 @@ func newTestPeerPair(name string, version int, server *serverHandler, client *cl
var id enode.ID
rand.Read(id[:])
peer1 := newPeer(version, NetworkId, false, p2p.NewPeer(id, name, nil), net)
peer2 := newPeer(version, NetworkId, false, p2p.NewPeer(id, name, nil), app)
peer1 := newClientPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net)
peer2 := newServerPeer(version, NetworkId, false, p2p.NewPeer(id, name, nil), app)
// Start the peer on a new thread
errc1 := make(chan error, 1)
......@@ -374,14 +375,14 @@ func newTestPeerPair(name string, version int, server *serverHandler, client *cl
case errc1 <- client.handle(peer2):
}
}()
return &testPeer{peer: peer1, net: net, app: app}, errc1, &testPeer{peer: peer2, net: app, app: net}, errc2
return &testPeer{cpeer: peer1, net: net, app: app}, errc1, &testPeer{speer: peer2, net: app, app: net}, errc2
}
// handshake simulates a trivial handshake that expects the same state from the
// remote side as we are simulating locally.
func (p *testPeer) handshake(t *testing.T, td *big.Int, head common.Hash, headNum uint64, genesis common.Hash, costList RequestCostList) {
var expList keyValueList
expList = expList.add("protocolVersion", uint64(p.peer.version))
expList = expList.add("protocolVersion", uint64(p.cpeer.version))
expList = expList.add("networkId", uint64(NetworkId))
expList = expList.add("headTd", td)
expList = expList.add("headHash", head)
......@@ -404,7 +405,7 @@ func (p *testPeer) handshake(t *testing.T, td *big.Int, head common.Hash, headNu
if err := p2p.Send(p.app, StatusMsg, sendList); err != nil {
t.Fatalf("status send: %v", err)
}
p.peer.fcParams = flowcontrol.ServerParams{
p.cpeer.fcParams = flowcontrol.ServerParams{
BufLimit: testBufLimit,
MinRecharge: testBufRecharge,
}
......@@ -445,7 +446,7 @@ func newServerEnv(t *testing.T, blocks int, protocol int, callback indexerCallba
if simClock {
clock = &mclock.Simulated{}
}
handler, b := newTestServerHandler(blocks, indexers, db, newPeerSet(), clock)
handler, b := newTestServerHandler(blocks, indexers, db, newClientPeerSet(), clock)
var peer *testPeer
if newPeer {
......@@ -473,6 +474,7 @@ func newServerEnv(t *testing.T, blocks int, protocol int, callback indexerCallba
teardown := func() {
if newPeer {
peer.close()
peer.cpeer.close()
b.Close()
}
cIndexer.Close()
......@@ -483,14 +485,14 @@ func newServerEnv(t *testing.T, blocks int, protocol int, callback indexerCallba
func newClientServerEnv(t *testing.T, blocks int, protocol int, callback indexerCallback, ulcServers []string, ulcFraction int, simClock bool, connect bool) (*testServer, *testClient, func()) {
sdb, cdb := rawdb.NewMemoryDatabase(), rawdb.NewMemoryDatabase()
speers, cPeers := newPeerSet(), newPeerSet()
speers, cpeers := newServerPeerSet(), newClientPeerSet()
var clock mclock.Clock = &mclock.System{}
if simClock {
clock = &mclock.Simulated{}
}
dist := newRequestDistributor(cPeers, clock)
rm := newRetrieveManager(cPeers, dist, nil)
dist := newRequestDistributor(speers, clock)
rm := newRetrieveManager(speers, dist, nil)
odr := NewLesOdr(cdb, light.TestClientIndexerConfig, rm)
sindexers := testIndexers(sdb, nil, light.TestServerIndexerConfig)
......@@ -500,8 +502,8 @@ func newClientServerEnv(t *testing.T, blocks int, protocol int, callback indexer
ccIndexer, cbIndexer, cbtIndexer := cIndexers[0], cIndexers[1], cIndexers[2]
odr.SetIndexers(ccIndexer, cbIndexer, cbtIndexer)
server, b := newTestServerHandler(blocks, sindexers, sdb, speers, clock)
client := newTestClientHandler(b, odr, cIndexers, cdb, cPeers, ulcServers, ulcFraction)
server, b := newTestServerHandler(blocks, sindexers, sdb, cpeers, clock)
client := newTestClientHandler(b, odr, cIndexers, cdb, speers, ulcServers, ulcFraction)
scIndexer.Start(server.blockchain)
sbIndexer.Start(server.blockchain)
......@@ -548,6 +550,8 @@ func newClientServerEnv(t *testing.T, blocks int, protocol int, callback indexer
if connect {
speer.close()
cpeer.close()
cpeer.cpeer.close()
speer.speer.close()
}
ccIndexer.Close()
cbIndexer.Close()
......
......@@ -27,14 +27,13 @@ import (
type ltrInfo struct {
tx *types.Transaction
sentTo map[*peer]struct{}
sentTo map[*serverPeer]struct{}
}
type lesTxRelay struct {
txSent map[common.Hash]*ltrInfo
txPending map[common.Hash]struct{}
ps *peerSet
peerList []*peer
peerList []*serverPeer
peerStartPos int
lock sync.RWMutex
stop chan struct{}
......@@ -42,15 +41,14 @@ type lesTxRelay struct {
retriever *retrieveManager
}
func newLesTxRelay(ps *peerSet, retriever *retrieveManager) *lesTxRelay {
func newLesTxRelay(ps *serverPeerSet, retriever *retrieveManager) *lesTxRelay {
r := &lesTxRelay{
txSent: make(map[common.Hash]*ltrInfo),
txPending: make(map[common.Hash]struct{}),
ps: ps,
retriever: retriever,
stop: make(chan struct{}),
}
ps.notify(r)
ps.subscribe(r)
return r
}
......@@ -58,24 +56,34 @@ func (ltrx *lesTxRelay) Stop() {
close(ltrx.stop)
}
func (ltrx *lesTxRelay) registerPeer(p *peer) {
func (ltrx *lesTxRelay) registerPeer(p *serverPeer) {
ltrx.lock.Lock()
defer ltrx.lock.Unlock()
ltrx.peerList = ltrx.ps.AllPeers()
// Short circuit if the peer is announce only.
if p.onlyAnnounce {
return
}
ltrx.peerList = append(ltrx.peerList, p)
}
func (ltrx *lesTxRelay) unregisterPeer(p *peer) {
func (ltrx *lesTxRelay) unregisterPeer(p *serverPeer) {
ltrx.lock.Lock()
defer ltrx.lock.Unlock()
ltrx.peerList = ltrx.ps.AllPeers()
for i, peer := range ltrx.peerList {
if peer == p {
// Remove from the peer list
ltrx.peerList = append(ltrx.peerList[:i], ltrx.peerList[i+1:]...)
return
}
}
}
// send sends a list of transactions to at most a given number of peers at
// once, never resending any particular transaction to the same peer twice
func (ltrx *lesTxRelay) send(txs types.Transactions, count int) {
sendTo := make(map[*peer]types.Transactions)
sendTo := make(map[*serverPeer]types.Transactions)
ltrx.peerStartPos++ // rotate the starting position of the peer list
if ltrx.peerStartPos >= len(ltrx.peerList) {
......@@ -88,7 +96,7 @@ func (ltrx *lesTxRelay) send(txs types.Transactions, count int) {
if !ok {
ltr = &ltrInfo{
tx: tx,
sentTo: make(map[*peer]struct{}),
sentTo: make(map[*serverPeer]struct{}),
}
ltrx.txSent[hash] = ltr
ltrx.txPending[hash] = struct{}{}
......@@ -126,17 +134,17 @@ func (ltrx *lesTxRelay) send(txs types.Transactions, count int) {
reqID := genReqID()
rq := &distReq{
getCost: func(dp distPeer) uint64 {
peer := dp.(*peer)
return peer.GetTxRelayCost(len(ll), len(enc))
peer := dp.(*serverPeer)
return peer.getTxRelayCost(len(ll), len(enc))
},
canSend: func(dp distPeer) bool {
return !dp.(*peer).onlyAnnounce && dp.(*peer) == pp
return !dp.(*serverPeer).onlyAnnounce && dp.(*serverPeer) == pp
},
request: func(dp distPeer) func() {
peer := dp.(*peer)
cost := peer.GetTxRelayCost(len(ll), len(enc))
peer := dp.(*serverPeer)
cost := peer.getTxRelayCost(len(ll), len(enc))
peer.fcServer.QueuedRequest(reqID, cost)
return func() { peer.SendTxs(reqID, cost, enc) }
return func() { peer.sendTxs(reqID, enc) }
},
}
go ltrx.retriever.retrieve(context.Background(), reqID, rq, func(p distPeer, msg *Msg) error { return nil }, ltrx.stop)
......
......@@ -54,14 +54,14 @@ func testULCAnnounceThreshold(t *testing.T, protocol int) {
ids []string
)
for i := 0; i < len(testcase.height); i++ {
s, n, teardown := newServerPeer(t, 0, protocol)
s, n, teardown := newTestServerPeer(t, 0, protocol)
servers = append(servers, s)
nodes = append(nodes, n)
teardowns = append(teardowns, teardown)
ids = append(ids, n.String())
}
c, teardown := newLightPeer(t, protocol, ids, testcase.threshold)
c, teardown := newTestLightPeer(t, protocol, ids, testcase.threshold)
// Connect all servers.
for i := 0; i < len(servers); i++ {
......@@ -86,15 +86,15 @@ func testULCAnnounceThreshold(t *testing.T, protocol int) {
}
}
func connect(server *serverHandler, serverId enode.ID, client *clientHandler, protocol int) (*peer, *peer, error) {
func connect(server *serverHandler, serverId enode.ID, client *clientHandler, protocol int) (*serverPeer, *clientPeer, error) {
// Create a message pipe to communicate through
app, net := p2p.MsgPipe()
var id enode.ID
rand.Read(id[:])
peer1 := newPeer(protocol, NetworkId, true, p2p.NewPeer(serverId, "", nil), net) // Mark server as trusted
peer2 := newPeer(protocol, NetworkId, false, p2p.NewPeer(id, "", nil), app)
peer1 := newServerPeer(protocol, NetworkId, true, p2p.NewPeer(serverId, "", nil), net) // Mark server as trusted
peer2 := newClientPeer(protocol, NetworkId, p2p.NewPeer(id, "", nil), app)
// Start the peerLight on a new thread
errc1 := make(chan error, 1)
......@@ -124,8 +124,8 @@ func connect(server *serverHandler, serverId enode.ID, client *clientHandler, pr
return peer1, peer2, nil
}
// newServerPeer creates server peer.
func newServerPeer(t *testing.T, blocks int, protocol int) (*testServer, *enode.Node, func()) {
// newTestServerPeer creates server peer.
func newTestServerPeer(t *testing.T, blocks int, protocol int) (*testServer, *enode.Node, func()) {
s, teardown := newServerEnv(t, blocks, protocol, nil, false, false, 0)
key, err := crypto.GenerateKey()
if err != nil {
......@@ -136,8 +136,8 @@ func newServerPeer(t *testing.T, blocks int, protocol int) (*testServer, *enode.
return s, n, teardown
}
// newLightPeer creates node with light sync mode
func newLightPeer(t *testing.T, protocol int, ulcServers []string, ulcFraction int) (*testClient, func()) {
// newTestLightPeer creates node with light sync mode
func newTestLightPeer(t *testing.T, protocol int, ulcServers []string, ulcFraction int) (*testClient, func()) {
_, c, teardown := newClientServerEnv(t, 0, protocol, nil, ulcServers, ulcFraction, false, false)
return c, teardown
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment