scalar_8x32_impl.h 26.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
/**********************************************************************
 * Copyright (c) 2014 Pieter Wuille                                   *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#ifndef _SECP256K1_SCALAR_REPR_IMPL_H_
#define _SECP256K1_SCALAR_REPR_IMPL_H_

/* Limbs of the secp256k1 order. */
#define SECP256K1_N_0 ((uint32_t)0xD0364141UL)
#define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL)
#define SECP256K1_N_2 ((uint32_t)0xAF48A03BUL)
#define SECP256K1_N_3 ((uint32_t)0xBAAEDCE6UL)
#define SECP256K1_N_4 ((uint32_t)0xFFFFFFFEUL)
#define SECP256K1_N_5 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_6 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_7 ((uint32_t)0xFFFFFFFFUL)

/* Limbs of 2^256 minus the secp256k1 order. */
#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
#define SECP256K1_N_C_1 (~SECP256K1_N_1)
#define SECP256K1_N_C_2 (~SECP256K1_N_2)
#define SECP256K1_N_C_3 (~SECP256K1_N_3)
#define SECP256K1_N_C_4 (1)

/* Limbs of half the secp256k1 order. */
#define SECP256K1_N_H_0 ((uint32_t)0x681B20A0UL)
#define SECP256K1_N_H_1 ((uint32_t)0xDFE92F46UL)
#define SECP256K1_N_H_2 ((uint32_t)0x57A4501DUL)
#define SECP256K1_N_H_3 ((uint32_t)0x5D576E73UL)
#define SECP256K1_N_H_4 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_5 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL)

SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
    r->d[0] = 0;
    r->d[1] = 0;
    r->d[2] = 0;
    r->d[3] = 0;
    r->d[4] = 0;
    r->d[5] = 0;
    r->d[6] = 0;
    r->d[7] = 0;
}

SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
    r->d[0] = v;
    r->d[1] = 0;
    r->d[2] = 0;
    r->d[3] = 0;
    r->d[4] = 0;
    r->d[5] = 0;
    r->d[6] = 0;
    r->d[7] = 0;
}

SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
    VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5);
    return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1);
}

SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
    VERIFY_CHECK(count < 32);
    VERIFY_CHECK(offset + count <= 256);
    if ((offset + count - 1) >> 5 == offset >> 5) {
        return secp256k1_scalar_get_bits(a, offset, count);
    } else {
        VERIFY_CHECK((offset >> 5) + 1 < 8);
        return ((a->d[offset >> 5] >> (offset & 0x1F)) | (a->d[(offset >> 5) + 1] << (32 - (offset & 0x1F)))) & ((((uint32_t)1) << count) - 1);
    }
}

SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
    int yes = 0;
    int no = 0;
    no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */
    no |= (a->d[6] < SECP256K1_N_6); /* No need for a > check. */
    no |= (a->d[5] < SECP256K1_N_5); /* No need for a > check. */
    no |= (a->d[4] < SECP256K1_N_4);
    yes |= (a->d[4] > SECP256K1_N_4) & ~no;
    no |= (a->d[3] < SECP256K1_N_3) & ~yes;
    yes |= (a->d[3] > SECP256K1_N_3) & ~no;
    no |= (a->d[2] < SECP256K1_N_2) & ~yes;
    yes |= (a->d[2] > SECP256K1_N_2) & ~no;
    no |= (a->d[1] < SECP256K1_N_1) & ~yes;
    yes |= (a->d[1] > SECP256K1_N_1) & ~no;
    yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
    return yes;
}

SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) {
    uint64_t t;
    VERIFY_CHECK(overflow <= 1);
    t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0;
    r->d[0] = t & 0xFFFFFFFFUL; t >>= 32;
    t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1;
    r->d[1] = t & 0xFFFFFFFFUL; t >>= 32;
    t += (uint64_t)r->d[2] + overflow * SECP256K1_N_C_2;
    r->d[2] = t & 0xFFFFFFFFUL; t >>= 32;
    t += (uint64_t)r->d[3] + overflow * SECP256K1_N_C_3;
    r->d[3] = t & 0xFFFFFFFFUL; t >>= 32;
    t += (uint64_t)r->d[4] + overflow * SECP256K1_N_C_4;
    r->d[4] = t & 0xFFFFFFFFUL; t >>= 32;
    t += (uint64_t)r->d[5];
    r->d[5] = t & 0xFFFFFFFFUL; t >>= 32;
    t += (uint64_t)r->d[6];
    r->d[6] = t & 0xFFFFFFFFUL; t >>= 32;
    t += (uint64_t)r->d[7];
    r->d[7] = t & 0xFFFFFFFFUL;
    return overflow;
}

static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
    int overflow;
    uint64_t t = (uint64_t)a->d[0] + b->d[0];
    r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)a->d[1] + b->d[1];
    r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)a->d[2] + b->d[2];
    r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)a->d[3] + b->d[3];
    r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)a->d[4] + b->d[4];
    r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)a->d[5] + b->d[5];
    r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)a->d[6] + b->d[6];
    r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)a->d[7] + b->d[7];
    r->d[7] = t & 0xFFFFFFFFULL; t >>= 32;
    overflow = t + secp256k1_scalar_check_overflow(r);
    VERIFY_CHECK(overflow == 0 || overflow == 1);
    secp256k1_scalar_reduce(r, overflow);
    return overflow;
}

static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
    uint64_t t;
    VERIFY_CHECK(bit < 256);
    bit += ((uint32_t) flag - 1) & 0x100;  /* forcing (bit >> 5) > 7 makes this a noop */
    t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
    r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F));
    r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)r->d[2] + (((uint32_t)((bit >> 5) == 2)) << (bit & 0x1F));
    r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)r->d[3] + (((uint32_t)((bit >> 5) == 3)) << (bit & 0x1F));
    r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)r->d[4] + (((uint32_t)((bit >> 5) == 4)) << (bit & 0x1F));
    r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)r->d[5] + (((uint32_t)((bit >> 5) == 5)) << (bit & 0x1F));
    r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)r->d[6] + (((uint32_t)((bit >> 5) == 6)) << (bit & 0x1F));
    r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
    t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F));
    r->d[7] = t & 0xFFFFFFFFULL;
#ifdef VERIFY
    VERIFY_CHECK((t >> 32) == 0);
    VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
#endif
}

static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
    int over;
    r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24;
    r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24;
    r->d[2] = (uint32_t)b32[23] | (uint32_t)b32[22] << 8 | (uint32_t)b32[21] << 16 | (uint32_t)b32[20] << 24;
    r->d[3] = (uint32_t)b32[19] | (uint32_t)b32[18] << 8 | (uint32_t)b32[17] << 16 | (uint32_t)b32[16] << 24;
    r->d[4] = (uint32_t)b32[15] | (uint32_t)b32[14] << 8 | (uint32_t)b32[13] << 16 | (uint32_t)b32[12] << 24;
    r->d[5] = (uint32_t)b32[11] | (uint32_t)b32[10] << 8 | (uint32_t)b32[9] << 16 | (uint32_t)b32[8] << 24;
    r->d[6] = (uint32_t)b32[7] | (uint32_t)b32[6] << 8 | (uint32_t)b32[5] << 16 | (uint32_t)b32[4] << 24;
    r->d[7] = (uint32_t)b32[3] | (uint32_t)b32[2] << 8 | (uint32_t)b32[1] << 16 | (uint32_t)b32[0] << 24;
    over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
    if (overflow) {
        *overflow = over;
    }
}

static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
    bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7];
    bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6];
    bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5];
    bin[12] = a->d[4] >> 24; bin[13] = a->d[4] >> 16; bin[14] = a->d[4] >> 8; bin[15] = a->d[4];
    bin[16] = a->d[3] >> 24; bin[17] = a->d[3] >> 16; bin[18] = a->d[3] >> 8; bin[19] = a->d[3];
    bin[20] = a->d[2] >> 24; bin[21] = a->d[2] >> 16; bin[22] = a->d[2] >> 8; bin[23] = a->d[2];
    bin[24] = a->d[1] >> 24; bin[25] = a->d[1] >> 16; bin[26] = a->d[1] >> 8; bin[27] = a->d[1];
    bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
}

SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
    return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}

static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
    uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0);
    uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1;
    r->d[0] = t & nonzero; t >>= 32;
    t += (uint64_t)(~a->d[1]) + SECP256K1_N_1;
    r->d[1] = t & nonzero; t >>= 32;
    t += (uint64_t)(~a->d[2]) + SECP256K1_N_2;
    r->d[2] = t & nonzero; t >>= 32;
    t += (uint64_t)(~a->d[3]) + SECP256K1_N_3;
    r->d[3] = t & nonzero; t >>= 32;
    t += (uint64_t)(~a->d[4]) + SECP256K1_N_4;
    r->d[4] = t & nonzero; t >>= 32;
    t += (uint64_t)(~a->d[5]) + SECP256K1_N_5;
    r->d[5] = t & nonzero; t >>= 32;
    t += (uint64_t)(~a->d[6]) + SECP256K1_N_6;
    r->d[6] = t & nonzero; t >>= 32;
    t += (uint64_t)(~a->d[7]) + SECP256K1_N_7;
    r->d[7] = t & nonzero;
}

SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
    return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}

static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
    int yes = 0;
    int no = 0;
    no |= (a->d[7] < SECP256K1_N_H_7);
    yes |= (a->d[7] > SECP256K1_N_H_7) & ~no;
    no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */
    no |= (a->d[5] < SECP256K1_N_H_5) & ~yes; /* No need for a > check. */
    no |= (a->d[4] < SECP256K1_N_H_4) & ~yes; /* No need for a > check. */
    no |= (a->d[3] < SECP256K1_N_H_3) & ~yes;
    yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
    no |= (a->d[2] < SECP256K1_N_H_2) & ~yes;
    yes |= (a->d[2] > SECP256K1_N_H_2) & ~no;
    no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
    yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
    yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
    return yes;
}

static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
    /* If we are flag = 0, mask = 00...00 and this is a no-op;
     * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
    uint32_t mask = !flag - 1;
    uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0);
    uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
    r->d[0] = t & nonzero; t >>= 32;
    t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
    r->d[1] = t & nonzero; t >>= 32;
    t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
    r->d[2] = t & nonzero; t >>= 32;
    t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
    r->d[3] = t & nonzero; t >>= 32;
    t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask);
    r->d[4] = t & nonzero; t >>= 32;
    t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask);
    r->d[5] = t & nonzero; t >>= 32;
    t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask);
    r->d[6] = t & nonzero; t >>= 32;
    t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask);
    r->d[7] = t & nonzero;
    return 2 * (mask == 0) - 1;
}


/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */

/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
#define muladd(a,b) { \
    uint32_t tl, th; \
    { \
        uint64_t t = (uint64_t)a * b; \
        th = t >> 32;         /* at most 0xFFFFFFFE */ \
        tl = t; \
    } \
    c0 += tl;                 /* overflow is handled on the next line */ \
    th += (c0 < tl) ? 1 : 0;  /* at most 0xFFFFFFFF */ \
    c1 += th;                 /* overflow is handled on the next line */ \
    c2 += (c1 < th) ? 1 : 0;  /* never overflows by contract (verified in the next line) */ \
    VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
}

/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
#define muladd_fast(a,b) { \
    uint32_t tl, th; \
    { \
        uint64_t t = (uint64_t)a * b; \
        th = t >> 32;         /* at most 0xFFFFFFFE */ \
        tl = t; \
    } \
    c0 += tl;                 /* overflow is handled on the next line */ \
    th += (c0 < tl) ? 1 : 0;  /* at most 0xFFFFFFFF */ \
    c1 += th;                 /* never overflows by contract (verified in the next line) */ \
    VERIFY_CHECK(c1 >= th); \
}

/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
#define muladd2(a,b) { \
    uint32_t tl, th, th2, tl2; \
    { \
        uint64_t t = (uint64_t)a * b; \
        th = t >> 32;               /* at most 0xFFFFFFFE */ \
        tl = t; \
    } \
    th2 = th + th;                  /* at most 0xFFFFFFFE (in case th was 0x7FFFFFFF) */ \
    c2 += (th2 < th) ? 1 : 0;       /* never overflows by contract (verified the next line) */ \
    VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
    tl2 = tl + tl;                  /* at most 0xFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFF) */ \
    th2 += (tl2 < tl) ? 1 : 0;      /* at most 0xFFFFFFFF */ \
    c0 += tl2;                      /* overflow is handled on the next line */ \
    th2 += (c0 < tl2) ? 1 : 0;      /* second overflow is handled on the next line */ \
    c2 += (c0 < tl2) & (th2 == 0);  /* never overflows by contract (verified the next line) */ \
    VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
    c1 += th2;                      /* overflow is handled on the next line */ \
    c2 += (c1 < th2) ? 1 : 0;       /* never overflows by contract (verified the next line) */ \
    VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
}

/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
#define sumadd(a) { \
    unsigned int over; \
    c0 += (a);                  /* overflow is handled on the next line */ \
    over = (c0 < (a)) ? 1 : 0; \
    c1 += over;                 /* overflow is handled on the next line */ \
    c2 += (c1 < over) ? 1 : 0;  /* never overflows by contract */ \
}

/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
#define sumadd_fast(a) { \
    c0 += (a);                 /* overflow is handled on the next line */ \
    c1 += (c0 < (a)) ? 1 : 0;  /* never overflows by contract (verified the next line) */ \
    VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
    VERIFY_CHECK(c2 == 0); \
}

/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. */
#define extract(n) { \
    (n) = c0; \
    c0 = c1; \
    c1 = c2; \
    c2 = 0; \
}

/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. c2 is required to be zero. */
#define extract_fast(n) { \
    (n) = c0; \
    c0 = c1; \
    c1 = 0; \
    VERIFY_CHECK(c2 == 0); \
}

static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) {
    uint64_t c;
    uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15];
    uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
    uint32_t p0, p1, p2, p3, p4, p5, p6, p7, p8;

    /* 96 bit accumulator. */
    uint32_t c0, c1, c2;

    /* Reduce 512 bits into 385. */
    /* m[0..12] = l[0..7] + n[0..7] * SECP256K1_N_C. */
    c0 = l[0]; c1 = 0; c2 = 0;
    muladd_fast(n0, SECP256K1_N_C_0);
    extract_fast(m0);
    sumadd_fast(l[1]);
    muladd(n1, SECP256K1_N_C_0);
    muladd(n0, SECP256K1_N_C_1);
    extract(m1);
    sumadd(l[2]);
    muladd(n2, SECP256K1_N_C_0);
    muladd(n1, SECP256K1_N_C_1);
    muladd(n0, SECP256K1_N_C_2);
    extract(m2);
    sumadd(l[3]);
    muladd(n3, SECP256K1_N_C_0);
    muladd(n2, SECP256K1_N_C_1);
    muladd(n1, SECP256K1_N_C_2);
    muladd(n0, SECP256K1_N_C_3);
    extract(m3);
    sumadd(l[4]);
    muladd(n4, SECP256K1_N_C_0);
    muladd(n3, SECP256K1_N_C_1);
    muladd(n2, SECP256K1_N_C_2);
    muladd(n1, SECP256K1_N_C_3);
    sumadd(n0);
    extract(m4);
    sumadd(l[5]);
    muladd(n5, SECP256K1_N_C_0);
    muladd(n4, SECP256K1_N_C_1);
    muladd(n3, SECP256K1_N_C_2);
    muladd(n2, SECP256K1_N_C_3);
    sumadd(n1);
    extract(m5);
    sumadd(l[6]);
    muladd(n6, SECP256K1_N_C_0);
    muladd(n5, SECP256K1_N_C_1);
    muladd(n4, SECP256K1_N_C_2);
    muladd(n3, SECP256K1_N_C_3);
    sumadd(n2);
    extract(m6);
    sumadd(l[7]);
    muladd(n7, SECP256K1_N_C_0);
    muladd(n6, SECP256K1_N_C_1);
    muladd(n5, SECP256K1_N_C_2);
    muladd(n4, SECP256K1_N_C_3);
    sumadd(n3);
    extract(m7);
    muladd(n7, SECP256K1_N_C_1);
    muladd(n6, SECP256K1_N_C_2);
    muladd(n5, SECP256K1_N_C_3);
    sumadd(n4);
    extract(m8);
    muladd(n7, SECP256K1_N_C_2);
    muladd(n6, SECP256K1_N_C_3);
    sumadd(n5);
    extract(m9);
    muladd(n7, SECP256K1_N_C_3);
    sumadd(n6);
    extract(m10);
    sumadd_fast(n7);
    extract_fast(m11);
    VERIFY_CHECK(c0 <= 1);
    m12 = c0;

    /* Reduce 385 bits into 258. */
    /* p[0..8] = m[0..7] + m[8..12] * SECP256K1_N_C. */
    c0 = m0; c1 = 0; c2 = 0;
    muladd_fast(m8, SECP256K1_N_C_0);
    extract_fast(p0);
    sumadd_fast(m1);
    muladd(m9, SECP256K1_N_C_0);
    muladd(m8, SECP256K1_N_C_1);
    extract(p1);
    sumadd(m2);
    muladd(m10, SECP256K1_N_C_0);
    muladd(m9, SECP256K1_N_C_1);
    muladd(m8, SECP256K1_N_C_2);
    extract(p2);
    sumadd(m3);
    muladd(m11, SECP256K1_N_C_0);
    muladd(m10, SECP256K1_N_C_1);
    muladd(m9, SECP256K1_N_C_2);
    muladd(m8, SECP256K1_N_C_3);
    extract(p3);
    sumadd(m4);
    muladd(m12, SECP256K1_N_C_0);
    muladd(m11, SECP256K1_N_C_1);
    muladd(m10, SECP256K1_N_C_2);
    muladd(m9, SECP256K1_N_C_3);
    sumadd(m8);
    extract(p4);
    sumadd(m5);
    muladd(m12, SECP256K1_N_C_1);
    muladd(m11, SECP256K1_N_C_2);
    muladd(m10, SECP256K1_N_C_3);
    sumadd(m9);
    extract(p5);
    sumadd(m6);
    muladd(m12, SECP256K1_N_C_2);
    muladd(m11, SECP256K1_N_C_3);
    sumadd(m10);
    extract(p6);
    sumadd_fast(m7);
    muladd_fast(m12, SECP256K1_N_C_3);
    sumadd_fast(m11);
    extract_fast(p7);
    p8 = c0 + m12;
    VERIFY_CHECK(p8 <= 2);

    /* Reduce 258 bits into 256. */
    /* r[0..7] = p[0..7] + p[8] * SECP256K1_N_C. */
    c = p0 + (uint64_t)SECP256K1_N_C_0 * p8;
    r->d[0] = c & 0xFFFFFFFFUL; c >>= 32;
    c += p1 + (uint64_t)SECP256K1_N_C_1 * p8;
    r->d[1] = c & 0xFFFFFFFFUL; c >>= 32;
    c += p2 + (uint64_t)SECP256K1_N_C_2 * p8;
    r->d[2] = c & 0xFFFFFFFFUL; c >>= 32;
    c += p3 + (uint64_t)SECP256K1_N_C_3 * p8;
    r->d[3] = c & 0xFFFFFFFFUL; c >>= 32;
    c += p4 + (uint64_t)p8;
    r->d[4] = c & 0xFFFFFFFFUL; c >>= 32;
    c += p5;
    r->d[5] = c & 0xFFFFFFFFUL; c >>= 32;
    c += p6;
    r->d[6] = c & 0xFFFFFFFFUL; c >>= 32;
    c += p7;
    r->d[7] = c & 0xFFFFFFFFUL; c >>= 32;

    /* Final reduction of r. */
    secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
}

static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) {
    /* 96 bit accumulator. */
    uint32_t c0 = 0, c1 = 0, c2 = 0;

    /* l[0..15] = a[0..7] * b[0..7]. */
    muladd_fast(a->d[0], b->d[0]);
    extract_fast(l[0]);
    muladd(a->d[0], b->d[1]);
    muladd(a->d[1], b->d[0]);
    extract(l[1]);
    muladd(a->d[0], b->d[2]);
    muladd(a->d[1], b->d[1]);
    muladd(a->d[2], b->d[0]);
    extract(l[2]);
    muladd(a->d[0], b->d[3]);
    muladd(a->d[1], b->d[2]);
    muladd(a->d[2], b->d[1]);
    muladd(a->d[3], b->d[0]);
    extract(l[3]);
    muladd(a->d[0], b->d[4]);
    muladd(a->d[1], b->d[3]);
    muladd(a->d[2], b->d[2]);
    muladd(a->d[3], b->d[1]);
    muladd(a->d[4], b->d[0]);
    extract(l[4]);
    muladd(a->d[0], b->d[5]);
    muladd(a->d[1], b->d[4]);
    muladd(a->d[2], b->d[3]);
    muladd(a->d[3], b->d[2]);
    muladd(a->d[4], b->d[1]);
    muladd(a->d[5], b->d[0]);
    extract(l[5]);
    muladd(a->d[0], b->d[6]);
    muladd(a->d[1], b->d[5]);
    muladd(a->d[2], b->d[4]);
    muladd(a->d[3], b->d[3]);
    muladd(a->d[4], b->d[2]);
    muladd(a->d[5], b->d[1]);
    muladd(a->d[6], b->d[0]);
    extract(l[6]);
    muladd(a->d[0], b->d[7]);
    muladd(a->d[1], b->d[6]);
    muladd(a->d[2], b->d[5]);
    muladd(a->d[3], b->d[4]);
    muladd(a->d[4], b->d[3]);
    muladd(a->d[5], b->d[2]);
    muladd(a->d[6], b->d[1]);
    muladd(a->d[7], b->d[0]);
    extract(l[7]);
    muladd(a->d[1], b->d[7]);
    muladd(a->d[2], b->d[6]);
    muladd(a->d[3], b->d[5]);
    muladd(a->d[4], b->d[4]);
    muladd(a->d[5], b->d[3]);
    muladd(a->d[6], b->d[2]);
    muladd(a->d[7], b->d[1]);
    extract(l[8]);
    muladd(a->d[2], b->d[7]);
    muladd(a->d[3], b->d[6]);
    muladd(a->d[4], b->d[5]);
    muladd(a->d[5], b->d[4]);
    muladd(a->d[6], b->d[3]);
    muladd(a->d[7], b->d[2]);
    extract(l[9]);
    muladd(a->d[3], b->d[7]);
    muladd(a->d[4], b->d[6]);
    muladd(a->d[5], b->d[5]);
    muladd(a->d[6], b->d[4]);
    muladd(a->d[7], b->d[3]);
    extract(l[10]);
    muladd(a->d[4], b->d[7]);
    muladd(a->d[5], b->d[6]);
    muladd(a->d[6], b->d[5]);
    muladd(a->d[7], b->d[4]);
    extract(l[11]);
    muladd(a->d[5], b->d[7]);
    muladd(a->d[6], b->d[6]);
    muladd(a->d[7], b->d[5]);
    extract(l[12]);
    muladd(a->d[6], b->d[7]);
    muladd(a->d[7], b->d[6]);
    extract(l[13]);
    muladd_fast(a->d[7], b->d[7]);
    extract_fast(l[14]);
    VERIFY_CHECK(c1 == 0);
    l[15] = c0;
}

static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar *a) {
    /* 96 bit accumulator. */
    uint32_t c0 = 0, c1 = 0, c2 = 0;

    /* l[0..15] = a[0..7]^2. */
    muladd_fast(a->d[0], a->d[0]);
    extract_fast(l[0]);
    muladd2(a->d[0], a->d[1]);
    extract(l[1]);
    muladd2(a->d[0], a->d[2]);
    muladd(a->d[1], a->d[1]);
    extract(l[2]);
    muladd2(a->d[0], a->d[3]);
    muladd2(a->d[1], a->d[2]);
    extract(l[3]);
    muladd2(a->d[0], a->d[4]);
    muladd2(a->d[1], a->d[3]);
    muladd(a->d[2], a->d[2]);
    extract(l[4]);
    muladd2(a->d[0], a->d[5]);
    muladd2(a->d[1], a->d[4]);
    muladd2(a->d[2], a->d[3]);
    extract(l[5]);
    muladd2(a->d[0], a->d[6]);
    muladd2(a->d[1], a->d[5]);
    muladd2(a->d[2], a->d[4]);
    muladd(a->d[3], a->d[3]);
    extract(l[6]);
    muladd2(a->d[0], a->d[7]);
    muladd2(a->d[1], a->d[6]);
    muladd2(a->d[2], a->d[5]);
    muladd2(a->d[3], a->d[4]);
    extract(l[7]);
    muladd2(a->d[1], a->d[7]);
    muladd2(a->d[2], a->d[6]);
    muladd2(a->d[3], a->d[5]);
    muladd(a->d[4], a->d[4]);
    extract(l[8]);
    muladd2(a->d[2], a->d[7]);
    muladd2(a->d[3], a->d[6]);
    muladd2(a->d[4], a->d[5]);
    extract(l[9]);
    muladd2(a->d[3], a->d[7]);
    muladd2(a->d[4], a->d[6]);
    muladd(a->d[5], a->d[5]);
    extract(l[10]);
    muladd2(a->d[4], a->d[7]);
    muladd2(a->d[5], a->d[6]);
    extract(l[11]);
    muladd2(a->d[5], a->d[7]);
    muladd(a->d[6], a->d[6]);
    extract(l[12]);
    muladd2(a->d[6], a->d[7]);
    extract(l[13]);
    muladd_fast(a->d[7], a->d[7]);
    extract_fast(l[14]);
    VERIFY_CHECK(c1 == 0);
    l[15] = c0;
}

#undef sumadd
#undef sumadd_fast
#undef muladd
#undef muladd_fast
#undef muladd2
#undef extract
#undef extract_fast

static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
    uint32_t l[16];
    secp256k1_scalar_mul_512(l, a, b);
    secp256k1_scalar_reduce_512(r, l);
}

static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
    int ret;
    VERIFY_CHECK(n > 0);
    VERIFY_CHECK(n < 16);
    ret = r->d[0] & ((1 << n) - 1);
    r->d[0] = (r->d[0] >> n) + (r->d[1] << (32 - n));
    r->d[1] = (r->d[1] >> n) + (r->d[2] << (32 - n));
    r->d[2] = (r->d[2] >> n) + (r->d[3] << (32 - n));
    r->d[3] = (r->d[3] >> n) + (r->d[4] << (32 - n));
    r->d[4] = (r->d[4] >> n) + (r->d[5] << (32 - n));
    r->d[5] = (r->d[5] >> n) + (r->d[6] << (32 - n));
    r->d[6] = (r->d[6] >> n) + (r->d[7] << (32 - n));
    r->d[7] = (r->d[7] >> n);
    return ret;
}

static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
    uint32_t l[16];
    secp256k1_scalar_sqr_512(l, a);
    secp256k1_scalar_reduce_512(r, l);
}

#ifdef USE_ENDOMORPHISM
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
    r1->d[0] = a->d[0];
    r1->d[1] = a->d[1];
    r1->d[2] = a->d[2];
    r1->d[3] = a->d[3];
    r1->d[4] = 0;
    r1->d[5] = 0;
    r1->d[6] = 0;
    r1->d[7] = 0;
    r2->d[0] = a->d[4];
    r2->d[1] = a->d[5];
    r2->d[2] = a->d[6];
    r2->d[3] = a->d[7];
    r2->d[4] = 0;
    r2->d[5] = 0;
    r2->d[6] = 0;
    r2->d[7] = 0;
}
#endif

SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
    return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
}

SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
    uint32_t l[16];
    unsigned int shiftlimbs;
    unsigned int shiftlow;
    unsigned int shifthigh;
    VERIFY_CHECK(shift >= 256);
    secp256k1_scalar_mul_512(l, a, b);
    shiftlimbs = shift >> 5;
    shiftlow = shift & 0x1F;
    shifthigh = 32 - shiftlow;
    r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 480 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
    r->d[1] = shift < 480 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
    r->d[2] = shift < 448 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 416 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
    r->d[3] = shift < 416 ? (l[3 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[4 + shiftlimbs] << shifthigh) : 0)) : 0;
    r->d[4] = shift < 384 ? (l[4 + shiftlimbs] >> shiftlow | (shift < 352 && shiftlow ? (l[5 + shiftlimbs] << shifthigh) : 0)) : 0;
    r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0;
    r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0;
    r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow)  : 0;
    secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1);
}

#endif