ethash_opencl.go 18.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// +build opencl

package ethash

//#cgo LDFLAGS: -w
//#include <stdint.h>
//#include <string.h>
//#include "src/libethash/internal.h"
import "C"

import (
	crand "crypto/rand"
	"encoding/binary"
	"fmt"
	"math"
	"math/big"
	mrand "math/rand"
	"strconv"
	"strings"
	"sync"
	"sync/atomic"
	"time"
	"unsafe"

	"github.com/Gustav-Simonsson/go-opencl/cl"
	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/pow"
)

/*

  This code have two main entry points:

  1. The initCL(...)  function configures one or more OpenCL device
     (for now only GPU) and loads the Ethash DAG onto device memory

  2. The Search(...) function loads a Ethash nonce into device(s) memory and
     executes the Ethash OpenCL kernel.

  Throughout the code, we refer to "host memory" and "device memory".
  For most systems (e.g. regular PC GPU miner) the host memory is RAM and
  device memory is the GPU global memory (e.g. GDDR5).

  References mentioned in code comments:

  1. https://github.com/ethereum/wiki/wiki/Ethash
  2. https://github.com/ethereum/cpp-ethereum/blob/develop/libethash-cl/ethash_cl_miner.cpp
  3. https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
  4. http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_User_Guide.pdf

*/

type OpenCLDevice struct {
	deviceId int
	device   *cl.Device
	openCL11 bool // OpenCL version 1.1 and 1.2 are handled a bit different
	openCL12 bool

	dagBuf        *cl.MemObject // Ethash full DAG in device mem
	headerBuf     *cl.MemObject // Hash of block-to-mine in device mem
	searchBuffers []*cl.MemObject

	searchKernel *cl.Kernel
	hashKernel   *cl.Kernel

	queue         *cl.CommandQueue
	ctx           *cl.Context
	workGroupSize int

	nonceRand *mrand.Rand // seeded by crypto/rand, see comments where it's initialised
	result    common.Hash
}

type OpenCLMiner struct {
	mu sync.Mutex

	ethash *Ethash // Ethash full DAG & cache in host mem

	deviceIds []int
	devices   []*OpenCLDevice

	dagSize uint64

	hashRate int32 // Go atomics & uint64 have some issues; int32 is supported on all platforms
}

type pendingSearch struct {
	bufIndex   uint32
	startNonce uint64
}

const (
	SIZEOF_UINT32 = 4

	// See [1]
	ethashMixBytesLen = 128
	ethashAccesses    = 64

	// See [4]
	workGroupSize    = 32 // must be multiple of 8
	maxSearchResults = 63
	searchBufSize    = 2
	globalWorkSize   = 1024 * 256
)

func NewCL(deviceIds []int) *OpenCLMiner {
	ids := make([]int, len(deviceIds))
	copy(ids, deviceIds)
	return &OpenCLMiner{
		ethash:    New(),
		dagSize:   0, // to see if we need to update DAG.
		deviceIds: ids,
	}
}

func PrintDevices() {
	fmt.Println("=============================================")
	fmt.Println("============ OpenCL Device Info =============")
	fmt.Println("=============================================")

	var found []*cl.Device

	platforms, err := cl.GetPlatforms()
	if err != nil {
		fmt.Println("Plaform error (check your OpenCL installation): %v", err)
		return
	}

	for i, p := range platforms {
		fmt.Println("Platform id             ", i)
		fmt.Println("Platform Name           ", p.Name())
		fmt.Println("Platform Vendor         ", p.Vendor())
		fmt.Println("Platform Version        ", p.Version())
		fmt.Println("Platform Extensions     ", p.Extensions())
		fmt.Println("Platform Profile        ", p.Profile())
		fmt.Println("")

		devices, err := cl.GetDevices(p, cl.DeviceTypeGPU)
		if err != nil {
			fmt.Println("Device error (check your GPU drivers) :", err)
			return
		}

		for _, d := range devices {
			fmt.Println("Device OpenCL id        ", i)
			fmt.Println("Device id for mining    ", len(found))
			fmt.Println("Device Name             ", d.Name())
			fmt.Println("Vendor                  ", d.Vendor())
			fmt.Println("Version                 ", d.Version())
			fmt.Println("Driver version          ", d.DriverVersion())
			fmt.Println("Address bits            ", d.AddressBits())
			fmt.Println("Max clock freq          ", d.MaxClockFrequency())
			fmt.Println("Global mem size         ", d.GlobalMemSize())
			fmt.Println("Max constant buffer size", d.MaxConstantBufferSize())
			fmt.Println("Max mem alloc size      ", d.MaxMemAllocSize())
			fmt.Println("Max compute units       ", d.MaxComputeUnits())
			fmt.Println("Max work group size     ", d.MaxWorkGroupSize())
			fmt.Println("Max work item sizes     ", d.MaxWorkItemSizes())
			fmt.Println("=============================================")

			found = append(found, d)
		}
	}
	if len(found) == 0 {
		fmt.Println("Found no GPU(s). Check that your OS can see the GPU(s)")
	} else {
		var idsFormat string
		for i := 0; i < len(found); i++ {
			idsFormat += strconv.Itoa(i)
			if i != len(found)-1 {
				idsFormat += ","
			}
		}
		fmt.Printf("Found %v devices. Benchmark first GPU:       geth gpubench 0\n", len(found))
		fmt.Printf("Mine using all GPUs:                        geth --minegpu %v\n", idsFormat)
	}
}

// See [2]. We basically do the same here, but the Go OpenCL bindings
// are at a slightly higher abtraction level.
func InitCL(blockNum uint64, c *OpenCLMiner) error {
	platforms, err := cl.GetPlatforms()
	if err != nil {
		return fmt.Errorf("Plaform error: %v\nCheck your OpenCL installation and then run geth gpuinfo", err)
	}

	var devices []*cl.Device
	for _, p := range platforms {
		ds, err := cl.GetDevices(p, cl.DeviceTypeGPU)
		if err != nil {
			return fmt.Errorf("Devices error: %v\nCheck your GPU drivers and then run geth gpuinfo", err)
		}
		for _, d := range ds {
			devices = append(devices, d)
		}
	}

	pow := New()
	_ = pow.getDAG(blockNum)     // generates DAG if we don't have it
	pow.Light.getCache(blockNum) // and cache

	c.ethash = pow
	dagSize := uint64(C.ethash_get_datasize(C.uint64_t(blockNum)))
	c.dagSize = dagSize

	for _, id := range c.deviceIds {
		if id > len(devices)-1 {
			return fmt.Errorf("Device id not found. See available device ids with: geth gpuinfo")
		} else {
			err := initCLDevice(id, devices[id], c)
			if err != nil {
				return err
			}
		}
	}
	if len(c.devices) == 0 {
		return fmt.Errorf("No GPU devices found")
	}
	return nil
}

func initCLDevice(deviceId int, device *cl.Device, c *OpenCLMiner) error {
	devMaxAlloc := uint64(device.MaxMemAllocSize())
	devGlobalMem := uint64(device.GlobalMemSize())

	// TODO: more fine grained version logic
	if device.Version() == "OpenCL 1.0" {
		fmt.Println("Device OpenCL version not supported: ", device.Version())
		return fmt.Errorf("opencl version not supported")
	}

	var cl11, cl12 bool
	if device.Version() == "OpenCL 1.1" {
		cl11 = true
	}
	if device.Version() == "OpenCL 1.2" {
		cl12 = true
	}

	// log warnings but carry on; some device drivers report inaccurate values
	if c.dagSize > devGlobalMem {
		fmt.Printf("WARNING: device memory may be insufficient: %v. DAG size: %v.\n", devGlobalMem, c.dagSize)
	}

	if c.dagSize > devMaxAlloc {
		fmt.Printf("WARNING: DAG size (%v) larger than device max memory allocation size (%v).\n", c.dagSize, devMaxAlloc)
		fmt.Printf("You probably have to export GPU_MAX_ALLOC_PERCENT=95\n")
	}

	fmt.Printf("Initialising device %v: %v\n", deviceId, device.Name())

	context, err := cl.CreateContext([]*cl.Device{device})
	if err != nil {
		return fmt.Errorf("failed creating context:", err)
	}

	// TODO: test running with CL_QUEUE_PROFILING_ENABLE for profiling?
	queue, err := context.CreateCommandQueue(device, 0)
	if err != nil {
		return fmt.Errorf("command queue err:", err)
	}

	// See [4] section 3.2 and [3] "clBuildProgram".
	// The OpenCL kernel code is compiled at run-time.
	kvs := make(map[string]string, 4)
	kvs["GROUP_SIZE"] = strconv.FormatUint(workGroupSize, 10)
	kvs["DAG_SIZE"] = strconv.FormatUint(c.dagSize/ethashMixBytesLen, 10)
	kvs["ACCESSES"] = strconv.FormatUint(ethashAccesses, 10)
	kvs["MAX_OUTPUTS"] = strconv.FormatUint(maxSearchResults, 10)
	kernelCode := replaceWords(kernel, kvs)

	program, err := context.CreateProgramWithSource([]string{kernelCode})
	if err != nil {
		return fmt.Errorf("program err:", err)
	}

	/* if using AMD OpenCL impl, you can set this to debug on x86 CPU device.
	   see AMD OpenCL programming guide section 4.2

	   export in shell before running:
	   export AMD_OCL_BUILD_OPTIONS_APPEND="-g -O0"
	   export CPU_MAX_COMPUTE_UNITS=1

	buildOpts := "-g -cl-opt-disable"

	*/
	buildOpts := ""
	err = program.BuildProgram([]*cl.Device{device}, buildOpts)
	if err != nil {
		return fmt.Errorf("program build err:", err)
	}

	var searchKernelName, hashKernelName string
	searchKernelName = "ethash_search"
	hashKernelName = "ethash_hash"

	searchKernel, err := program.CreateKernel(searchKernelName)
	hashKernel, err := program.CreateKernel(hashKernelName)
	if err != nil {
		return fmt.Errorf("kernel err:", err)
	}

	// TODO: when this DAG size appears, patch the Go bindings
	// (context.go) to work with uint64 as size_t
	if c.dagSize > math.MaxInt32 {
		fmt.Println("DAG too large for allocation.")
		return fmt.Errorf("DAG too large for alloc")
	}

	// TODO: patch up Go bindings to work with size_t, will overflow if > maxint32
	// TODO: fuck. shit's gonna overflow around 2017-06-09 12:17:02
	dagBuf := *(new(*cl.MemObject))
	dagBuf, err = context.CreateEmptyBuffer(cl.MemReadOnly, int(c.dagSize))
	if err != nil {
		return fmt.Errorf("allocating dag buf failed: ", err)
	}

	// write DAG to device mem
	dagPtr := unsafe.Pointer(c.ethash.Full.current.ptr.data)
	_, err = queue.EnqueueWriteBuffer(dagBuf, true, 0, int(c.dagSize), dagPtr, nil)
	if err != nil {
		return fmt.Errorf("writing to dag buf failed: ", err)
	}

	searchBuffers := make([]*cl.MemObject, searchBufSize)
	for i := 0; i < searchBufSize; i++ {
		searchBuff, err := context.CreateEmptyBuffer(cl.MemWriteOnly, (1+maxSearchResults)*SIZEOF_UINT32)
		if err != nil {
			return fmt.Errorf("search buffer err:", err)
		}
		searchBuffers[i] = searchBuff
	}

	headerBuf, err := context.CreateEmptyBuffer(cl.MemReadOnly, 32)
	if err != nil {
		return fmt.Errorf("header buffer err:", err)
	}

	// Unique, random nonces are crucial for mining efficieny.
	// While we do not need cryptographically secure PRNG for nonces,
	// we want to have uniform distribution and minimal repetition of nonces.
	// We could guarantee strict uniqueness of nonces by generating unique ranges,
	// but a int64 seed from crypto/rand should be good enough.
	// we then use math/rand for speed and to avoid draining OS entropy pool
	seed, err := crand.Int(crand.Reader, big.NewInt(math.MaxInt64))
	if err != nil {
		return err
	}
	nonceRand := mrand.New(mrand.NewSource(seed.Int64()))

	deviceStruct := &OpenCLDevice{
		deviceId: deviceId,
		device:   device,
		openCL11: cl11,
		openCL12: cl12,

		dagBuf:        dagBuf,
		headerBuf:     headerBuf,
		searchBuffers: searchBuffers,

		searchKernel: searchKernel,
		hashKernel:   hashKernel,

		queue: queue,
		ctx:   context,

		workGroupSize: workGroupSize,

		nonceRand: nonceRand,
	}
	c.devices = append(c.devices, deviceStruct)

	return nil
}

func (c *OpenCLMiner) Search(block pow.Block, stop <-chan struct{}, index int) (uint64, []byte) {
	c.mu.Lock()
	newDagSize := uint64(C.ethash_get_datasize(C.uint64_t(block.NumberU64())))
	if newDagSize > c.dagSize {
		// TODO: clean up buffers from previous DAG?
		err := InitCL(block.NumberU64(), c)
		if err != nil {
			fmt.Println("OpenCL init error: ", err)
			return 0, []byte{0}
		}
	}
	defer c.mu.Unlock()

	// Avoid unneeded OpenCL initialisation if we received stop while running InitCL
	select {
	case <-stop:
		return 0, []byte{0}
	default:
	}

	headerHash := block.HashNoNonce()
	diff := block.Difficulty()
	target256 := new(big.Int).Div(maxUint256, diff)
	target64 := new(big.Int).Rsh(target256, 192).Uint64()
	var zero uint32 = 0

	d := c.devices[index]

	_, err := d.queue.EnqueueWriteBuffer(d.headerBuf, false, 0, 32, unsafe.Pointer(&headerHash[0]), nil)
	if err != nil {
		fmt.Println("Error in Search clEnqueueWriterBuffer : ", err)
		return 0, []byte{0}
	}

	for i := 0; i < searchBufSize; i++ {
		_, err := d.queue.EnqueueWriteBuffer(d.searchBuffers[i], false, 0, 4, unsafe.Pointer(&zero), nil)
		if err != nil {
			fmt.Println("Error in Search clEnqueueWriterBuffer : ", err)
			return 0, []byte{0}
		}
	}

	// wait for all search buffers to complete
	err = d.queue.Finish()
	if err != nil {
		fmt.Println("Error in Search clFinish : ", err)
		return 0, []byte{0}
	}

	err = d.searchKernel.SetArg(1, d.headerBuf)
	if err != nil {
		fmt.Println("Error in Search clSetKernelArg : ", err)
		return 0, []byte{0}
	}

	err = d.searchKernel.SetArg(2, d.dagBuf)
	if err != nil {
		fmt.Println("Error in Search clSetKernelArg : ", err)
		return 0, []byte{0}
	}

	err = d.searchKernel.SetArg(4, target64)
	if err != nil {
		fmt.Println("Error in Search clSetKernelArg : ", err)
		return 0, []byte{0}
	}
	err = d.searchKernel.SetArg(5, uint32(math.MaxUint32))
	if err != nil {
		fmt.Println("Error in Search clSetKernelArg : ", err)
		return 0, []byte{0}
	}

	// wait on this before returning
	var preReturnEvent *cl.Event
	if d.openCL12 {
		preReturnEvent, err = d.ctx.CreateUserEvent()
		if err != nil {
			fmt.Println("Error in Search create CL user event : ", err)
			return 0, []byte{0}
		}
	}

	pending := make([]pendingSearch, 0, searchBufSize)
	var p *pendingSearch
	searchBufIndex := uint32(0)
	var checkNonce uint64
	loops := int64(0)
	prevHashRate := int32(0)
	start := time.Now().UnixNano()
	// we grab a single random nonce and sets this as argument to the kernel search function
	// the device will then add each local threads gid to the nonce, creating a unique nonce
	// for each device computing unit executing in parallel
	initNonce := uint64(d.nonceRand.Int63())
	for nonce := initNonce; ; nonce += uint64(globalWorkSize) {
		select {
		case <-stop:

			/*
				if d.openCL12 {
					err = cl.WaitForEvents([]*cl.Event{preReturnEvent})
					if err != nil {
						fmt.Println("Error in Search WaitForEvents: ", err)
					}
				}
			*/

			atomic.AddInt32(&c.hashRate, -prevHashRate)
			return 0, []byte{0}
		default:
		}

		if (loops % (1 << 7)) == 0 {
			elapsed := time.Now().UnixNano() - start
			// TODO: verify if this is correct hash rate calculation
			hashes := (float64(1e9) / float64(elapsed)) * float64(loops*1024*256)
			hashrateDiff := int32(hashes) - prevHashRate
			prevHashRate = int32(hashes)
			atomic.AddInt32(&c.hashRate, hashrateDiff)
		}
		loops++

		err = d.searchKernel.SetArg(0, d.searchBuffers[searchBufIndex])
		if err != nil {
			fmt.Println("Error in Search clSetKernelArg : ", err)
			return 0, []byte{0}
		}
		err = d.searchKernel.SetArg(3, nonce)
		if err != nil {
			fmt.Println("Error in Search clSetKernelArg : ", err)
			return 0, []byte{0}
		}

		// execute kernel
		_, err := d.queue.EnqueueNDRangeKernel(
			d.searchKernel,
			[]int{0},
			[]int{globalWorkSize},
			[]int{d.workGroupSize},
			nil)
		if err != nil {
			fmt.Println("Error in Search clEnqueueNDRangeKernel : ", err)
			return 0, []byte{0}
		}

		pending = append(pending, pendingSearch{bufIndex: searchBufIndex, startNonce: nonce})
		searchBufIndex = (searchBufIndex + 1) % searchBufSize

		if len(pending) == searchBufSize {
			p = &(pending[searchBufIndex])
			cres, _, err := d.queue.EnqueueMapBuffer(d.searchBuffers[p.bufIndex], true,
				cl.MapFlagRead, 0, (1+maxSearchResults)*SIZEOF_UINT32,
				nil)
			if err != nil {
				fmt.Println("Error in Search clEnqueueMapBuffer: ", err)
				return 0, []byte{0}
			}

			results := cres.ByteSlice()
			nfound := binary.LittleEndian.Uint32(results)
			nfound = uint32(math.Min(float64(nfound), float64(maxSearchResults)))
			// OpenCL returns the offsets from the start nonce
			for i := uint32(0); i < nfound; i++ {
				lo := (i + 1) * SIZEOF_UINT32
				hi := (i + 2) * SIZEOF_UINT32
				upperNonce := uint64(binary.LittleEndian.Uint32(results[lo:hi]))
				checkNonce = p.startNonce + upperNonce
				if checkNonce != 0 {
					cn := C.uint64_t(checkNonce)
					ds := C.uint64_t(c.dagSize)
					// We verify that the nonce is indeed a solution by
					// executing the Ethash verification function (on the CPU).
					ret := C.ethash_light_compute_internal(c.ethash.Light.current.ptr, ds, hashToH256(headerHash), cn)
					// TODO: return result first
					if ret.success && h256ToHash(ret.result).Big().Cmp(target256) <= 0 {
						_, err = d.queue.EnqueueUnmapMemObject(d.searchBuffers[p.bufIndex], cres, nil)
						if err != nil {
							fmt.Println("Error in Search clEnqueueUnmapMemObject: ", err)
						}
						if d.openCL12 {
							err = cl.WaitForEvents([]*cl.Event{preReturnEvent})
							if err != nil {
								fmt.Println("Error in Search WaitForEvents: ", err)
							}
						}
						return checkNonce, C.GoBytes(unsafe.Pointer(&ret.mix_hash), C.int(32))
					}

					_, err := d.queue.EnqueueWriteBuffer(d.searchBuffers[p.bufIndex], false, 0, 4, unsafe.Pointer(&zero), nil)
					if err != nil {
						fmt.Println("Error in Search cl: EnqueueWriteBuffer", err)
						return 0, []byte{0}
					}
				}
			}
			_, err = d.queue.EnqueueUnmapMemObject(d.searchBuffers[p.bufIndex], cres, nil)
			if err != nil {
				fmt.Println("Error in Search clEnqueueUnMapMemObject: ", err)
				return 0, []byte{0}
			}
			pending = append(pending[:searchBufIndex], pending[searchBufIndex+1:]...)
		}
	}
	if d.openCL12 {
		err := cl.WaitForEvents([]*cl.Event{preReturnEvent})
		if err != nil {
			fmt.Println("Error in Search clWaitForEvents: ", err)
			return 0, []byte{0}
		}
	}
	return 0, []byte{0}
}

func (c *OpenCLMiner) Verify(block pow.Block) bool {
	return c.ethash.Light.Verify(block)
}
func (c *OpenCLMiner) GetHashrate() int64 {
	return int64(atomic.LoadInt32(&c.hashRate))
}
func (c *OpenCLMiner) Turbo(on bool) {
	// This is GPU mining. Always be turbo.
}

func replaceWords(text string, kvs map[string]string) string {
	for k, v := range kvs {
		text = strings.Replace(text, k, v, -1)
	}
	return text
}

func logErr(err error) {
	if err != nil {
		fmt.Println("Error in OpenCL call:", err)
	}
}

func argErr(err error) error {
	return fmt.Errorf("arg err: %v", err)
}