• Jeffrey Wilcke's avatar
    core/vm: improved EVM run loop & instruction calling (#3378) · bbc4ea4a
    Jeffrey Wilcke authored
    The run loop, which previously contained custom opcode executes have been
    removed and has been simplified to a few checks.
    
    Each operation consists of 4 elements: execution function, gas cost function,
    stack validation function and memory size function. The execution function
    implements the operation's runtime behaviour, the gas cost function implements
    the operation gas costs function and greatly depends on the memory and stack,
    the stack validation function validates the stack and makes sure that enough
    items can be popped off and pushed on and the memory size function calculates
    the memory required for the operation and returns it.
    
    This commit also allows the EVM to go unmetered. This is helpful for offline
    operations such as contract calls.
    bbc4ea4a
state_transition.go 7.68 KB
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package core

import (
	"fmt"
	"math/big"

	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/core/vm"
	"github.com/ethereum/go-ethereum/logger"
	"github.com/ethereum/go-ethereum/logger/glog"
	"github.com/ethereum/go-ethereum/params"
)

var (
	Big0 = big.NewInt(0)
)

/*
The State Transitioning Model

A state transition is a change made when a transaction is applied to the current world state
The state transitioning model does all all the necessary work to work out a valid new state root.

1) Nonce handling
2) Pre pay gas
3) Create a new state object if the recipient is \0*32
4) Value transfer
== If contract creation ==
  4a) Attempt to run transaction data
  4b) If valid, use result as code for the new state object
== end ==
5) Run Script section
6) Derive new state root
*/
type StateTransition struct {
	gp            *GasPool
	msg           Message
	gas, gasPrice *big.Int
	initialGas    *big.Int
	value         *big.Int
	data          []byte
	state         vm.StateDB

	env *vm.EVM
}

// Message represents a message sent to a contract.
type Message interface {
	From() common.Address
	//FromFrontier() (common.Address, error)
	To() *common.Address

	GasPrice() *big.Int
	Gas() *big.Int
	Value() *big.Int

	Nonce() uint64
	CheckNonce() bool
	Data() []byte
}

func MessageCreatesContract(msg Message) bool {
	return msg.To() == nil
}

// IntrinsicGas computes the 'intrinsic gas' for a message
// with the given data.
func IntrinsicGas(data []byte, contractCreation, homestead bool) *big.Int {
	igas := new(big.Int)
	if contractCreation && homestead {
		igas.Set(params.TxGasContractCreation)
	} else {
		igas.Set(params.TxGas)
	}
	if len(data) > 0 {
		var nz int64
		for _, byt := range data {
			if byt != 0 {
				nz++
			}
		}
		m := big.NewInt(nz)
		m.Mul(m, params.TxDataNonZeroGas)
		igas.Add(igas, m)
		m.SetInt64(int64(len(data)) - nz)
		m.Mul(m, params.TxDataZeroGas)
		igas.Add(igas, m)
	}
	return igas
}

// NewStateTransition initialises and returns a new state transition object.
func NewStateTransition(env *vm.EVM, msg Message, gp *GasPool) *StateTransition {
	return &StateTransition{
		gp:         gp,
		env:        env,
		msg:        msg,
		gas:        new(big.Int),
		gasPrice:   msg.GasPrice(),
		initialGas: new(big.Int),
		value:      msg.Value(),
		data:       msg.Data(),
		state:      env.StateDB,
	}
}

// ApplyMessage computes the new state by applying the given message
// against the old state within the environment.
//
// ApplyMessage returns the bytes returned by any EVM execution (if it took place),
// the gas used (which includes gas refunds) and an error if it failed. An error always
// indicates a core error meaning that the message would always fail for that particular
// state and would never be accepted within a block.
func ApplyMessage(env *vm.EVM, msg Message, gp *GasPool) ([]byte, *big.Int, error) {
	st := NewStateTransition(env, msg, gp)

	ret, _, gasUsed, err := st.TransitionDb()
	return ret, gasUsed, err
}

func (self *StateTransition) from() vm.Account {
	f := self.msg.From()
	if !self.state.Exist(f) {
		return self.state.CreateAccount(f)
	}
	return self.state.GetAccount(f)
}

func (self *StateTransition) to() vm.Account {
	if self.msg == nil {
		return nil
	}
	to := self.msg.To()
	if to == nil {
		return nil // contract creation
	}

	if !self.state.Exist(*to) {
		return self.state.CreateAccount(*to)
	}
	return self.state.GetAccount(*to)
}

func (self *StateTransition) useGas(amount *big.Int) error {
	if self.gas.Cmp(amount) < 0 {
		return vm.ErrOutOfGas
	}
	self.gas.Sub(self.gas, amount)

	return nil
}

func (self *StateTransition) addGas(amount *big.Int) {
	self.gas.Add(self.gas, amount)
}

func (self *StateTransition) buyGas() error {
	mgas := self.msg.Gas()
	mgval := new(big.Int).Mul(mgas, self.gasPrice)

	sender := self.from()
	if sender.Balance().Cmp(mgval) < 0 {
		return fmt.Errorf("insufficient ETH for gas (%x). Req %v, has %v", sender.Address().Bytes()[:4], mgval, sender.Balance())
	}
	if err := self.gp.SubGas(mgas); err != nil {
		return err
	}
	self.addGas(mgas)
	self.initialGas.Set(mgas)
	sender.SubBalance(mgval)
	return nil
}

func (self *StateTransition) preCheck() (err error) {
	msg := self.msg
	sender := self.from()

	// Make sure this transaction's nonce is correct
	if msg.CheckNonce() {
		if n := self.state.GetNonce(sender.Address()); n != msg.Nonce() {
			return NonceError(msg.Nonce(), n)
		}
	}

	// Pre-pay gas
	if err = self.buyGas(); err != nil {
		if IsGasLimitErr(err) {
			return err
		}
		return InvalidTxError(err)
	}

	return nil
}

// TransitionDb will move the state by applying the message against the given environment.
func (self *StateTransition) TransitionDb() (ret []byte, requiredGas, usedGas *big.Int, err error) {
	if err = self.preCheck(); err != nil {
		return
	}
	msg := self.msg
	sender := self.from() // err checked in preCheck

	homestead := self.env.ChainConfig().IsHomestead(self.env.BlockNumber)
	contractCreation := MessageCreatesContract(msg)
	// Pay intrinsic gas
	if err = self.useGas(IntrinsicGas(self.data, contractCreation, homestead)); err != nil {
		return nil, nil, nil, InvalidTxError(err)
	}

	var (
		vmenv = self.env
		// vm errors do not effect consensus and are therefor
		// not assigned to err, except for insufficient balance
		// error.
		vmerr error
	)
	if contractCreation {
		ret, _, vmerr = vmenv.Create(sender, self.data, self.gas, self.value)
		if homestead && err == vm.ErrCodeStoreOutOfGas {
			self.gas = Big0
		}
	} else {
		// Increment the nonce for the next transaction
		self.state.SetNonce(sender.Address(), self.state.GetNonce(sender.Address())+1)
		ret, vmerr = vmenv.Call(sender, self.to().Address(), self.data, self.gas, self.value)
	}
	if vmerr != nil {
		glog.V(logger.Core).Infoln("vm returned with error:", err)
		// The only possible consensus-error would be if there wasn't
		// sufficient balance to make the transfer happen. The first
		// balance transfer may never fail.
		if vmerr == vm.ErrInsufficientBalance {
			return nil, nil, nil, InvalidTxError(vmerr)
		}
	}

	requiredGas = new(big.Int).Set(self.gasUsed())

	self.refundGas()
	self.state.AddBalance(self.env.Coinbase, new(big.Int).Mul(self.gasUsed(), self.gasPrice))

	return ret, requiredGas, self.gasUsed(), err
}

func (self *StateTransition) refundGas() {
	// Return eth for remaining gas to the sender account,
	// exchanged at the original rate.
	sender := self.from() // err already checked
	remaining := new(big.Int).Mul(self.gas, self.gasPrice)
	sender.AddBalance(remaining)

	// Apply refund counter, capped to half of the used gas.
	uhalf := remaining.Div(self.gasUsed(), common.Big2)
	refund := common.BigMin(uhalf, self.state.GetRefund())
	self.gas.Add(self.gas, refund)
	self.state.AddBalance(sender.Address(), refund.Mul(refund, self.gasPrice))

	// Also return remaining gas to the block gas counter so it is
	// available for the next transaction.
	self.gp.AddGas(self.gas)
}

func (self *StateTransition) gasUsed() *big.Int {
	return new(big.Int).Sub(self.initialGas, self.gas)
}