handler.go 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package snap

import (
	"bytes"
	"fmt"
	"time"

	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/core"
	"github.com/ethereum/go-ethereum/core/state"
	"github.com/ethereum/go-ethereum/light"
	"github.com/ethereum/go-ethereum/log"
	"github.com/ethereum/go-ethereum/metrics"
	"github.com/ethereum/go-ethereum/p2p"
	"github.com/ethereum/go-ethereum/p2p/enode"
	"github.com/ethereum/go-ethereum/p2p/enr"
	"github.com/ethereum/go-ethereum/rlp"
	"github.com/ethereum/go-ethereum/trie"
)

const (
	// softResponseLimit is the target maximum size of replies to data retrievals.
	softResponseLimit = 2 * 1024 * 1024

	// maxCodeLookups is the maximum number of bytecodes to serve. This number is
	// there to limit the number of disk lookups.
	maxCodeLookups = 1024

	// stateLookupSlack defines the ratio by how much a state response can exceed
	// the requested limit in order to try and avoid breaking up contracts into
	// multiple packages and proving them.
	stateLookupSlack = 0.1

	// maxTrieNodeLookups is the maximum number of state trie nodes to serve. This
	// number is there to limit the number of disk lookups.
	maxTrieNodeLookups = 1024

	// maxTrieNodeTimeSpent is the maximum time we should spend on looking up trie nodes.
	// If we spend too much time, then it's a fairly high chance of timing out
	// at the remote side, which means all the work is in vain.
	maxTrieNodeTimeSpent = 5 * time.Second
)

// Handler is a callback to invoke from an outside runner after the boilerplate
// exchanges have passed.
type Handler func(peer *Peer) error

// Backend defines the data retrieval methods to serve remote requests and the
// callback methods to invoke on remote deliveries.
type Backend interface {
	// Chain retrieves the blockchain object to serve data.
	Chain() *core.BlockChain

	// RunPeer is invoked when a peer joins on the `eth` protocol. The handler
	// should do any peer maintenance work, handshakes and validations. If all
	// is passed, control should be given back to the `handler` to process the
	// inbound messages going forward.
	RunPeer(peer *Peer, handler Handler) error

	// PeerInfo retrieves all known `snap` information about a peer.
	PeerInfo(id enode.ID) interface{}

	// Handle is a callback to be invoked when a data packet is received from
	// the remote peer. Only packets not consumed by the protocol handler will
	// be forwarded to the backend.
	Handle(peer *Peer, packet Packet) error
}

// MakeProtocols constructs the P2P protocol definitions for `snap`.
func MakeProtocols(backend Backend, dnsdisc enode.Iterator) []p2p.Protocol {
	protocols := make([]p2p.Protocol, len(ProtocolVersions))
	for i, version := range ProtocolVersions {
		version := version // Closure

		protocols[i] = p2p.Protocol{
			Name:    ProtocolName,
			Version: version,
			Length:  protocolLengths[version],
			Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error {
				return backend.RunPeer(newPeer(version, p, rw), func(peer *Peer) error {
					return handle(backend, peer)
				})
			},
			NodeInfo: func() interface{} {
				return nodeInfo(backend.Chain())
			},
			PeerInfo: func(id enode.ID) interface{} {
				return backend.PeerInfo(id)
			},
			Attributes:     []enr.Entry{&enrEntry{}},
			DialCandidates: dnsdisc,
		}
	}
	return protocols
}

// handle is the callback invoked to manage the life cycle of a `snap` peer.
// When this function terminates, the peer is disconnected.
func handle(backend Backend, peer *Peer) error {
	for {
		if err := handleMessage(backend, peer); err != nil {
			peer.Log().Debug("Message handling failed in `snap`", "err", err)
			return err
		}
	}
}

// handleMessage is invoked whenever an inbound message is received from a
// remote peer on the `snap` protocol. The remote connection is torn down upon
// returning any error.
func handleMessage(backend Backend, peer *Peer) error {
	// Read the next message from the remote peer, and ensure it's fully consumed
	msg, err := peer.rw.ReadMsg()
	if err != nil {
		return err
	}
	if msg.Size > maxMessageSize {
		return fmt.Errorf("%w: %v > %v", errMsgTooLarge, msg.Size, maxMessageSize)
	}
	defer msg.Discard()
	start := time.Now()
	// Track the emount of time it takes to serve the request and run the handler
	if metrics.Enabled {
		h := fmt.Sprintf("%s/%s/%d/%#02x", p2p.HandleHistName, ProtocolName, peer.Version(), msg.Code)
		defer func(start time.Time) {
			sampler := func() metrics.Sample {
				return metrics.ResettingSample(
					metrics.NewExpDecaySample(1028, 0.015),
				)
			}
			metrics.GetOrRegisterHistogramLazy(h, nil, sampler).Update(time.Since(start).Microseconds())
		}(start)
	}
	// Handle the message depending on its contents
	switch {
	case msg.Code == GetAccountRangeMsg:
		// Decode the account retrieval request
		var req GetAccountRangePacket
		if err := msg.Decode(&req); err != nil {
			return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
		}
		if req.Bytes > softResponseLimit {
			req.Bytes = softResponseLimit
		}
		// Retrieve the requested state and bail out if non existent
		tr, err := trie.New(req.Root, backend.Chain().StateCache().TrieDB())
		if err != nil {
			return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
		}
		it, err := backend.Chain().Snapshots().AccountIterator(req.Root, req.Origin)
		if err != nil {
			return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
		}
		// Iterate over the requested range and pile accounts up
		var (
			accounts []*AccountData
			size     uint64
			last     common.Hash
		)
		for it.Next() && size < req.Bytes {
			hash, account := it.Hash(), common.CopyBytes(it.Account())

			// Track the returned interval for the Merkle proofs
			last = hash

			// Assemble the reply item
			size += uint64(common.HashLength + len(account))
			accounts = append(accounts, &AccountData{
				Hash: hash,
				Body: account,
			})
			// If we've exceeded the request threshold, abort
			if bytes.Compare(hash[:], req.Limit[:]) >= 0 {
				break
			}
		}
		it.Release()

		// Generate the Merkle proofs for the first and last account
		proof := light.NewNodeSet()
		if err := tr.Prove(req.Origin[:], 0, proof); err != nil {
			log.Warn("Failed to prove account range", "origin", req.Origin, "err", err)
			return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
		}
		if last != (common.Hash{}) {
			if err := tr.Prove(last[:], 0, proof); err != nil {
				log.Warn("Failed to prove account range", "last", last, "err", err)
				return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
			}
		}
		var proofs [][]byte
		for _, blob := range proof.NodeList() {
			proofs = append(proofs, blob)
		}
		// Send back anything accumulated
		return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{
			ID:       req.ID,
			Accounts: accounts,
			Proof:    proofs,
		})

	case msg.Code == AccountRangeMsg:
		// A range of accounts arrived to one of our previous requests
		res := new(AccountRangePacket)
		if err := msg.Decode(res); err != nil {
			return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
		}
		// Ensure the range is monotonically increasing
		for i := 1; i < len(res.Accounts); i++ {
			if bytes.Compare(res.Accounts[i-1].Hash[:], res.Accounts[i].Hash[:]) >= 0 {
				return fmt.Errorf("accounts not monotonically increasing: #%d [%x] vs #%d [%x]", i-1, res.Accounts[i-1].Hash[:], i, res.Accounts[i].Hash[:])
			}
		}
		requestTracker.Fulfil(peer.id, peer.version, AccountRangeMsg, res.ID)

		return backend.Handle(peer, res)

	case msg.Code == GetStorageRangesMsg:
		// Decode the storage retrieval request
		var req GetStorageRangesPacket
		if err := msg.Decode(&req); err != nil {
			return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
		}
		if req.Bytes > softResponseLimit {
			req.Bytes = softResponseLimit
		}
		// TODO(karalabe): Do we want to enforce > 0 accounts and 1 account if origin is set?
		// TODO(karalabe):   - Logging locally is not ideal as remote faulst annoy the local user
		// TODO(karalabe):   - Dropping the remote peer is less flexible wrt client bugs (slow is better than non-functional)

		// Calculate the hard limit at which to abort, even if mid storage trie
		hardLimit := uint64(float64(req.Bytes) * (1 + stateLookupSlack))

		// Retrieve storage ranges until the packet limit is reached
		var (
			slots  [][]*StorageData
			proofs [][]byte
			size   uint64
		)
		for _, account := range req.Accounts {
			// If we've exceeded the requested data limit, abort without opening
			// a new storage range (that we'd need to prove due to exceeded size)
			if size >= req.Bytes {
				break
			}
			// The first account might start from a different origin and end sooner
			var origin common.Hash
			if len(req.Origin) > 0 {
				origin, req.Origin = common.BytesToHash(req.Origin), nil
			}
			var limit = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
			if len(req.Limit) > 0 {
				limit, req.Limit = common.BytesToHash(req.Limit), nil
			}
			// Retrieve the requested state and bail out if non existent
			it, err := backend.Chain().Snapshots().StorageIterator(req.Root, account, origin)
			if err != nil {
				return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
			}
			// Iterate over the requested range and pile slots up
			var (
				storage []*StorageData
				last    common.Hash
				abort   bool
			)
			for it.Next() {
				if size >= hardLimit {
					abort = true
					break
				}
				hash, slot := it.Hash(), common.CopyBytes(it.Slot())

				// Track the returned interval for the Merkle proofs
				last = hash

				// Assemble the reply item
				size += uint64(common.HashLength + len(slot))
				storage = append(storage, &StorageData{
					Hash: hash,
					Body: slot,
				})
				// If we've exceeded the request threshold, abort
				if bytes.Compare(hash[:], limit[:]) >= 0 {
					break
				}
			}
			slots = append(slots, storage)
			it.Release()

			// Generate the Merkle proofs for the first and last storage slot, but
			// only if the response was capped. If the entire storage trie included
			// in the response, no need for any proofs.
			if origin != (common.Hash{}) || abort {
				// Request started at a non-zero hash or was capped prematurely, add
				// the endpoint Merkle proofs
				accTrie, err := trie.New(req.Root, backend.Chain().StateCache().TrieDB())
				if err != nil {
					return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
				}
				var acc state.Account
				if err := rlp.DecodeBytes(accTrie.Get(account[:]), &acc); err != nil {
					return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
				}
				stTrie, err := trie.New(acc.Root, backend.Chain().StateCache().TrieDB())
				if err != nil {
					return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
				}
				proof := light.NewNodeSet()
				if err := stTrie.Prove(origin[:], 0, proof); err != nil {
					log.Warn("Failed to prove storage range", "origin", req.Origin, "err", err)
					return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
				}
				if last != (common.Hash{}) {
					if err := stTrie.Prove(last[:], 0, proof); err != nil {
						log.Warn("Failed to prove storage range", "last", last, "err", err)
						return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
					}
				}
				for _, blob := range proof.NodeList() {
					proofs = append(proofs, blob)
				}
				// Proof terminates the reply as proofs are only added if a node
				// refuses to serve more data (exception when a contract fetch is
				// finishing, but that's that).
				break
			}
		}
		// Send back anything accumulated
		return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{
			ID:    req.ID,
			Slots: slots,
			Proof: proofs,
		})

	case msg.Code == StorageRangesMsg:
		// A range of storage slots arrived to one of our previous requests
		res := new(StorageRangesPacket)
		if err := msg.Decode(res); err != nil {
			return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
		}
		// Ensure the ranges ae monotonically increasing
		for i, slots := range res.Slots {
			for j := 1; j < len(slots); j++ {
				if bytes.Compare(slots[j-1].Hash[:], slots[j].Hash[:]) >= 0 {
					return fmt.Errorf("storage slots not monotonically increasing for account #%d: #%d [%x] vs #%d [%x]", i, j-1, slots[j-1].Hash[:], j, slots[j].Hash[:])
				}
			}
		}
		requestTracker.Fulfil(peer.id, peer.version, StorageRangesMsg, res.ID)

		return backend.Handle(peer, res)

	case msg.Code == GetByteCodesMsg:
		// Decode bytecode retrieval request
		var req GetByteCodesPacket
		if err := msg.Decode(&req); err != nil {
			return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
		}
		if req.Bytes > softResponseLimit {
			req.Bytes = softResponseLimit
		}
		if len(req.Hashes) > maxCodeLookups {
			req.Hashes = req.Hashes[:maxCodeLookups]
		}
		// Retrieve bytecodes until the packet size limit is reached
		var (
			codes [][]byte
			bytes uint64
		)
		for _, hash := range req.Hashes {
			if hash == emptyCode {
				// Peers should not request the empty code, but if they do, at
				// least sent them back a correct response without db lookups
				codes = append(codes, []byte{})
			} else if blob, err := backend.Chain().ContractCode(hash); err == nil {
				codes = append(codes, blob)
				bytes += uint64(len(blob))
			}
			if bytes > req.Bytes {
				break
			}
		}
		// Send back anything accumulated
		return p2p.Send(peer.rw, ByteCodesMsg, &ByteCodesPacket{
			ID:    req.ID,
			Codes: codes,
		})

	case msg.Code == ByteCodesMsg:
		// A batch of byte codes arrived to one of our previous requests
		res := new(ByteCodesPacket)
		if err := msg.Decode(res); err != nil {
			return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
		}
		requestTracker.Fulfil(peer.id, peer.version, ByteCodesMsg, res.ID)

		return backend.Handle(peer, res)

	case msg.Code == GetTrieNodesMsg:
		// Decode trie node retrieval request
		var req GetTrieNodesPacket
		if err := msg.Decode(&req); err != nil {
			return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
		}
		if req.Bytes > softResponseLimit {
			req.Bytes = softResponseLimit
		}
		// Make sure we have the state associated with the request
		triedb := backend.Chain().StateCache().TrieDB()

		accTrie, err := trie.NewSecure(req.Root, triedb)
		if err != nil {
			// We don't have the requested state available, bail out
			return p2p.Send(peer.rw, TrieNodesMsg, &TrieNodesPacket{ID: req.ID})
		}
		snap := backend.Chain().Snapshots().Snapshot(req.Root)
		if snap == nil {
			// We don't have the requested state snapshotted yet, bail out.
			// In reality we could still serve using the account and storage
			// tries only, but let's protect the node a bit while it's doing
			// snapshot generation.
			return p2p.Send(peer.rw, TrieNodesMsg, &TrieNodesPacket{ID: req.ID})
		}
		// Retrieve trie nodes until the packet size limit is reached
		var (
			nodes [][]byte
			bytes uint64
			loads int // Trie hash expansions to cound database reads
		)
		for _, pathset := range req.Paths {
			switch len(pathset) {
			case 0:
				// Ensure we penalize invalid requests
				return fmt.Errorf("%w: zero-item pathset requested", errBadRequest)

			case 1:
				// If we're only retrieving an account trie node, fetch it directly
				blob, resolved, err := accTrie.TryGetNode(pathset[0])
				loads += resolved // always account database reads, even for failures
				if err != nil {
					break
				}
				nodes = append(nodes, blob)
				bytes += uint64(len(blob))

			default:
				// Storage slots requested, open the storage trie and retrieve from there
				account, err := snap.Account(common.BytesToHash(pathset[0]))
				loads++ // always account database reads, even for failures
				if err != nil {
					break
				}
				stTrie, err := trie.NewSecure(common.BytesToHash(account.Root), triedb)
				loads++ // always account database reads, even for failures
				if err != nil {
					break
				}
				for _, path := range pathset[1:] {
					blob, resolved, err := stTrie.TryGetNode(path)
					loads += resolved // always account database reads, even for failures
					if err != nil {
						break
					}
					nodes = append(nodes, blob)
					bytes += uint64(len(blob))

					// Sanity check limits to avoid DoS on the store trie loads
					if bytes > req.Bytes || loads > maxTrieNodeLookups || time.Since(start) > maxTrieNodeTimeSpent {
						break
					}
				}
			}
			// Abort request processing if we've exceeded our limits
			if bytes > req.Bytes || loads > maxTrieNodeLookups || time.Since(start) > maxTrieNodeTimeSpent {
				break
			}
		}
		// Send back anything accumulated
		return p2p.Send(peer.rw, TrieNodesMsg, &TrieNodesPacket{
			ID:    req.ID,
			Nodes: nodes,
		})

	case msg.Code == TrieNodesMsg:
		// A batch of trie nodes arrived to one of our previous requests
		res := new(TrieNodesPacket)
		if err := msg.Decode(res); err != nil {
			return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
		}
		requestTracker.Fulfil(peer.id, peer.version, TrieNodesMsg, res.ID)

		return backend.Handle(peer, res)

	default:
		return fmt.Errorf("%w: %v", errInvalidMsgCode, msg.Code)
	}
}

// NodeInfo represents a short summary of the `snap` sub-protocol metadata
// known about the host peer.
type NodeInfo struct{}

// nodeInfo retrieves some `snap` protocol metadata about the running host node.
func nodeInfo(chain *core.BlockChain) *NodeInfo {
	return &NodeInfo{}
}