• Péter Szilágyi's avatar
    Godeps, vendor: convert dependency management to trash (#3198) · 289b3071
    Péter Szilágyi authored
    This commit converts the dependency management from Godeps to the vendor
    folder, also switching the tool from godep to trash. Since the upstream tool
    lacks a few features proposed via a few PRs, until those PRs are merged in
    (if), use github.com/karalabe/trash.
    
    You can update dependencies via trash --update.
    
    All dependencies have been updated to their latest version.
    
    Parts of the build system are reworked to drop old notions of Godeps and
    invocation of the go vet command so that it doesn't run against the vendor
    folder, as that will just blow up during vetting.
    
    The conversion drops OpenCL (and hence GPU mining support) from ethash and our
    codebase. The short reasoning is that there's noone to maintain and having
    opencl libs in our deps messes up builds as go install ./... tries to build
    them, failing with unsatisfied link errors for the C OpenCL deps.
    
    golang.org/x/net/context is not vendored in. We expect it to be fetched by the
    user (i.e. using go get). To keep ci.go builds reproducible the package is
    "vendored" in build/_vendor.
    289b3071
internal.c 13.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/*
  This file is part of ethash.

  ethash is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  ethash is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with cpp-ethereum.	If not, see <http://www.gnu.org/licenses/>.
*/
/** @file internal.c
* @author Tim Hughes <tim@twistedfury.com>
* @author Matthew Wampler-Doty
* @date 2015
*/

#include <assert.h>
#include <inttypes.h>
#include <stddef.h>
#include <errno.h>
#include <math.h>
#include "mmap.h"
#include "ethash.h"
#include "fnv.h"
#include "endian.h"
#include "internal.h"
#include "data_sizes.h"
#include "io.h"

#ifdef WITH_CRYPTOPP

#include "sha3_cryptopp.h"

#else
#include "sha3.h"
#endif // WITH_CRYPTOPP

uint64_t ethash_get_datasize(uint64_t const block_number)
{
	assert(block_number / ETHASH_EPOCH_LENGTH < 2048);
	return dag_sizes[block_number / ETHASH_EPOCH_LENGTH];
}

uint64_t ethash_get_cachesize(uint64_t const block_number)
{
	assert(block_number / ETHASH_EPOCH_LENGTH < 2048);
	return cache_sizes[block_number / ETHASH_EPOCH_LENGTH];
}

// Follows Sergio's "STRICT MEMORY HARD HASHING FUNCTIONS" (2014)
// https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf
// SeqMemoHash(s, R, N)
bool static ethash_compute_cache_nodes(
	node* const nodes,
	uint64_t cache_size,
	ethash_h256_t const* seed
)
{
	if (cache_size % sizeof(node) != 0) {
		return false;
	}
	uint32_t const num_nodes = (uint32_t) (cache_size / sizeof(node));

	SHA3_512(nodes[0].bytes, (uint8_t*)seed, 32);

	for (uint32_t i = 1; i != num_nodes; ++i) {
		SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64);
	}

	for (uint32_t j = 0; j != ETHASH_CACHE_ROUNDS; j++) {
		for (uint32_t i = 0; i != num_nodes; i++) {
			uint32_t const idx = nodes[i].words[0] % num_nodes;
			node data;
			data = nodes[(num_nodes - 1 + i) % num_nodes];
			for (uint32_t w = 0; w != NODE_WORDS; ++w) {
				data.words[w] ^= nodes[idx].words[w];
			}
			SHA3_512(nodes[i].bytes, data.bytes, sizeof(data));
		}
	}

	// now perform endian conversion
	fix_endian_arr32(nodes->words, num_nodes * NODE_WORDS);
	return true;
}

void ethash_calculate_dag_item(
	node* const ret,
	uint32_t node_index,
	ethash_light_t const light
)
{
	uint32_t num_parent_nodes = (uint32_t) (light->cache_size / sizeof(node));
	node const* cache_nodes = (node const *) light->cache;
	node const* init = &cache_nodes[node_index % num_parent_nodes];
	memcpy(ret, init, sizeof(node));
	ret->words[0] ^= node_index;
	SHA3_512(ret->bytes, ret->bytes, sizeof(node));
#if defined(_M_X64) && ENABLE_SSE
	__m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME);
	__m128i xmm0 = ret->xmm[0];
	__m128i xmm1 = ret->xmm[1];
	__m128i xmm2 = ret->xmm[2];
	__m128i xmm3 = ret->xmm[3];
#endif

	for (uint32_t i = 0; i != ETHASH_DATASET_PARENTS; ++i) {
		uint32_t parent_index = fnv_hash(node_index ^ i, ret->words[i % NODE_WORDS]) % num_parent_nodes;
		node const *parent = &cache_nodes[parent_index];

#if defined(_M_X64) && ENABLE_SSE
		{
			xmm0 = _mm_mullo_epi32(xmm0, fnv_prime);
			xmm1 = _mm_mullo_epi32(xmm1, fnv_prime);
			xmm2 = _mm_mullo_epi32(xmm2, fnv_prime);
			xmm3 = _mm_mullo_epi32(xmm3, fnv_prime);
			xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]);
			xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]);
			xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]);
			xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]);

			// have to write to ret as values are used to compute index
			ret->xmm[0] = xmm0;
			ret->xmm[1] = xmm1;
			ret->xmm[2] = xmm2;
			ret->xmm[3] = xmm3;
		}
		#else
		{
			for (unsigned w = 0; w != NODE_WORDS; ++w) {
				ret->words[w] = fnv_hash(ret->words[w], parent->words[w]);
			}
		}
#endif
	}
	SHA3_512(ret->bytes, ret->bytes, sizeof(node));
}

bool ethash_compute_full_data(
	void* mem,
	uint64_t full_size,
	ethash_light_t const light,
	ethash_callback_t callback
)
{
	if (full_size % (sizeof(uint32_t) * MIX_WORDS) != 0 ||
		(full_size % sizeof(node)) != 0) {
		return false;
	}
	uint32_t const max_n = (uint32_t)(full_size / sizeof(node));
	node* full_nodes = mem;
	double const progress_change = 1.0f / max_n;
	double progress = 0.0f;
	// now compute full nodes
	for (uint32_t n = 0; n != max_n; ++n) {
		if (callback &&
			n % (max_n / 100) == 0 &&
			callback((unsigned int)(ceil(progress * 100.0f))) != 0) {

			return false;
		}
		progress += progress_change;
		ethash_calculate_dag_item(&(full_nodes[n]), n, light);
	}
	return true;
}

static bool ethash_hash(
	ethash_return_value_t* ret,
	node const* full_nodes,
	ethash_light_t const light,
	uint64_t full_size,
	ethash_h256_t const header_hash,
	uint64_t const nonce
)
{
	if (full_size % MIX_WORDS != 0) {
		return false;
	}

	// pack hash and nonce together into first 40 bytes of s_mix
	assert(sizeof(node) * 8 == 512);
	node s_mix[MIX_NODES + 1];
	memcpy(s_mix[0].bytes, &header_hash, 32);
	fix_endian64(s_mix[0].double_words[4], nonce);

	// compute sha3-512 hash and replicate across mix
	SHA3_512(s_mix->bytes, s_mix->bytes, 40);
	fix_endian_arr32(s_mix[0].words, 16);

	node* const mix = s_mix + 1;
	for (uint32_t w = 0; w != MIX_WORDS; ++w) {
		mix->words[w] = s_mix[0].words[w % NODE_WORDS];
	}

	unsigned const page_size = sizeof(uint32_t) * MIX_WORDS;
	unsigned const num_full_pages = (unsigned) (full_size / page_size);

	for (unsigned i = 0; i != ETHASH_ACCESSES; ++i) {
		uint32_t const index = fnv_hash(s_mix->words[0] ^ i, mix->words[i % MIX_WORDS]) % num_full_pages;

		for (unsigned n = 0; n != MIX_NODES; ++n) {
			node const* dag_node;
			if (full_nodes) {
				dag_node = &full_nodes[MIX_NODES * index + n];
			} else {
				node tmp_node;
				ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, light);
				dag_node = &tmp_node;
			}

#if defined(_M_X64) && ENABLE_SSE
			{
				__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME);
				__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]);
				__m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]);
				__m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]);
				__m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]);
				mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]);
				mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]);
				mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]);
				mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]);
			}
			#else
			{
				for (unsigned w = 0; w != NODE_WORDS; ++w) {
					mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]);
				}
			}
#endif
		}

	}

	// compress mix
	for (uint32_t w = 0; w != MIX_WORDS; w += 4) {
		uint32_t reduction = mix->words[w + 0];
		reduction = reduction * FNV_PRIME ^ mix->words[w + 1];
		reduction = reduction * FNV_PRIME ^ mix->words[w + 2];
		reduction = reduction * FNV_PRIME ^ mix->words[w + 3];
		mix->words[w / 4] = reduction;
	}

	fix_endian_arr32(mix->words, MIX_WORDS / 4);
	memcpy(&ret->mix_hash, mix->bytes, 32);
	// final Keccak hash
	SHA3_256(&ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix)
	return true;
}

void ethash_quick_hash(
	ethash_h256_t* return_hash,
	ethash_h256_t const* header_hash,
	uint64_t nonce,
	ethash_h256_t const* mix_hash
)
{
	uint8_t buf[64 + 32];
	memcpy(buf, header_hash, 32);
	fix_endian64_same(nonce);
	memcpy(&(buf[32]), &nonce, 8);
	SHA3_512(buf, buf, 40);
	memcpy(&(buf[64]), mix_hash, 32);
	SHA3_256(return_hash, buf, 64 + 32);
}

ethash_h256_t ethash_get_seedhash(uint64_t block_number)
{
	ethash_h256_t ret;
	ethash_h256_reset(&ret);
	uint64_t const epochs = block_number / ETHASH_EPOCH_LENGTH;
	for (uint32_t i = 0; i < epochs; ++i)
		SHA3_256(&ret, (uint8_t*)&ret, 32);
	return ret;
}

bool ethash_quick_check_difficulty(
	ethash_h256_t const* header_hash,
	uint64_t const nonce,
	ethash_h256_t const* mix_hash,
	ethash_h256_t const* boundary
)
{

	ethash_h256_t return_hash;
	ethash_quick_hash(&return_hash, header_hash, nonce, mix_hash);
	return ethash_check_difficulty(&return_hash, boundary);
}

ethash_light_t ethash_light_new_internal(uint64_t cache_size, ethash_h256_t const* seed)
{
	struct ethash_light *ret;
	ret = calloc(sizeof(*ret), 1);
	if (!ret) {
		return NULL;
	}
	ret->cache = malloc((size_t)cache_size);
	if (!ret->cache) {
		goto fail_free_light;
	}
	node* nodes = (node*)ret->cache;
	if (!ethash_compute_cache_nodes(nodes, cache_size, seed)) {
		goto fail_free_cache_mem;
	}
	ret->cache_size = cache_size;
	return ret;

fail_free_cache_mem:
	free(ret->cache);
fail_free_light:
	free(ret);
	return NULL;
}

ethash_light_t ethash_light_new(uint64_t block_number)
{
	ethash_h256_t seedhash = ethash_get_seedhash(block_number);
	ethash_light_t ret;
	ret = ethash_light_new_internal(ethash_get_cachesize(block_number), &seedhash);
	ret->block_number = block_number;
	return ret;
}

void ethash_light_delete(ethash_light_t light)
{
	if (light->cache) {
		free(light->cache);
	}
	free(light);
}

ethash_return_value_t ethash_light_compute_internal(
	ethash_light_t light,
	uint64_t full_size,
	ethash_h256_t const header_hash,
	uint64_t nonce
)
{
  	ethash_return_value_t ret;
	ret.success = true;
	if (!ethash_hash(&ret, NULL, light, full_size, header_hash, nonce)) {
		ret.success = false;
	}
	return ret;
}

ethash_return_value_t ethash_light_compute(
	ethash_light_t light,
	ethash_h256_t const header_hash,
	uint64_t nonce
)
{
	uint64_t full_size = ethash_get_datasize(light->block_number);
	return ethash_light_compute_internal(light, full_size, header_hash, nonce);
}

static bool ethash_mmap(struct ethash_full* ret, FILE* f)
{
	int fd;
	char* mmapped_data;
	errno = 0;
	ret->file = f;
	if ((fd = ethash_fileno(ret->file)) == -1) {
		return false;
	}
	mmapped_data= mmap(
		NULL,
		(size_t)ret->file_size + ETHASH_DAG_MAGIC_NUM_SIZE,
		PROT_READ | PROT_WRITE,
		MAP_SHARED,
		fd,
		0
	);
	if (mmapped_data == MAP_FAILED) {
		return false;
	}
	ret->data = (node*)(mmapped_data + ETHASH_DAG_MAGIC_NUM_SIZE);
	return true;
}

ethash_full_t ethash_full_new_internal(
	char const* dirname,
	ethash_h256_t const seed_hash,
	uint64_t full_size,
	ethash_light_t const light,
	ethash_callback_t callback
)
{
	struct ethash_full* ret;
	FILE *f = NULL;
	ret = calloc(sizeof(*ret), 1);
	if (!ret) {
		return NULL;
	}
	ret->file_size = (size_t)full_size;
	switch (ethash_io_prepare(dirname, seed_hash, &f, (size_t)full_size, false)) {
	case ETHASH_IO_FAIL:
		// ethash_io_prepare will do all ETHASH_CRITICAL() logging in fail case
		goto fail_free_full;
	case ETHASH_IO_MEMO_MATCH:
		if (!ethash_mmap(ret, f)) {
			ETHASH_CRITICAL("mmap failure()");
			goto fail_close_file;
		}
		return ret;
	case ETHASH_IO_MEMO_SIZE_MISMATCH:
		// if a DAG of same filename but unexpected size is found, silently force new file creation
		if (ethash_io_prepare(dirname, seed_hash, &f, (size_t)full_size, true) != ETHASH_IO_MEMO_MISMATCH) {
			ETHASH_CRITICAL("Could not recreate DAG file after finding existing DAG with unexpected size.");
			goto fail_free_full;
		}
		// fallthrough to the mismatch case here, DO NOT go through match
	case ETHASH_IO_MEMO_MISMATCH:
		if (!ethash_mmap(ret, f)) {
			ETHASH_CRITICAL("mmap failure()");
			goto fail_close_file;
		}
		break;
	}

	if (!ethash_compute_full_data(ret->data, full_size, light, callback)) {
		ETHASH_CRITICAL("Failure at computing DAG data.");
		goto fail_free_full_data;
	}

	// after the DAG has been filled then we finalize it by writting the magic number at the beginning
	if (fseek(f, 0, SEEK_SET) != 0) {
		ETHASH_CRITICAL("Could not seek to DAG file start to write magic number.");
		goto fail_free_full_data;
	}
	uint64_t const magic_num = ETHASH_DAG_MAGIC_NUM;
	if (fwrite(&magic_num, ETHASH_DAG_MAGIC_NUM_SIZE, 1, f) != 1) {
		ETHASH_CRITICAL("Could not write magic number to DAG's beginning.");
		goto fail_free_full_data;
	}
	if (fflush(f) != 0) {// make sure the magic number IS there
		ETHASH_CRITICAL("Could not flush memory mapped data to DAG file. Insufficient space?");
		goto fail_free_full_data;
	}
	return ret;

fail_free_full_data:
	// could check that munmap(..) == 0 but even if it did not can't really do anything here
	munmap(ret->data, (size_t)full_size);
fail_close_file:
	fclose(ret->file);
fail_free_full:
	free(ret);
	return NULL;
}

ethash_full_t ethash_full_new(ethash_light_t light, ethash_callback_t callback)
{
	char strbuf[256];
	if (!ethash_get_default_dirname(strbuf, 256)) {
		return NULL;
	}
	uint64_t full_size = ethash_get_datasize(light->block_number);
	ethash_h256_t seedhash = ethash_get_seedhash(light->block_number);
	return ethash_full_new_internal(strbuf, seedhash, full_size, light, callback);
}

void ethash_full_delete(ethash_full_t full)
{
	// could check that munmap(..) == 0 but even if it did not can't really do anything here
	munmap(full->data, (size_t)full->file_size);
	if (full->file) {
		fclose(full->file);
	}
	free(full);
}

ethash_return_value_t ethash_full_compute(
	ethash_full_t full,
	ethash_h256_t const header_hash,
	uint64_t nonce
)
{
	ethash_return_value_t ret;
	ret.success = true;
	if (!ethash_hash(
		&ret,
		(node const*)full->data,
		NULL,
		full->file_size,
		header_hash,
		nonce)) {
		ret.success = false;
	}
	return ret;
}

void const* ethash_full_dag(ethash_full_t full)
{
	return full->data;
}

uint64_t ethash_full_dag_size(ethash_full_t full)
{
	return full->file_size;
}