• Felix Lange's avatar
    p2p: use package rlp to encode messages · 5ba51594
    Felix Lange authored
    Message encoding functions have been renamed to catch any uses.
    The switch to the new encoder can cause subtle incompatibilities.
    If there are any users outside of our tree, they will at least be
    alerted that there was a change.
    
    NewMsg no longer exists. The replacements for EncodeMsg are called
    Send and SendItems.
    5ba51594
handshake.go 12.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
package p2p

import (
	"crypto/ecdsa"
	"crypto/elliptic"
	"crypto/rand"
	"errors"
	"fmt"
	"hash"
	"io"
	"net"

	"github.com/ethereum/go-ethereum/crypto"
	"github.com/ethereum/go-ethereum/crypto/ecies"
	"github.com/ethereum/go-ethereum/crypto/secp256k1"
	"github.com/ethereum/go-ethereum/crypto/sha3"
	"github.com/ethereum/go-ethereum/p2p/discover"
	"github.com/ethereum/go-ethereum/rlp"
)

const (
	sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
	sigLen = 65 // elliptic S256
	pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
	shaLen = 32 // hash length (for nonce etc)

	authMsgLen  = sigLen + shaLen + pubLen + shaLen + 1
	authRespLen = pubLen + shaLen + 1

	eciesBytes     = 65 + 16 + 32
	encAuthMsgLen  = authMsgLen + eciesBytes  // size of the final ECIES payload sent as initiator's handshake
	encAuthRespLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
)

// conn represents a remote connection after encryption handshake
// and protocol handshake have completed.
//
// The MsgReadWriter is usually layered as follows:
//
//     netWrapper       (I/O timeouts, thread-safe ReadMsg, WriteMsg)
//     rlpxFrameRW      (message encoding, encryption, authentication)
//     bufio.ReadWriter (buffering)
//     net.Conn         (network I/O)
//
type conn struct {
	MsgReadWriter
	*protoHandshake
}

// secrets represents the connection secrets
// which are negotiated during the encryption handshake.
type secrets struct {
	RemoteID              discover.NodeID
	AES, MAC              []byte
	EgressMAC, IngressMAC hash.Hash
	Token                 []byte
}

// protoHandshake is the RLP structure of the protocol handshake.
type protoHandshake struct {
	Version    uint64
	Name       string
	Caps       []Cap
	ListenPort uint64
	ID         discover.NodeID
}

// setupConn starts a protocol session on the given connection.
// It runs the encryption handshake and the protocol handshake.
// If dial is non-nil, the connection the local node is the initiator.
func setupConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node) (*conn, error) {
	if dial == nil {
		return setupInboundConn(fd, prv, our)
	} else {
		return setupOutboundConn(fd, prv, our, dial)
	}
}

func setupInboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake) (*conn, error) {
	secrets, err := receiverEncHandshake(fd, prv, nil)
	if err != nil {
		return nil, fmt.Errorf("encryption handshake failed: %v", err)
	}

	// Run the protocol handshake using authenticated messages.
	rw := newRlpxFrameRW(fd, secrets)
	rhs, err := readProtocolHandshake(rw, our)
	if err != nil {
		return nil, err
	}
	if rhs.ID != secrets.RemoteID {
		return nil, errors.New("node ID in protocol handshake does not match encryption handshake")
	}
	// TODO: validate that handshake node ID matches
	if err := Send(rw, handshakeMsg, our); err != nil {
		return nil, fmt.Errorf("protocol write error: %v", err)
	}
	return &conn{rw, rhs}, nil
}

func setupOutboundConn(fd net.Conn, prv *ecdsa.PrivateKey, our *protoHandshake, dial *discover.Node) (*conn, error) {
	secrets, err := initiatorEncHandshake(fd, prv, dial.ID, nil)
	if err != nil {
		return nil, fmt.Errorf("encryption handshake failed: %v", err)
	}

	// Run the protocol handshake using authenticated messages.
	rw := newRlpxFrameRW(fd, secrets)
	if err := Send(rw, handshakeMsg, our); err != nil {
		return nil, fmt.Errorf("protocol write error: %v", err)
	}
	rhs, err := readProtocolHandshake(rw, our)
	if err != nil {
		return nil, fmt.Errorf("protocol handshake read error: %v", err)
	}
	if rhs.ID != dial.ID {
		return nil, errors.New("dialed node id mismatch")
	}
	return &conn{rw, rhs}, nil
}

// encHandshake contains the state of the encryption handshake.
type encHandshake struct {
	initiator bool
	remoteID  discover.NodeID

	remotePub            *ecies.PublicKey  // remote-pubk
	initNonce, respNonce []byte            // nonce
	randomPrivKey        *ecies.PrivateKey // ecdhe-random
	remoteRandomPub      *ecies.PublicKey  // ecdhe-random-pubk
}

// secrets is called after the handshake is completed.
// It extracts the connection secrets from the handshake values.
func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
	ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
	if err != nil {
		return secrets{}, err
	}

	// derive base secrets from ephemeral key agreement
	sharedSecret := crypto.Sha3(ecdheSecret, crypto.Sha3(h.respNonce, h.initNonce))
	aesSecret := crypto.Sha3(ecdheSecret, sharedSecret)
	s := secrets{
		RemoteID: h.remoteID,
		AES:      aesSecret,
		MAC:      crypto.Sha3(ecdheSecret, aesSecret),
		Token:    crypto.Sha3(sharedSecret),
	}

	// setup sha3 instances for the MACs
	mac1 := sha3.NewKeccak256()
	mac1.Write(xor(s.MAC, h.respNonce))
	mac1.Write(auth)
	mac2 := sha3.NewKeccak256()
	mac2.Write(xor(s.MAC, h.initNonce))
	mac2.Write(authResp)
	if h.initiator {
		s.EgressMAC, s.IngressMAC = mac1, mac2
	} else {
		s.EgressMAC, s.IngressMAC = mac2, mac1
	}

	return s, nil
}

func (h *encHandshake) ecdhShared(prv *ecdsa.PrivateKey) ([]byte, error) {
	return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
}

// initiatorEncHandshake negotiates a session token on conn.
// it should be called on the dialing side of the connection.
//
// prv is the local client's private key.
// token is the token from a previous session with this node.
func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
	h, err := newInitiatorHandshake(remoteID)
	if err != nil {
		return s, err
	}
	auth, err := h.authMsg(prv, token)
	if err != nil {
		return s, err
	}
	if _, err = conn.Write(auth); err != nil {
		return s, err
	}

	response := make([]byte, encAuthRespLen)
	if _, err = io.ReadFull(conn, response); err != nil {
		return s, err
	}
	if err := h.decodeAuthResp(response, prv); err != nil {
		return s, err
	}
	return h.secrets(auth, response)
}

func newInitiatorHandshake(remoteID discover.NodeID) (*encHandshake, error) {
	// generate random initiator nonce
	n := make([]byte, shaLen)
	if _, err := rand.Read(n); err != nil {
		return nil, err
	}
	// generate random keypair to use for signing
	randpriv, err := ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
	if err != nil {
		return nil, err
	}
	rpub, err := remoteID.Pubkey()
	if err != nil {
		return nil, fmt.Errorf("bad remoteID: %v", err)
	}
	h := &encHandshake{
		initiator:     true,
		remoteID:      remoteID,
		remotePub:     ecies.ImportECDSAPublic(rpub),
		initNonce:     n,
		randomPrivKey: randpriv,
	}
	return h, nil
}

// authMsg creates an encrypted initiator handshake message.
func (h *encHandshake) authMsg(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
	var tokenFlag byte
	if token == nil {
		// no session token found means we need to generate shared secret.
		// ecies shared secret is used as initial session token for new peers
		// generate shared key from prv and remote pubkey
		var err error
		if token, err = h.ecdhShared(prv); err != nil {
			return nil, err
		}
	} else {
		// for known peers, we use stored token from the previous session
		tokenFlag = 0x01
	}

	// sign known message:
	//   ecdh-shared-secret^nonce for new peers
	//   token^nonce for old peers
	signed := xor(token, h.initNonce)
	signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
	if err != nil {
		return nil, err
	}

	// encode auth message
	// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
	msg := make([]byte, authMsgLen)
	n := copy(msg, signature)
	n += copy(msg[n:], crypto.Sha3(exportPubkey(&h.randomPrivKey.PublicKey)))
	n += copy(msg[n:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
	n += copy(msg[n:], h.initNonce)
	msg[n] = tokenFlag

	// encrypt auth message using remote-pubk
	return ecies.Encrypt(rand.Reader, h.remotePub, msg, nil, nil)
}

// decodeAuthResp decode an encrypted authentication response message.
func (h *encHandshake) decodeAuthResp(auth []byte, prv *ecdsa.PrivateKey) error {
	msg, err := crypto.Decrypt(prv, auth)
	if err != nil {
		return fmt.Errorf("could not decrypt auth response (%v)", err)
	}
	h.respNonce = msg[pubLen : pubLen+shaLen]
	h.remoteRandomPub, err = importPublicKey(msg[:pubLen])
	if err != nil {
		return err
	}
	// ignore token flag for now
	return nil
}

// receiverEncHandshake negotiates a session token on conn.
// it should be called on the listening side of the connection.
//
// prv is the local client's private key.
// token is the token from a previous session with this node.
func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
	// read remote auth sent by initiator.
	auth := make([]byte, encAuthMsgLen)
	if _, err := io.ReadFull(conn, auth); err != nil {
		return s, err
	}
	h, err := decodeAuthMsg(prv, token, auth)
	if err != nil {
		return s, err
	}

	// send auth response
	resp, err := h.authResp(prv, token)
	if err != nil {
		return s, err
	}
	if _, err = conn.Write(resp); err != nil {
		return s, err
	}

	return h.secrets(auth, resp)
}

func decodeAuthMsg(prv *ecdsa.PrivateKey, token []byte, auth []byte) (*encHandshake, error) {
	var err error
	h := new(encHandshake)
	// generate random keypair for session
	h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
	if err != nil {
		return nil, err
	}
	// generate random nonce
	h.respNonce = make([]byte, shaLen)
	if _, err = rand.Read(h.respNonce); err != nil {
		return nil, err
	}

	msg, err := crypto.Decrypt(prv, auth)
	if err != nil {
		return nil, fmt.Errorf("could not decrypt auth message (%v)", err)
	}

	// decode message parameters
	// signature || sha3(ecdhe-random-pubk) || pubk || nonce || token-flag
	h.initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
	copy(h.remoteID[:], msg[sigLen+shaLen:sigLen+shaLen+pubLen])
	rpub, err := h.remoteID.Pubkey()
	if err != nil {
		return nil, fmt.Errorf("bad remoteID: %#v", err)
	}
	h.remotePub = ecies.ImportECDSAPublic(rpub)

	// recover remote random pubkey from signed message.
	if token == nil {
		// TODO: it is an error if the initiator has a token and we don't. check that.

		// no session token means we need to generate shared secret.
		// ecies shared secret is used as initial session token for new peers.
		// generate shared key from prv and remote pubkey.
		if token, err = h.ecdhShared(prv); err != nil {
			return nil, err
		}
	}
	signedMsg := xor(token, h.initNonce)
	remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg[:sigLen])
	if err != nil {
		return nil, err
	}
	h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
	return h, nil
}

// authResp generates the encrypted authentication response message.
func (h *encHandshake) authResp(prv *ecdsa.PrivateKey, token []byte) ([]byte, error) {
	// responder auth message
	// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
	resp := make([]byte, authRespLen)
	n := copy(resp, exportPubkey(&h.randomPrivKey.PublicKey))
	n += copy(resp[n:], h.respNonce)
	if token == nil {
		resp[n] = 0
	} else {
		resp[n] = 1
	}
	// encrypt using remote-pubk
	return ecies.Encrypt(rand.Reader, h.remotePub, resp, nil, nil)
}

// importPublicKey unmarshals 512 bit public keys.
func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
	var pubKey65 []byte
	switch len(pubKey) {
	case 64:
		// add 'uncompressed key' flag
		pubKey65 = append([]byte{0x04}, pubKey...)
	case 65:
		pubKey65 = pubKey
	default:
		return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
	}
	// TODO: fewer pointless conversions
	return ecies.ImportECDSAPublic(crypto.ToECDSAPub(pubKey65)), nil
}

func exportPubkey(pub *ecies.PublicKey) []byte {
	if pub == nil {
		panic("nil pubkey")
	}
	return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
}

func xor(one, other []byte) (xor []byte) {
	xor = make([]byte, len(one))
	for i := 0; i < len(one); i++ {
		xor[i] = one[i] ^ other[i]
	}
	return xor
}

func readProtocolHandshake(r MsgReader, our *protoHandshake) (*protoHandshake, error) {
	// read and handle remote handshake
	msg, err := r.ReadMsg()
	if err != nil {
		return nil, err
	}
	if msg.Code == discMsg {
		// disconnect before protocol handshake is valid according to the
		// spec and we send it ourself if Server.addPeer fails.
		var reason DiscReason
		rlp.Decode(msg.Payload, &reason)
		return nil, discRequestedError(reason)
	}
	if msg.Code != handshakeMsg {
		return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
	}
	if msg.Size > baseProtocolMaxMsgSize {
		return nil, fmt.Errorf("message too big (%d > %d)", msg.Size, baseProtocolMaxMsgSize)
	}
	var hs protoHandshake
	if err := msg.Decode(&hs); err != nil {
		return nil, err
	}
	// validate handshake info
	if hs.Version != our.Version {
		return nil, newPeerError(errP2PVersionMismatch, "required version %d, received %d\n", baseProtocolVersion, hs.Version)
	}
	if (hs.ID == discover.NodeID{}) {
		return nil, newPeerError(errPubkeyInvalid, "missing")
	}
	return &hs, nil
}