• gary rong's avatar
    core/state/snapshot: implement storage iterator (#20971) · 26d271df
    gary rong authored
    * core/state/snapshot: implement storage iterator
    
    * core/state/snapshot, tests: implement helper function
    
    * core/state/snapshot: fix storage issue
    
    If an account is deleted in the tx_1 but recreated in the tx_2,
    the it can happen that in this diff layer, both destructedSet
    and storageData records this account. In this case, the storage
    iterator should be able to iterate the slots belong to new account
    but disable further iteration in deeper layers(belong to old account)
    
    * core/state/snapshot: address peter and martin's comment
    
    * core/state: address comments
    
    * core/state/snapshot: fix test
    Unverified
    26d271df
difflayer_test.go 12.4 KB
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package snapshot

import (
	"bytes"
	"math/rand"
	"testing"

	"github.com/VictoriaMetrics/fastcache"
	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/crypto"
	"github.com/ethereum/go-ethereum/ethdb/memorydb"
)

func copyDestructs(destructs map[common.Hash]struct{}) map[common.Hash]struct{} {
	copy := make(map[common.Hash]struct{})
	for hash := range destructs {
		copy[hash] = struct{}{}
	}
	return copy
}

func copyAccounts(accounts map[common.Hash][]byte) map[common.Hash][]byte {
	copy := make(map[common.Hash][]byte)
	for hash, blob := range accounts {
		copy[hash] = blob
	}
	return copy
}

func copyStorage(storage map[common.Hash]map[common.Hash][]byte) map[common.Hash]map[common.Hash][]byte {
	copy := make(map[common.Hash]map[common.Hash][]byte)
	for accHash, slots := range storage {
		copy[accHash] = make(map[common.Hash][]byte)
		for slotHash, blob := range slots {
			copy[accHash][slotHash] = blob
		}
	}
	return copy
}

// TestMergeBasics tests some simple merges
func TestMergeBasics(t *testing.T) {
	var (
		destructs = make(map[common.Hash]struct{})
		accounts  = make(map[common.Hash][]byte)
		storage   = make(map[common.Hash]map[common.Hash][]byte)
	)
	// Fill up a parent
	for i := 0; i < 100; i++ {
		h := randomHash()
		data := randomAccount()

		accounts[h] = data
		if rand.Intn(4) == 0 {
			destructs[h] = struct{}{}
		}
		if rand.Intn(2) == 0 {
			accStorage := make(map[common.Hash][]byte)
			value := make([]byte, 32)
			rand.Read(value)
			accStorage[randomHash()] = value
			storage[h] = accStorage
		}
	}
	// Add some (identical) layers on top
	parent := newDiffLayer(emptyLayer(), common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
	child := newDiffLayer(parent, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
	child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
	child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
	child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage))
	// And flatten
	merged := (child.flatten()).(*diffLayer)

	{ // Check account lists
		if have, want := len(merged.accountList), 0; have != want {
			t.Errorf("accountList wrong: have %v, want %v", have, want)
		}
		if have, want := len(merged.AccountList()), len(accounts); have != want {
			t.Errorf("AccountList() wrong: have %v, want %v", have, want)
		}
		if have, want := len(merged.accountList), len(accounts); have != want {
			t.Errorf("accountList [2] wrong: have %v, want %v", have, want)
		}
	}
	{ // Check account drops
		if have, want := len(merged.destructSet), len(destructs); have != want {
			t.Errorf("accountDrop wrong: have %v, want %v", have, want)
		}
	}
	{ // Check storage lists
		i := 0
		for aHash, sMap := range storage {
			if have, want := len(merged.storageList), i; have != want {
				t.Errorf("[1] storageList wrong: have %v, want %v", have, want)
			}
			list, _ := merged.StorageList(aHash)
			if have, want := len(list), len(sMap); have != want {
				t.Errorf("[2] StorageList() wrong: have %v, want %v", have, want)
			}
			if have, want := len(merged.storageList[aHash]), len(sMap); have != want {
				t.Errorf("storageList wrong: have %v, want %v", have, want)
			}
			i++
		}
	}
}

// TestMergeDelete tests some deletion
func TestMergeDelete(t *testing.T) {
	var (
		storage = make(map[common.Hash]map[common.Hash][]byte)
	)
	// Fill up a parent
	h1 := common.HexToHash("0x01")
	h2 := common.HexToHash("0x02")

	flipDrops := func() map[common.Hash]struct{} {
		return map[common.Hash]struct{}{
			h2: {},
		}
	}
	flipAccs := func() map[common.Hash][]byte {
		return map[common.Hash][]byte{
			h1: randomAccount(),
		}
	}
	flopDrops := func() map[common.Hash]struct{} {
		return map[common.Hash]struct{}{
			h1: {},
		}
	}
	flopAccs := func() map[common.Hash][]byte {
		return map[common.Hash][]byte{
			h2: randomAccount(),
		}
	}
	// Add some flipAccs-flopping layers on top
	parent := newDiffLayer(emptyLayer(), common.Hash{}, flipDrops(), flipAccs(), storage)
	child := parent.Update(common.Hash{}, flopDrops(), flopAccs(), storage)
	child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage)
	child = child.Update(common.Hash{}, flopDrops(), flopAccs(), storage)
	child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage)
	child = child.Update(common.Hash{}, flopDrops(), flopAccs(), storage)
	child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage)

	if data, _ := child.Account(h1); data == nil {
		t.Errorf("last diff layer: expected %x account to be non-nil", h1)
	}
	if data, _ := child.Account(h2); data != nil {
		t.Errorf("last diff layer: expected %x account to be nil", h2)
	}
	if _, ok := child.destructSet[h1]; ok {
		t.Errorf("last diff layer: expected %x drop to be missing", h1)
	}
	if _, ok := child.destructSet[h2]; !ok {
		t.Errorf("last diff layer: expected %x drop to be present", h1)
	}
	// And flatten
	merged := (child.flatten()).(*diffLayer)

	if data, _ := merged.Account(h1); data == nil {
		t.Errorf("merged layer: expected %x account to be non-nil", h1)
	}
	if data, _ := merged.Account(h2); data != nil {
		t.Errorf("merged layer: expected %x account to be nil", h2)
	}
	if _, ok := merged.destructSet[h1]; !ok { // Note, drops stay alive until persisted to disk!
		t.Errorf("merged diff layer: expected %x drop to be present", h1)
	}
	if _, ok := merged.destructSet[h2]; !ok { // Note, drops stay alive until persisted to disk!
		t.Errorf("merged diff layer: expected %x drop to be present", h1)
	}
	// If we add more granular metering of memory, we can enable this again,
	// but it's not implemented for now
	//if have, want := merged.memory, child.memory; have != want {
	//	t.Errorf("mem wrong: have %d, want %d", have, want)
	//}
}

// This tests that if we create a new account, and set a slot, and then merge
// it, the lists will be correct.
func TestInsertAndMerge(t *testing.T) {
	// Fill up a parent
	var (
		acc    = common.HexToHash("0x01")
		slot   = common.HexToHash("0x02")
		parent *diffLayer
		child  *diffLayer
	)
	{
		var (
			destructs = make(map[common.Hash]struct{})
			accounts  = make(map[common.Hash][]byte)
			storage   = make(map[common.Hash]map[common.Hash][]byte)
		)
		parent = newDiffLayer(emptyLayer(), common.Hash{}, destructs, accounts, storage)
	}
	{
		var (
			destructs = make(map[common.Hash]struct{})
			accounts  = make(map[common.Hash][]byte)
			storage   = make(map[common.Hash]map[common.Hash][]byte)
		)
		accounts[acc] = randomAccount()
		storage[acc] = make(map[common.Hash][]byte)
		storage[acc][slot] = []byte{0x01}
		child = newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
	}
	// And flatten
	merged := (child.flatten()).(*diffLayer)
	{ // Check that slot value is present
		have, _ := merged.Storage(acc, slot)
		if want := []byte{0x01}; !bytes.Equal(have, want) {
			t.Errorf("merged slot value wrong: have %x, want %x", have, want)
		}
	}
}

func emptyLayer() *diskLayer {
	return &diskLayer{
		diskdb: memorydb.New(),
		cache:  fastcache.New(500 * 1024),
	}
}

// BenchmarkSearch checks how long it takes to find a non-existing key
// BenchmarkSearch-6   	  200000	     10481 ns/op (1K per layer)
// BenchmarkSearch-6   	  200000	     10760 ns/op (10K per layer)
// BenchmarkSearch-6   	  100000	     17866 ns/op
//
// BenchmarkSearch-6   	  500000	      3723 ns/op (10k per layer, only top-level RLock()
func BenchmarkSearch(b *testing.B) {
	// First, we set up 128 diff layers, with 1K items each
	fill := func(parent snapshot) *diffLayer {
		var (
			destructs = make(map[common.Hash]struct{})
			accounts  = make(map[common.Hash][]byte)
			storage   = make(map[common.Hash]map[common.Hash][]byte)
		)
		for i := 0; i < 10000; i++ {
			accounts[randomHash()] = randomAccount()
		}
		return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
	}
	var layer snapshot
	layer = emptyLayer()
	for i := 0; i < 128; i++ {
		layer = fill(layer)
	}
	key := crypto.Keccak256Hash([]byte{0x13, 0x38})
	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		layer.AccountRLP(key)
	}
}

// BenchmarkSearchSlot checks how long it takes to find a non-existing key
// - Number of layers: 128
// - Each layers contains the account, with a couple of storage slots
// BenchmarkSearchSlot-6   	  100000	     14554 ns/op
// BenchmarkSearchSlot-6   	  100000	     22254 ns/op (when checking parent root using mutex)
// BenchmarkSearchSlot-6   	  100000	     14551 ns/op (when checking parent number using atomic)
// With bloom filter:
// BenchmarkSearchSlot-6   	 3467835	       351 ns/op
func BenchmarkSearchSlot(b *testing.B) {
	// First, we set up 128 diff layers, with 1K items each
	accountKey := crypto.Keccak256Hash([]byte{0x13, 0x37})
	storageKey := crypto.Keccak256Hash([]byte{0x13, 0x37})
	accountRLP := randomAccount()
	fill := func(parent snapshot) *diffLayer {
		var (
			destructs = make(map[common.Hash]struct{})
			accounts  = make(map[common.Hash][]byte)
			storage   = make(map[common.Hash]map[common.Hash][]byte)
		)
		accounts[accountKey] = accountRLP

		accStorage := make(map[common.Hash][]byte)
		for i := 0; i < 5; i++ {
			value := make([]byte, 32)
			rand.Read(value)
			accStorage[randomHash()] = value
			storage[accountKey] = accStorage
		}
		return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
	}
	var layer snapshot
	layer = emptyLayer()
	for i := 0; i < 128; i++ {
		layer = fill(layer)
	}
	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		layer.Storage(accountKey, storageKey)
	}
}

// With accountList and sorting
// BenchmarkFlatten-6   	      50	  29890856 ns/op
//
// Without sorting and tracking accountlist
// BenchmarkFlatten-6   	     300	   5511511 ns/op
func BenchmarkFlatten(b *testing.B) {
	fill := func(parent snapshot) *diffLayer {
		var (
			destructs = make(map[common.Hash]struct{})
			accounts  = make(map[common.Hash][]byte)
			storage   = make(map[common.Hash]map[common.Hash][]byte)
		)
		for i := 0; i < 100; i++ {
			accountKey := randomHash()
			accounts[accountKey] = randomAccount()

			accStorage := make(map[common.Hash][]byte)
			for i := 0; i < 20; i++ {
				value := make([]byte, 32)
				rand.Read(value)
				accStorage[randomHash()] = value

			}
			storage[accountKey] = accStorage
		}
		return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
	}
	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		b.StopTimer()
		var layer snapshot
		layer = emptyLayer()
		for i := 1; i < 128; i++ {
			layer = fill(layer)
		}
		b.StartTimer()

		for i := 1; i < 128; i++ {
			dl, ok := layer.(*diffLayer)
			if !ok {
				break
			}
			layer = dl.flatten()
		}
		b.StopTimer()
	}
}

// This test writes ~324M of diff layers to disk, spread over
// - 128 individual layers,
// - each with 200 accounts
// - containing 200 slots
//
// BenchmarkJournal-6   	       1	1471373923 ns/ops
// BenchmarkJournal-6   	       1	1208083335 ns/op // bufio writer
func BenchmarkJournal(b *testing.B) {
	fill := func(parent snapshot) *diffLayer {
		var (
			destructs = make(map[common.Hash]struct{})
			accounts  = make(map[common.Hash][]byte)
			storage   = make(map[common.Hash]map[common.Hash][]byte)
		)
		for i := 0; i < 200; i++ {
			accountKey := randomHash()
			accounts[accountKey] = randomAccount()

			accStorage := make(map[common.Hash][]byte)
			for i := 0; i < 200; i++ {
				value := make([]byte, 32)
				rand.Read(value)
				accStorage[randomHash()] = value

			}
			storage[accountKey] = accStorage
		}
		return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage)
	}
	layer := snapshot(new(diskLayer))
	for i := 1; i < 128; i++ {
		layer = fill(layer)
	}
	b.ResetTimer()

	for i := 0; i < b.N; i++ {
		layer.Journal(new(bytes.Buffer))
	}
}