• Guillaume Ballet's avatar
    trie: use stacktrie for Derivesha operation (#21407) · 6c8310eb
    Guillaume Ballet authored
    core/types: use stacktrie for derivesha
    
    trie: add stacktrie file
    
    trie: fix linter
    
    core/types: use stacktrie for derivesha
    
    rebased: adapt stacktrie to the newer version of DeriveSha
    Co-authored-by: 's avatarMartin Holst Swende <martin@swende.se>
    
    More linter fixes
    
    review feedback: no key offset for nodes converted to hashes
    
    trie: use EncodeRLP for full nodes
    
    core/types: insert txs in order in derivesha
    
    trie: tests for derivesha with stacktrie
    
    trie: make stacktrie use pooled hashers
    
    trie: make stacktrie reuse tmp slice space
    
    trie: minor polishes on stacktrie
    
    trie/stacktrie: less rlp dancing
    
    core/types: explain the contorsions in DeriveSha
    
    ci: fix goimport errors
    
    trie: clear mem on subtrie hashing
    
    squashme: linter fix
    
    stracktrie: use pooling, less allocs (#3)
    
    trie: in-place hex prefix, reduce allocs and add rawNode.EncodeRLP
    
    Reintroduce the `[]node` method, add the missing `EncodeRLP` implementation for `rawNode` and calculate the hex prefix in place.
    Co-authored-by: 's avatarMartin Holst Swende <martin@swende.se>
    Co-authored-by: 's avatarMartin Holst Swende <martin@swende.se>
    Unverified
    6c8310eb
database.go 29.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package trie

import (
	"errors"
	"fmt"
	"io"
	"reflect"
	"runtime"
	"sync"
	"time"

	"github.com/VictoriaMetrics/fastcache"
	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/core/rawdb"
	"github.com/ethereum/go-ethereum/ethdb"
	"github.com/ethereum/go-ethereum/log"
	"github.com/ethereum/go-ethereum/metrics"
	"github.com/ethereum/go-ethereum/rlp"
)

var (
	memcacheCleanHitMeter   = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil)
	memcacheCleanMissMeter  = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil)
	memcacheCleanReadMeter  = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil)
	memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil)

	memcacheDirtyHitMeter   = metrics.NewRegisteredMeter("trie/memcache/dirty/hit", nil)
	memcacheDirtyMissMeter  = metrics.NewRegisteredMeter("trie/memcache/dirty/miss", nil)
	memcacheDirtyReadMeter  = metrics.NewRegisteredMeter("trie/memcache/dirty/read", nil)
	memcacheDirtyWriteMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/write", nil)

	memcacheFlushTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil)
	memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil)
	memcacheFlushSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil)

	memcacheGCTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil)
	memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil)
	memcacheGCSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil)

	memcacheCommitTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil)
	memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil)
	memcacheCommitSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil)
)

// Database is an intermediate write layer between the trie data structures and
// the disk database. The aim is to accumulate trie writes in-memory and only
// periodically flush a couple tries to disk, garbage collecting the remainder.
//
// Note, the trie Database is **not** thread safe in its mutations, but it **is**
// thread safe in providing individual, independent node access. The rationale
// behind this split design is to provide read access to RPC handlers and sync
// servers even while the trie is executing expensive garbage collection.
type Database struct {
	diskdb ethdb.KeyValueStore // Persistent storage for matured trie nodes

	cleans  *fastcache.Cache            // GC friendly memory cache of clean node RLPs
	dirties map[common.Hash]*cachedNode // Data and references relationships of dirty trie nodes
	oldest  common.Hash                 // Oldest tracked node, flush-list head
	newest  common.Hash                 // Newest tracked node, flush-list tail

	preimages map[common.Hash][]byte // Preimages of nodes from the secure trie

	gctime  time.Duration      // Time spent on garbage collection since last commit
	gcnodes uint64             // Nodes garbage collected since last commit
	gcsize  common.StorageSize // Data storage garbage collected since last commit

	flushtime  time.Duration      // Time spent on data flushing since last commit
	flushnodes uint64             // Nodes flushed since last commit
	flushsize  common.StorageSize // Data storage flushed since last commit

	dirtiesSize   common.StorageSize // Storage size of the dirty node cache (exc. metadata)
	childrenSize  common.StorageSize // Storage size of the external children tracking
	preimagesSize common.StorageSize // Storage size of the preimages cache

	lock sync.RWMutex
}

// rawNode is a simple binary blob used to differentiate between collapsed trie
// nodes and already encoded RLP binary blobs (while at the same time store them
// in the same cache fields).
type rawNode []byte

func (n rawNode) cache() (hashNode, bool)   { panic("this should never end up in a live trie") }
func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") }

func (n rawNode) EncodeRLP(w io.Writer) error {
	_, err := w.Write([]byte(n))
	return err
}

// rawFullNode represents only the useful data content of a full node, with the
// caches and flags stripped out to minimize its data storage. This type honors
// the same RLP encoding as the original parent.
type rawFullNode [17]node

func (n rawFullNode) cache() (hashNode, bool)   { panic("this should never end up in a live trie") }
func (n rawFullNode) fstring(ind string) string { panic("this should never end up in a live trie") }

func (n rawFullNode) EncodeRLP(w io.Writer) error {
	var nodes [17]node

	for i, child := range n {
		if child != nil {
			nodes[i] = child
		} else {
			nodes[i] = nilValueNode
		}
	}
	return rlp.Encode(w, nodes)
}

// rawShortNode represents only the useful data content of a short node, with the
// caches and flags stripped out to minimize its data storage. This type honors
// the same RLP encoding as the original parent.
type rawShortNode struct {
	Key []byte
	Val node
}

func (n rawShortNode) cache() (hashNode, bool)   { panic("this should never end up in a live trie") }
func (n rawShortNode) fstring(ind string) string { panic("this should never end up in a live trie") }

// cachedNode is all the information we know about a single cached trie node
// in the memory database write layer.
type cachedNode struct {
	node node   // Cached collapsed trie node, or raw rlp data
	size uint16 // Byte size of the useful cached data

	parents  uint32                 // Number of live nodes referencing this one
	children map[common.Hash]uint16 // External children referenced by this node

	flushPrev common.Hash // Previous node in the flush-list
	flushNext common.Hash // Next node in the flush-list
}

// cachedNodeSize is the raw size of a cachedNode data structure without any
// node data included. It's an approximate size, but should be a lot better
// than not counting them.
var cachedNodeSize = int(reflect.TypeOf(cachedNode{}).Size())

// cachedNodeChildrenSize is the raw size of an initialized but empty external
// reference map.
const cachedNodeChildrenSize = 48

// rlp returns the raw rlp encoded blob of the cached trie node, either directly
// from the cache, or by regenerating it from the collapsed node.
func (n *cachedNode) rlp() []byte {
	if node, ok := n.node.(rawNode); ok {
		return node
	}
	blob, err := rlp.EncodeToBytes(n.node)
	if err != nil {
		panic(err)
	}
	return blob
}

// obj returns the decoded and expanded trie node, either directly from the cache,
// or by regenerating it from the rlp encoded blob.
func (n *cachedNode) obj(hash common.Hash) node {
	if node, ok := n.node.(rawNode); ok {
		return mustDecodeNode(hash[:], node)
	}
	return expandNode(hash[:], n.node)
}

// forChilds invokes the callback for all the tracked children of this node,
// both the implicit ones from inside the node as well as the explicit ones
// from outside the node.
func (n *cachedNode) forChilds(onChild func(hash common.Hash)) {
	for child := range n.children {
		onChild(child)
	}
	if _, ok := n.node.(rawNode); !ok {
		forGatherChildren(n.node, onChild)
	}
}

// forGatherChildren traverses the node hierarchy of a collapsed storage node and
// invokes the callback for all the hashnode children.
func forGatherChildren(n node, onChild func(hash common.Hash)) {
	switch n := n.(type) {
	case *rawShortNode:
		forGatherChildren(n.Val, onChild)
	case rawFullNode:
		for i := 0; i < 16; i++ {
			forGatherChildren(n[i], onChild)
		}
	case hashNode:
		onChild(common.BytesToHash(n))
	case valueNode, nil, rawNode:
	default:
		panic(fmt.Sprintf("unknown node type: %T", n))
	}
}

// simplifyNode traverses the hierarchy of an expanded memory node and discards
// all the internal caches, returning a node that only contains the raw data.
func simplifyNode(n node) node {
	switch n := n.(type) {
	case *shortNode:
		// Short nodes discard the flags and cascade
		return &rawShortNode{Key: n.Key, Val: simplifyNode(n.Val)}

	case *fullNode:
		// Full nodes discard the flags and cascade
		node := rawFullNode(n.Children)
		for i := 0; i < len(node); i++ {
			if node[i] != nil {
				node[i] = simplifyNode(node[i])
			}
		}
		return node

	case valueNode, hashNode, rawNode:
		return n

	default:
		panic(fmt.Sprintf("unknown node type: %T", n))
	}
}

// expandNode traverses the node hierarchy of a collapsed storage node and converts
// all fields and keys into expanded memory form.
func expandNode(hash hashNode, n node) node {
	switch n := n.(type) {
	case *rawShortNode:
		// Short nodes need key and child expansion
		return &shortNode{
			Key: compactToHex(n.Key),
			Val: expandNode(nil, n.Val),
			flags: nodeFlag{
				hash: hash,
			},
		}

	case rawFullNode:
		// Full nodes need child expansion
		node := &fullNode{
			flags: nodeFlag{
				hash: hash,
			},
		}
		for i := 0; i < len(node.Children); i++ {
			if n[i] != nil {
				node.Children[i] = expandNode(nil, n[i])
			}
		}
		return node

	case valueNode, hashNode:
		return n

	default:
		panic(fmt.Sprintf("unknown node type: %T", n))
	}
}

// NewDatabase creates a new trie database to store ephemeral trie content before
// its written out to disk or garbage collected. No read cache is created, so all
// data retrievals will hit the underlying disk database.
func NewDatabase(diskdb ethdb.KeyValueStore) *Database {
	return NewDatabaseWithCache(diskdb, 0, "")
}

// NewDatabaseWithCache creates a new trie database to store ephemeral trie content
// before its written out to disk or garbage collected. It also acts as a read cache
// for nodes loaded from disk.
func NewDatabaseWithCache(diskdb ethdb.KeyValueStore, cache int, journal string) *Database {
	var cleans *fastcache.Cache
	if cache > 0 {
		if journal == "" {
			cleans = fastcache.New(cache * 1024 * 1024)
		} else {
			cleans = fastcache.LoadFromFileOrNew(journal, cache*1024*1024)
		}
	}
	return &Database{
		diskdb: diskdb,
		cleans: cleans,
		dirties: map[common.Hash]*cachedNode{{}: {
			children: make(map[common.Hash]uint16),
		}},
		preimages: make(map[common.Hash][]byte),
	}
}

// DiskDB retrieves the persistent storage backing the trie database.
func (db *Database) DiskDB() ethdb.KeyValueStore {
	return db.diskdb
}

// insert inserts a collapsed trie node into the memory database.
// The blob size must be specified to allow proper size tracking.
// All nodes inserted by this function will be reference tracked
// and in theory should only used for **trie nodes** insertion.
func (db *Database) insert(hash common.Hash, size int, node node) {
	// If the node's already cached, skip
	if _, ok := db.dirties[hash]; ok {
		return
	}
	memcacheDirtyWriteMeter.Mark(int64(size))

	// Create the cached entry for this node
	entry := &cachedNode{
		node:      simplifyNode(node),
		size:      uint16(size),
		flushPrev: db.newest,
	}
	entry.forChilds(func(child common.Hash) {
		if c := db.dirties[child]; c != nil {
			c.parents++
		}
	})
	db.dirties[hash] = entry

	// Update the flush-list endpoints
	if db.oldest == (common.Hash{}) {
		db.oldest, db.newest = hash, hash
	} else {
		db.dirties[db.newest].flushNext, db.newest = hash, hash
	}
	db.dirtiesSize += common.StorageSize(common.HashLength + entry.size)
}

// insertPreimage writes a new trie node pre-image to the memory database if it's
// yet unknown. The method will NOT make a copy of the slice,
// only use if the preimage will NOT be changed later on.
//
// Note, this method assumes that the database's lock is held!
func (db *Database) insertPreimage(hash common.Hash, preimage []byte) {
	if _, ok := db.preimages[hash]; ok {
		return
	}
	db.preimages[hash] = preimage
	db.preimagesSize += common.StorageSize(common.HashLength + len(preimage))
}

// node retrieves a cached trie node from memory, or returns nil if none can be
// found in the memory cache.
func (db *Database) node(hash common.Hash) node {
	// Retrieve the node from the clean cache if available
	if db.cleans != nil {
		if enc := db.cleans.Get(nil, hash[:]); enc != nil {
			memcacheCleanHitMeter.Mark(1)
			memcacheCleanReadMeter.Mark(int64(len(enc)))
			return mustDecodeNode(hash[:], enc)
		}
	}
	// Retrieve the node from the dirty cache if available
	db.lock.RLock()
	dirty := db.dirties[hash]
	db.lock.RUnlock()

	if dirty != nil {
		memcacheDirtyHitMeter.Mark(1)
		memcacheDirtyReadMeter.Mark(int64(dirty.size))
		return dirty.obj(hash)
	}
	memcacheDirtyMissMeter.Mark(1)

	// Content unavailable in memory, attempt to retrieve from disk
	enc, err := db.diskdb.Get(hash[:])
	if err != nil || enc == nil {
		return nil
	}
	if db.cleans != nil {
		db.cleans.Set(hash[:], enc)
		memcacheCleanMissMeter.Mark(1)
		memcacheCleanWriteMeter.Mark(int64(len(enc)))
	}
	return mustDecodeNode(hash[:], enc)
}

// Node retrieves an encoded cached trie node from memory. If it cannot be found
// cached, the method queries the persistent database for the content.
func (db *Database) Node(hash common.Hash) ([]byte, error) {
	// It doesn't make sense to retrieve the metaroot
	if hash == (common.Hash{}) {
		return nil, errors.New("not found")
	}
	// Retrieve the node from the clean cache if available
	if db.cleans != nil {
		if enc := db.cleans.Get(nil, hash[:]); enc != nil {
			memcacheCleanHitMeter.Mark(1)
			memcacheCleanReadMeter.Mark(int64(len(enc)))
			return enc, nil
		}
	}
	// Retrieve the node from the dirty cache if available
	db.lock.RLock()
	dirty := db.dirties[hash]
	db.lock.RUnlock()

	if dirty != nil {
		memcacheDirtyHitMeter.Mark(1)
		memcacheDirtyReadMeter.Mark(int64(dirty.size))
		return dirty.rlp(), nil
	}
	memcacheDirtyMissMeter.Mark(1)

	// Content unavailable in memory, attempt to retrieve from disk
	enc := rawdb.ReadTrieNode(db.diskdb, hash)
	if len(enc) != 0 {
		if db.cleans != nil {
			db.cleans.Set(hash[:], enc)
			memcacheCleanMissMeter.Mark(1)
			memcacheCleanWriteMeter.Mark(int64(len(enc)))
		}
		return enc, nil
	}
	return nil, errors.New("not found")
}

// preimage retrieves a cached trie node pre-image from memory. If it cannot be
// found cached, the method queries the persistent database for the content.
func (db *Database) preimage(hash common.Hash) []byte {
	// Retrieve the node from cache if available
	db.lock.RLock()
	preimage := db.preimages[hash]
	db.lock.RUnlock()

	if preimage != nil {
		return preimage
	}
	return rawdb.ReadPreimage(db.diskdb, hash)
}

// Nodes retrieves the hashes of all the nodes cached within the memory database.
// This method is extremely expensive and should only be used to validate internal
// states in test code.
func (db *Database) Nodes() []common.Hash {
	db.lock.RLock()
	defer db.lock.RUnlock()

	var hashes = make([]common.Hash, 0, len(db.dirties))
	for hash := range db.dirties {
		if hash != (common.Hash{}) { // Special case for "root" references/nodes
			hashes = append(hashes, hash)
		}
	}
	return hashes
}

// Reference adds a new reference from a parent node to a child node.
// This function is used to add reference between internal trie node
// and external node(e.g. storage trie root), all internal trie nodes
// are referenced together by database itself.
func (db *Database) Reference(child common.Hash, parent common.Hash) {
	db.lock.Lock()
	defer db.lock.Unlock()

	db.reference(child, parent)
}

// reference is the private locked version of Reference.
func (db *Database) reference(child common.Hash, parent common.Hash) {
	// If the node does not exist, it's a node pulled from disk, skip
	node, ok := db.dirties[child]
	if !ok {
		return
	}
	// If the reference already exists, only duplicate for roots
	if db.dirties[parent].children == nil {
		db.dirties[parent].children = make(map[common.Hash]uint16)
		db.childrenSize += cachedNodeChildrenSize
	} else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) {
		return
	}
	node.parents++
	db.dirties[parent].children[child]++
	if db.dirties[parent].children[child] == 1 {
		db.childrenSize += common.HashLength + 2 // uint16 counter
	}
}

// Dereference removes an existing reference from a root node.
func (db *Database) Dereference(root common.Hash) {
	// Sanity check to ensure that the meta-root is not removed
	if root == (common.Hash{}) {
		log.Error("Attempted to dereference the trie cache meta root")
		return
	}
	db.lock.Lock()
	defer db.lock.Unlock()

	nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
	db.dereference(root, common.Hash{})

	db.gcnodes += uint64(nodes - len(db.dirties))
	db.gcsize += storage - db.dirtiesSize
	db.gctime += time.Since(start)

	memcacheGCTimeTimer.Update(time.Since(start))
	memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize))
	memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties)))

	log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
		"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
}

// dereference is the private locked version of Dereference.
func (db *Database) dereference(child common.Hash, parent common.Hash) {
	// Dereference the parent-child
	node := db.dirties[parent]

	if node.children != nil && node.children[child] > 0 {
		node.children[child]--
		if node.children[child] == 0 {
			delete(node.children, child)
			db.childrenSize -= (common.HashLength + 2) // uint16 counter
		}
	}
	// If the child does not exist, it's a previously committed node.
	node, ok := db.dirties[child]
	if !ok {
		return
	}
	// If there are no more references to the child, delete it and cascade
	if node.parents > 0 {
		// This is a special cornercase where a node loaded from disk (i.e. not in the
		// memcache any more) gets reinjected as a new node (short node split into full,
		// then reverted into short), causing a cached node to have no parents. That is
		// no problem in itself, but don't make maxint parents out of it.
		node.parents--
	}
	if node.parents == 0 {
		// Remove the node from the flush-list
		switch child {
		case db.oldest:
			db.oldest = node.flushNext
			db.dirties[node.flushNext].flushPrev = common.Hash{}
		case db.newest:
			db.newest = node.flushPrev
			db.dirties[node.flushPrev].flushNext = common.Hash{}
		default:
			db.dirties[node.flushPrev].flushNext = node.flushNext
			db.dirties[node.flushNext].flushPrev = node.flushPrev
		}
		// Dereference all children and delete the node
		node.forChilds(func(hash common.Hash) {
			db.dereference(hash, child)
		})
		delete(db.dirties, child)
		db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
		if node.children != nil {
			db.childrenSize -= cachedNodeChildrenSize
		}
	}
}

// Cap iteratively flushes old but still referenced trie nodes until the total
// memory usage goes below the given threshold.
//
// Note, this method is a non-synchronized mutator. It is unsafe to call this
// concurrently with other mutators.
func (db *Database) Cap(limit common.StorageSize) error {
	// Create a database batch to flush persistent data out. It is important that
	// outside code doesn't see an inconsistent state (referenced data removed from
	// memory cache during commit but not yet in persistent storage). This is ensured
	// by only uncaching existing data when the database write finalizes.
	nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
	batch := db.diskdb.NewBatch()

	// db.dirtiesSize only contains the useful data in the cache, but when reporting
	// the total memory consumption, the maintenance metadata is also needed to be
	// counted.
	size := db.dirtiesSize + common.StorageSize((len(db.dirties)-1)*cachedNodeSize)
	size += db.childrenSize - common.StorageSize(len(db.dirties[common.Hash{}].children)*(common.HashLength+2))

	// If the preimage cache got large enough, push to disk. If it's still small
	// leave for later to deduplicate writes.
	flushPreimages := db.preimagesSize > 4*1024*1024
	if flushPreimages {
		rawdb.WritePreimages(batch, db.preimages)
		if batch.ValueSize() > ethdb.IdealBatchSize {
			if err := batch.Write(); err != nil {
				return err
			}
			batch.Reset()
		}
	}
	// Keep committing nodes from the flush-list until we're below allowance
	oldest := db.oldest
	for size > limit && oldest != (common.Hash{}) {
		// Fetch the oldest referenced node and push into the batch
		node := db.dirties[oldest]
		rawdb.WriteTrieNode(batch, oldest, node.rlp())

		// If we exceeded the ideal batch size, commit and reset
		if batch.ValueSize() >= ethdb.IdealBatchSize {
			if err := batch.Write(); err != nil {
				log.Error("Failed to write flush list to disk", "err", err)
				return err
			}
			batch.Reset()
		}
		// Iterate to the next flush item, or abort if the size cap was achieved. Size
		// is the total size, including the useful cached data (hash -> blob), the
		// cache item metadata, as well as external children mappings.
		size -= common.StorageSize(common.HashLength + int(node.size) + cachedNodeSize)
		if node.children != nil {
			size -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
		}
		oldest = node.flushNext
	}
	// Flush out any remainder data from the last batch
	if err := batch.Write(); err != nil {
		log.Error("Failed to write flush list to disk", "err", err)
		return err
	}
	// Write successful, clear out the flushed data
	db.lock.Lock()
	defer db.lock.Unlock()

	if flushPreimages {
		db.preimages, db.preimagesSize = make(map[common.Hash][]byte), 0
	}
	for db.oldest != oldest {
		node := db.dirties[db.oldest]
		delete(db.dirties, db.oldest)
		db.oldest = node.flushNext

		db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
		if node.children != nil {
			db.childrenSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
		}
	}
	if db.oldest != (common.Hash{}) {
		db.dirties[db.oldest].flushPrev = common.Hash{}
	}
	db.flushnodes += uint64(nodes - len(db.dirties))
	db.flushsize += storage - db.dirtiesSize
	db.flushtime += time.Since(start)

	memcacheFlushTimeTimer.Update(time.Since(start))
	memcacheFlushSizeMeter.Mark(int64(storage - db.dirtiesSize))
	memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties)))

	log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
		"flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)

	return nil
}

// Commit iterates over all the children of a particular node, writes them out
// to disk, forcefully tearing down all references in both directions. As a side
// effect, all pre-images accumulated up to this point are also written.
//
// Note, this method is a non-synchronized mutator. It is unsafe to call this
// concurrently with other mutators.
func (db *Database) Commit(node common.Hash, report bool, callback func(common.Hash)) error {
	// Create a database batch to flush persistent data out. It is important that
	// outside code doesn't see an inconsistent state (referenced data removed from
	// memory cache during commit but not yet in persistent storage). This is ensured
	// by only uncaching existing data when the database write finalizes.
	start := time.Now()
	batch := db.diskdb.NewBatch()

	// Move all of the accumulated preimages into a write batch
	rawdb.WritePreimages(batch, db.preimages)
	if batch.ValueSize() > ethdb.IdealBatchSize {
		if err := batch.Write(); err != nil {
			return err
		}
		batch.Reset()
	}
	// Since we're going to replay trie node writes into the clean cache, flush out
	// any batched pre-images before continuing.
	if err := batch.Write(); err != nil {
		return err
	}
	batch.Reset()

	// Move the trie itself into the batch, flushing if enough data is accumulated
	nodes, storage := len(db.dirties), db.dirtiesSize

	uncacher := &cleaner{db}
	if err := db.commit(node, batch, uncacher, callback); err != nil {
		log.Error("Failed to commit trie from trie database", "err", err)
		return err
	}
	// Trie mostly committed to disk, flush any batch leftovers
	if err := batch.Write(); err != nil {
		log.Error("Failed to write trie to disk", "err", err)
		return err
	}
	// Uncache any leftovers in the last batch
	db.lock.Lock()
	defer db.lock.Unlock()

	batch.Replay(uncacher)
	batch.Reset()

	// Reset the storage counters and bumpd metrics
	db.preimages, db.preimagesSize = make(map[common.Hash][]byte), 0

	memcacheCommitTimeTimer.Update(time.Since(start))
	memcacheCommitSizeMeter.Mark(int64(storage - db.dirtiesSize))
	memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties)))

	logger := log.Info
	if !report {
		logger = log.Debug
	}
	logger("Persisted trie from memory database", "nodes", nodes-len(db.dirties)+int(db.flushnodes), "size", storage-db.dirtiesSize+db.flushsize, "time", time.Since(start)+db.flushtime,
		"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)

	// Reset the garbage collection statistics
	db.gcnodes, db.gcsize, db.gctime = 0, 0, 0
	db.flushnodes, db.flushsize, db.flushtime = 0, 0, 0

	return nil
}

// commit is the private locked version of Commit.
func (db *Database) commit(hash common.Hash, batch ethdb.Batch, uncacher *cleaner, callback func(common.Hash)) error {
	// If the node does not exist, it's a previously committed node
	node, ok := db.dirties[hash]
	if !ok {
		return nil
	}
	var err error
	node.forChilds(func(child common.Hash) {
		if err == nil {
			err = db.commit(child, batch, uncacher, callback)
		}
	})
	if err != nil {
		return err
	}
	// If we've reached an optimal batch size, commit and start over
	rawdb.WriteTrieNode(batch, hash, node.rlp())
	if callback != nil {
		callback(hash)
	}
	if batch.ValueSize() >= ethdb.IdealBatchSize {
		if err := batch.Write(); err != nil {
			return err
		}
		db.lock.Lock()
		batch.Replay(uncacher)
		batch.Reset()
		db.lock.Unlock()
	}
	return nil
}

// cleaner is a database batch replayer that takes a batch of write operations
// and cleans up the trie database from anything written to disk.
type cleaner struct {
	db *Database
}

// Put reacts to database writes and implements dirty data uncaching. This is the
// post-processing step of a commit operation where the already persisted trie is
// removed from the dirty cache and moved into the clean cache. The reason behind
// the two-phase commit is to ensure ensure data availability while moving from
// memory to disk.
func (c *cleaner) Put(key []byte, rlp []byte) error {
	hash := common.BytesToHash(key)

	// If the node does not exist, we're done on this path
	node, ok := c.db.dirties[hash]
	if !ok {
		return nil
	}
	// Node still exists, remove it from the flush-list
	switch hash {
	case c.db.oldest:
		c.db.oldest = node.flushNext
		c.db.dirties[node.flushNext].flushPrev = common.Hash{}
	case c.db.newest:
		c.db.newest = node.flushPrev
		c.db.dirties[node.flushPrev].flushNext = common.Hash{}
	default:
		c.db.dirties[node.flushPrev].flushNext = node.flushNext
		c.db.dirties[node.flushNext].flushPrev = node.flushPrev
	}
	// Remove the node from the dirty cache
	delete(c.db.dirties, hash)
	c.db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
	if node.children != nil {
		c.db.dirtiesSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
	}
	// Move the flushed node into the clean cache to prevent insta-reloads
	if c.db.cleans != nil {
		c.db.cleans.Set(hash[:], rlp)
		memcacheCleanWriteMeter.Mark(int64(len(rlp)))
	}
	return nil
}

func (c *cleaner) Delete(key []byte) error {
	panic("not implemented")
}

// Size returns the current storage size of the memory cache in front of the
// persistent database layer.
func (db *Database) Size() (common.StorageSize, common.StorageSize) {
	db.lock.RLock()
	defer db.lock.RUnlock()

	// db.dirtiesSize only contains the useful data in the cache, but when reporting
	// the total memory consumption, the maintenance metadata is also needed to be
	// counted.
	var metadataSize = common.StorageSize((len(db.dirties) - 1) * cachedNodeSize)
	var metarootRefs = common.StorageSize(len(db.dirties[common.Hash{}].children) * (common.HashLength + 2))
	return db.dirtiesSize + db.childrenSize + metadataSize - metarootRefs, db.preimagesSize
}

// saveCache saves clean state cache to given directory path
// using specified CPU cores.
func (db *Database) saveCache(dir string, threads int) error {
	if db.cleans == nil {
		return nil
	}
	log.Info("Writing clean trie cache to disk", "path", dir, "threads", threads)

	start := time.Now()
	err := db.cleans.SaveToFileConcurrent(dir, threads)
	if err != nil {
		log.Error("Failed to persist clean trie cache", "error", err)
		return err
	}
	log.Info("Persisted the clean trie cache", "path", dir, "elapsed", common.PrettyDuration(time.Since(start)))
	return nil
}

// SaveCache atomically saves fast cache data to the given dir using all
// available CPU cores.
func (db *Database) SaveCache(dir string) error {
	return db.saveCache(dir, runtime.GOMAXPROCS(0))
}

// SaveCachePeriodically atomically saves fast cache data to the given dir with
// the specified interval. All dump operation will only use a single CPU core.
func (db *Database) SaveCachePeriodically(dir string, interval time.Duration, stopCh <-chan struct{}) {
	ticker := time.NewTicker(interval)
	defer ticker.Stop()

	for {
		select {
		case <-ticker.C:
			db.saveCache(dir, 1)
		case <-stopCh:
			return
		}
	}
}