• gary rong's avatar
    accounts/abi: add internalType information and fix issues (#20179) · 44b74cfc
    gary rong authored
    * accounts/abi: fix various issues
    
    The fixed issues include:
    
    (1) If there is no return in a call function, unpack should
    return nil error
    
    (2) For some functions which have struct array as parameter,
    it will also be detected and generate the struct definition
    
    (3) For event, if it has non-indexed parameter, the parameter
    name will also be assigned if empty. Also the internal struct
    will be detected and generate struct defition if not exist.
    
    (4) Fix annotation generation in event function
    
    * accounts/abi: add new abi field internalType
    
    * accounts: address comments and add tests
    
    * accounts/abi: replace strings.ReplaceAll with strings.Replace
    44b74cfc
type.go 10.3 KB
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package abi

import (
	"errors"
	"fmt"
	"reflect"
	"regexp"
	"strconv"
	"strings"
)

// Type enumerator
const (
	IntTy byte = iota
	UintTy
	BoolTy
	StringTy
	SliceTy
	ArrayTy
	TupleTy
	AddressTy
	FixedBytesTy
	BytesTy
	HashTy
	FixedPointTy
	FunctionTy
)

// Type is the reflection of the supported argument type
type Type struct {
	Elem *Type
	Kind reflect.Kind
	Type reflect.Type
	Size int
	T    byte // Our own type checking

	stringKind string // holds the unparsed string for deriving signatures

	// Tuple relative fields
	TupleRawName  string   // Raw struct name defined in source code, may be empty.
	TupleElems    []*Type  // Type information of all tuple fields
	TupleRawNames []string // Raw field name of all tuple fields
}

var (
	// typeRegex parses the abi sub types
	typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?")
)

// NewType creates a new reflection type of abi type given in t.
func NewType(t string, internalType string, components []ArgumentMarshaling) (typ Type, err error) {
	// check that array brackets are equal if they exist
	if strings.Count(t, "[") != strings.Count(t, "]") {
		return Type{}, fmt.Errorf("invalid arg type in abi")
	}
	typ.stringKind = t

	// if there are brackets, get ready to go into slice/array mode and
	// recursively create the type
	if strings.Count(t, "[") != 0 {
		// Note internalType can be empty here.
		subInternal := internalType
		if i := strings.LastIndex(internalType, "["); i != -1 {
			subInternal = subInternal[:i]
		}
		// recursively embed the type
		i := strings.LastIndex(t, "[")
		embeddedType, err := NewType(t[:i], subInternal, components)
		if err != nil {
			return Type{}, err
		}
		// grab the last cell and create a type from there
		sliced := t[i:]
		// grab the slice size with regexp
		re := regexp.MustCompile("[0-9]+")
		intz := re.FindAllString(sliced, -1)

		if len(intz) == 0 {
			// is a slice
			typ.T = SliceTy
			typ.Kind = reflect.Slice
			typ.Elem = &embeddedType
			typ.Type = reflect.SliceOf(embeddedType.Type)
			typ.stringKind = embeddedType.stringKind + sliced
		} else if len(intz) == 1 {
			// is a array
			typ.T = ArrayTy
			typ.Kind = reflect.Array
			typ.Elem = &embeddedType
			typ.Size, err = strconv.Atoi(intz[0])
			if err != nil {
				return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
			}
			typ.Type = reflect.ArrayOf(typ.Size, embeddedType.Type)
			typ.stringKind = embeddedType.stringKind + sliced
		} else {
			return Type{}, fmt.Errorf("invalid formatting of array type")
		}
		return typ, err
	}
	// parse the type and size of the abi-type.
	matches := typeRegex.FindAllStringSubmatch(t, -1)
	if len(matches) == 0 {
		return Type{}, fmt.Errorf("invalid type '%v'", t)
	}
	parsedType := matches[0]

	// varSize is the size of the variable
	var varSize int
	if len(parsedType[3]) > 0 {
		var err error
		varSize, err = strconv.Atoi(parsedType[2])
		if err != nil {
			return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
		}
	} else {
		if parsedType[0] == "uint" || parsedType[0] == "int" {
			// this should fail because it means that there's something wrong with
			// the abi type (the compiler should always format it to the size...always)
			return Type{}, fmt.Errorf("unsupported arg type: %s", t)
		}
	}
	// varType is the parsed abi type
	switch varType := parsedType[1]; varType {
	case "int":
		typ.Kind, typ.Type = reflectIntKindAndType(false, varSize)
		typ.Size = varSize
		typ.T = IntTy
	case "uint":
		typ.Kind, typ.Type = reflectIntKindAndType(true, varSize)
		typ.Size = varSize
		typ.T = UintTy
	case "bool":
		typ.Kind = reflect.Bool
		typ.T = BoolTy
		typ.Type = reflect.TypeOf(bool(false))
	case "address":
		typ.Kind = reflect.Array
		typ.Type = addressT
		typ.Size = 20
		typ.T = AddressTy
	case "string":
		typ.Kind = reflect.String
		typ.Type = reflect.TypeOf("")
		typ.T = StringTy
	case "bytes":
		if varSize == 0 {
			typ.T = BytesTy
			typ.Kind = reflect.Slice
			typ.Type = reflect.SliceOf(reflect.TypeOf(byte(0)))
		} else {
			typ.T = FixedBytesTy
			typ.Kind = reflect.Array
			typ.Size = varSize
			typ.Type = reflect.ArrayOf(varSize, reflect.TypeOf(byte(0)))
		}
	case "tuple":
		var (
			fields     []reflect.StructField
			elems      []*Type
			names      []string
			expression string // canonical parameter expression
		)
		expression += "("
		for idx, c := range components {
			cType, err := NewType(c.Type, c.InternalType, c.Components)
			if err != nil {
				return Type{}, err
			}
			if ToCamelCase(c.Name) == "" {
				return Type{}, errors.New("abi: purely anonymous or underscored field is not supported")
			}
			fields = append(fields, reflect.StructField{
				Name: ToCamelCase(c.Name), // reflect.StructOf will panic for any exported field.
				Type: cType.Type,
				Tag:  reflect.StructTag("json:\"" + c.Name + "\""),
			})
			elems = append(elems, &cType)
			names = append(names, c.Name)
			expression += cType.stringKind
			if idx != len(components)-1 {
				expression += ","
			}
		}
		expression += ")"
		typ.Kind = reflect.Struct
		typ.Type = reflect.StructOf(fields)
		typ.TupleElems = elems
		typ.TupleRawNames = names
		typ.T = TupleTy
		typ.stringKind = expression

		const structPrefix = "struct "
		// After solidity 0.5.10, a new field of abi "internalType"
		// is introduced. From that we can obtain the struct name
		// user defined in the source code.
		if internalType != "" && strings.HasPrefix(internalType, structPrefix) {
			// Foo.Bar type definition is not allowed in golang,
			// convert the format to FooBar
			typ.TupleRawName = strings.Replace(internalType[len(structPrefix):], ".", "", -1)
		}

	case "function":
		typ.Kind = reflect.Array
		typ.T = FunctionTy
		typ.Size = 24
		typ.Type = reflect.ArrayOf(24, reflect.TypeOf(byte(0)))
	default:
		return Type{}, fmt.Errorf("unsupported arg type: %s", t)
	}

	return
}

// String implements Stringer
func (t Type) String() (out string) {
	return t.stringKind
}

func (t Type) pack(v reflect.Value) ([]byte, error) {
	// dereference pointer first if it's a pointer
	v = indirect(v)
	if err := typeCheck(t, v); err != nil {
		return nil, err
	}

	switch t.T {
	case SliceTy, ArrayTy:
		var ret []byte

		if t.requiresLengthPrefix() {
			// append length
			ret = append(ret, packNum(reflect.ValueOf(v.Len()))...)
		}

		// calculate offset if any
		offset := 0
		offsetReq := isDynamicType(*t.Elem)
		if offsetReq {
			offset = getTypeSize(*t.Elem) * v.Len()
		}
		var tail []byte
		for i := 0; i < v.Len(); i++ {
			val, err := t.Elem.pack(v.Index(i))
			if err != nil {
				return nil, err
			}
			if !offsetReq {
				ret = append(ret, val...)
				continue
			}
			ret = append(ret, packNum(reflect.ValueOf(offset))...)
			offset += len(val)
			tail = append(tail, val...)
		}
		return append(ret, tail...), nil
	case TupleTy:
		// (T1,...,Tk) for k >= 0 and any types T1, …, Tk
		// enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k))
		// where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static
		// type as
		//     head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string)
		// and as
		//     head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1))))
		//     tail(X(i)) = enc(X(i))
		// otherwise, i.e. if Ti is a dynamic type.
		fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v)
		if err != nil {
			return nil, err
		}
		// Calculate prefix occupied size.
		offset := 0
		for _, elem := range t.TupleElems {
			offset += getTypeSize(*elem)
		}
		var ret, tail []byte
		for i, elem := range t.TupleElems {
			field := v.FieldByName(fieldmap[t.TupleRawNames[i]])
			if !field.IsValid() {
				return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i])
			}
			val, err := elem.pack(field)
			if err != nil {
				return nil, err
			}
			if isDynamicType(*elem) {
				ret = append(ret, packNum(reflect.ValueOf(offset))...)
				tail = append(tail, val...)
				offset += len(val)
			} else {
				ret = append(ret, val...)
			}
		}
		return append(ret, tail...), nil

	default:
		return packElement(t, v), nil
	}
}

// requireLengthPrefix returns whether the type requires any sort of length
// prefixing.
func (t Type) requiresLengthPrefix() bool {
	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy
}

// isDynamicType returns true if the type is dynamic.
// The following types are called “dynamic”:
// * bytes
// * string
// * T[] for any T
// * T[k] for any dynamic T and any k >= 0
// * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k
func isDynamicType(t Type) bool {
	if t.T == TupleTy {
		for _, elem := range t.TupleElems {
			if isDynamicType(*elem) {
				return true
			}
		}
		return false
	}
	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem))
}

// getTypeSize returns the size that this type needs to occupy.
// We distinguish static and dynamic types. Static types are encoded in-place
// and dynamic types are encoded at a separately allocated location after the
// current block.
// So for a static variable, the size returned represents the size that the
// variable actually occupies.
// For a dynamic variable, the returned size is fixed 32 bytes, which is used
// to store the location reference for actual value storage.
func getTypeSize(t Type) int {
	if t.T == ArrayTy && !isDynamicType(*t.Elem) {
		// Recursively calculate type size if it is a nested array
		if t.Elem.T == ArrayTy {
			return t.Size * getTypeSize(*t.Elem)
		}
		return t.Size * 32
	} else if t.T == TupleTy && !isDynamicType(t) {
		total := 0
		for _, elem := range t.TupleElems {
			total += getTypeSize(*elem)
		}
		return total
	}
	return 32
}