table.go 19.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Package discover implements the Node Discovery Protocol.
//
// The Node Discovery protocol provides a way to find RLPx nodes that
// can be connected to. It uses a Kademlia-like protocol to maintain a
// distributed database of the IDs and endpoints of all listening
// nodes.
package discover

import (
	crand "crypto/rand"
	"encoding/binary"
	"fmt"
	mrand "math/rand"
	"net"
	"sort"
	"sync"
	"time"

	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/log"
	"github.com/ethereum/go-ethereum/p2p/enode"
	"github.com/ethereum/go-ethereum/p2p/netutil"
)

const (
	alpha           = 3  // Kademlia concurrency factor
	bucketSize      = 16 // Kademlia bucket size
	maxReplacements = 10 // Size of per-bucket replacement list

	// We keep buckets for the upper 1/15 of distances because
	// it's very unlikely we'll ever encounter a node that's closer.
	hashBits          = len(common.Hash{}) * 8
	nBuckets          = hashBits / 15       // Number of buckets
	bucketMinDistance = hashBits - nBuckets // Log distance of closest bucket

	// IP address limits.
	bucketIPLimit, bucketSubnet = 2, 24 // at most 2 addresses from the same /24
	tableIPLimit, tableSubnet   = 10, 24

	refreshInterval    = 30 * time.Minute
	revalidateInterval = 10 * time.Second
	copyNodesInterval  = 30 * time.Second
	seedMinTableTime   = 5 * time.Minute
	seedCount          = 30
	seedMaxAge         = 5 * 24 * time.Hour
)

// Table is the 'node table', a Kademlia-like index of neighbor nodes. The table keeps
// itself up-to-date by verifying the liveness of neighbors and requesting their node
// records when announcements of a new record version are received.
type Table struct {
	mutex   sync.Mutex        // protects buckets, bucket content, nursery, rand
	buckets [nBuckets]*bucket // index of known nodes by distance
	nursery []*node           // bootstrap nodes
	rand    *mrand.Rand       // source of randomness, periodically reseeded
	ips     netutil.DistinctNetSet

	log        log.Logger
	db         *enode.DB // database of known nodes
	net        transport
	refreshReq chan chan struct{}
	initDone   chan struct{}
	closeReq   chan struct{}
	closed     chan struct{}

	nodeAddedHook func(*node) // for testing
}

// transport is implemented by the UDP transports.
type transport interface {
	Self() *enode.Node
	RequestENR(*enode.Node) (*enode.Node, error)
	lookupRandom() []*enode.Node
	lookupSelf() []*enode.Node
	ping(*enode.Node) (seq uint64, err error)
}

// bucket contains nodes, ordered by their last activity. the entry
// that was most recently active is the first element in entries.
type bucket struct {
	entries      []*node // live entries, sorted by time of last contact
	replacements []*node // recently seen nodes to be used if revalidation fails
	ips          netutil.DistinctNetSet
}

func newTable(t transport, db *enode.DB, bootnodes []*enode.Node, log log.Logger) (*Table, error) {
	tab := &Table{
		net:        t,
		db:         db,
		refreshReq: make(chan chan struct{}),
		initDone:   make(chan struct{}),
		closeReq:   make(chan struct{}),
		closed:     make(chan struct{}),
		rand:       mrand.New(mrand.NewSource(0)),
		ips:        netutil.DistinctNetSet{Subnet: tableSubnet, Limit: tableIPLimit},
		log:        log,
	}
	if err := tab.setFallbackNodes(bootnodes); err != nil {
		return nil, err
	}
	for i := range tab.buckets {
		tab.buckets[i] = &bucket{
			ips: netutil.DistinctNetSet{Subnet: bucketSubnet, Limit: bucketIPLimit},
		}
	}
	tab.seedRand()
	tab.loadSeedNodes()

	return tab, nil
}

func (tab *Table) self() *enode.Node {
	return tab.net.Self()
}

func (tab *Table) seedRand() {
	var b [8]byte
	crand.Read(b[:])

	tab.mutex.Lock()
	tab.rand.Seed(int64(binary.BigEndian.Uint64(b[:])))
	tab.mutex.Unlock()
}

// ReadRandomNodes fills the given slice with random nodes from the table. The results
// are guaranteed to be unique for a single invocation, no node will appear twice.
func (tab *Table) ReadRandomNodes(buf []*enode.Node) (n int) {
	if !tab.isInitDone() {
		return 0
	}
	tab.mutex.Lock()
	defer tab.mutex.Unlock()

	var nodes []*enode.Node
	for _, b := range &tab.buckets {
		for _, n := range b.entries {
			nodes = append(nodes, unwrapNode(n))
		}
	}
	// Shuffle.
	for i := 0; i < len(nodes); i++ {
		j := tab.rand.Intn(len(nodes))
		nodes[i], nodes[j] = nodes[j], nodes[i]
	}
	return copy(buf, nodes)
}

// getNode returns the node with the given ID or nil if it isn't in the table.
func (tab *Table) getNode(id enode.ID) *enode.Node {
	tab.mutex.Lock()
	defer tab.mutex.Unlock()

	b := tab.bucket(id)
	for _, e := range b.entries {
		if e.ID() == id {
			return unwrapNode(e)
		}
	}
	return nil
}

// close terminates the network listener and flushes the node database.
func (tab *Table) close() {
	close(tab.closeReq)
	<-tab.closed
}

// setFallbackNodes sets the initial points of contact. These nodes
// are used to connect to the network if the table is empty and there
// are no known nodes in the database.
func (tab *Table) setFallbackNodes(nodes []*enode.Node) error {
	for _, n := range nodes {
		if err := n.ValidateComplete(); err != nil {
			return fmt.Errorf("bad bootstrap node %q: %v", n, err)
		}
	}
	tab.nursery = wrapNodes(nodes)
	return nil
}

// isInitDone returns whether the table's initial seeding procedure has completed.
func (tab *Table) isInitDone() bool {
	select {
	case <-tab.initDone:
		return true
	default:
		return false
	}
}

func (tab *Table) refresh() <-chan struct{} {
	done := make(chan struct{})
	select {
	case tab.refreshReq <- done:
	case <-tab.closeReq:
		close(done)
	}
	return done
}

// loop schedules runs of doRefresh, doRevalidate and copyLiveNodes.
func (tab *Table) loop() {
	var (
		revalidate     = time.NewTimer(tab.nextRevalidateTime())
		refresh        = time.NewTicker(refreshInterval)
		copyNodes      = time.NewTicker(copyNodesInterval)
		refreshDone    = make(chan struct{})           // where doRefresh reports completion
		revalidateDone chan struct{}                   // where doRevalidate reports completion
		waiting        = []chan struct{}{tab.initDone} // holds waiting callers while doRefresh runs
	)
	defer refresh.Stop()
	defer revalidate.Stop()
	defer copyNodes.Stop()

	// Start initial refresh.
	go tab.doRefresh(refreshDone)

loop:
	for {
		select {
		case <-refresh.C:
			tab.seedRand()
			if refreshDone == nil {
				refreshDone = make(chan struct{})
				go tab.doRefresh(refreshDone)
			}
		case req := <-tab.refreshReq:
			waiting = append(waiting, req)
			if refreshDone == nil {
				refreshDone = make(chan struct{})
				go tab.doRefresh(refreshDone)
			}
		case <-refreshDone:
			for _, ch := range waiting {
				close(ch)
			}
			waiting, refreshDone = nil, nil
		case <-revalidate.C:
			revalidateDone = make(chan struct{})
			go tab.doRevalidate(revalidateDone)
		case <-revalidateDone:
			revalidate.Reset(tab.nextRevalidateTime())
			revalidateDone = nil
		case <-copyNodes.C:
			go tab.copyLiveNodes()
		case <-tab.closeReq:
			break loop
		}
	}

	if refreshDone != nil {
		<-refreshDone
	}
	for _, ch := range waiting {
		close(ch)
	}
	if revalidateDone != nil {
		<-revalidateDone
	}
	close(tab.closed)
}

// doRefresh performs a lookup for a random target to keep buckets full. seed nodes are
// inserted if the table is empty (initial bootstrap or discarded faulty peers).
func (tab *Table) doRefresh(done chan struct{}) {
	defer close(done)

	// Load nodes from the database and insert
	// them. This should yield a few previously seen nodes that are
	// (hopefully) still alive.
	tab.loadSeedNodes()

	// Run self lookup to discover new neighbor nodes.
	tab.net.lookupSelf()

	// The Kademlia paper specifies that the bucket refresh should
	// perform a lookup in the least recently used bucket. We cannot
	// adhere to this because the findnode target is a 512bit value
	// (not hash-sized) and it is not easily possible to generate a
	// sha3 preimage that falls into a chosen bucket.
	// We perform a few lookups with a random target instead.
	for i := 0; i < 3; i++ {
		tab.net.lookupRandom()
	}
}

func (tab *Table) loadSeedNodes() {
	seeds := wrapNodes(tab.db.QuerySeeds(seedCount, seedMaxAge))
	seeds = append(seeds, tab.nursery...)
	for i := range seeds {
		seed := seeds[i]
		age := log.Lazy{Fn: func() interface{} { return time.Since(tab.db.LastPongReceived(seed.ID(), seed.IP())) }}
		tab.log.Trace("Found seed node in database", "id", seed.ID(), "addr", seed.addr(), "age", age)
		tab.addSeenNode(seed)
	}
}

// doRevalidate checks that the last node in a random bucket is still live and replaces or
// deletes the node if it isn't.
func (tab *Table) doRevalidate(done chan<- struct{}) {
	defer func() { done <- struct{}{} }()

	last, bi := tab.nodeToRevalidate()
	if last == nil {
		// No non-empty bucket found.
		return
	}

	// Ping the selected node and wait for a pong.
	remoteSeq, err := tab.net.ping(unwrapNode(last))

	// Also fetch record if the node replied and returned a higher sequence number.
	if last.Seq() < remoteSeq {
		n, err := tab.net.RequestENR(unwrapNode(last))
		if err != nil {
			tab.log.Debug("ENR request failed", "id", last.ID(), "addr", last.addr(), "err", err)
		} else {
			last = &node{Node: *n, addedAt: last.addedAt, livenessChecks: last.livenessChecks}
		}
	}

	tab.mutex.Lock()
	defer tab.mutex.Unlock()
	b := tab.buckets[bi]
	if err == nil {
		// The node responded, move it to the front.
		last.livenessChecks++
		tab.log.Debug("Revalidated node", "b", bi, "id", last.ID(), "checks", last.livenessChecks)
		tab.bumpInBucket(b, last)
		return
	}
	// No reply received, pick a replacement or delete the node if there aren't
	// any replacements.
	if r := tab.replace(b, last); r != nil {
		tab.log.Debug("Replaced dead node", "b", bi, "id", last.ID(), "ip", last.IP(), "checks", last.livenessChecks, "r", r.ID(), "rip", r.IP())
	} else {
		tab.log.Debug("Removed dead node", "b", bi, "id", last.ID(), "ip", last.IP(), "checks", last.livenessChecks)
	}
}

// nodeToRevalidate returns the last node in a random, non-empty bucket.
func (tab *Table) nodeToRevalidate() (n *node, bi int) {
	tab.mutex.Lock()
	defer tab.mutex.Unlock()

	for _, bi = range tab.rand.Perm(len(tab.buckets)) {
		b := tab.buckets[bi]
		if len(b.entries) > 0 {
			last := b.entries[len(b.entries)-1]
			return last, bi
		}
	}
	return nil, 0
}

func (tab *Table) nextRevalidateTime() time.Duration {
	tab.mutex.Lock()
	defer tab.mutex.Unlock()

	return time.Duration(tab.rand.Int63n(int64(revalidateInterval)))
}

// copyLiveNodes adds nodes from the table to the database if they have been in the table
// longer than seedMinTableTime.
func (tab *Table) copyLiveNodes() {
	tab.mutex.Lock()
	defer tab.mutex.Unlock()

	now := time.Now()
	for _, b := range &tab.buckets {
		for _, n := range b.entries {
			if n.livenessChecks > 0 && now.Sub(n.addedAt) >= seedMinTableTime {
				tab.db.UpdateNode(unwrapNode(n))
			}
		}
	}
}

// findnodeByID returns the n nodes in the table that are closest to the given id.
// This is used by the FINDNODE/v4 handler.
//
// The preferLive parameter says whether the caller wants liveness-checked results. If
// preferLive is true and the table contains any verified nodes, the result will not
// contain unverified nodes. However, if there are no verified nodes at all, the result
// will contain unverified nodes.
func (tab *Table) findnodeByID(target enode.ID, nresults int, preferLive bool) *nodesByDistance {
	tab.mutex.Lock()
	defer tab.mutex.Unlock()

	// Scan all buckets. There might be a better way to do this, but there aren't that many
	// buckets, so this solution should be fine. The worst-case complexity of this loop
	// is O(tab.len() * nresults).
	nodes := &nodesByDistance{target: target}
	liveNodes := &nodesByDistance{target: target}
	for _, b := range &tab.buckets {
		for _, n := range b.entries {
			nodes.push(n, nresults)
			if preferLive && n.livenessChecks > 0 {
				liveNodes.push(n, nresults)
			}
		}
	}

	if preferLive && len(liveNodes.entries) > 0 {
		return liveNodes
	}
	return nodes
}

// len returns the number of nodes in the table.
func (tab *Table) len() (n int) {
	tab.mutex.Lock()
	defer tab.mutex.Unlock()

	for _, b := range &tab.buckets {
		n += len(b.entries)
	}
	return n
}

// bucketLen returns the number of nodes in the bucket for the given ID.
func (tab *Table) bucketLen(id enode.ID) int {
	tab.mutex.Lock()
	defer tab.mutex.Unlock()

	return len(tab.bucket(id).entries)
}

// bucket returns the bucket for the given node ID hash.
func (tab *Table) bucket(id enode.ID) *bucket {
	d := enode.LogDist(tab.self().ID(), id)
	return tab.bucketAtDistance(d)
}

func (tab *Table) bucketAtDistance(d int) *bucket {
	if d <= bucketMinDistance {
		return tab.buckets[0]
	}
	return tab.buckets[d-bucketMinDistance-1]
}

// addSeenNode adds a node which may or may not be live to the end of a bucket. If the
// bucket has space available, adding the node succeeds immediately. Otherwise, the node is
// added to the replacements list.
//
// The caller must not hold tab.mutex.
func (tab *Table) addSeenNode(n *node) {
	if n.ID() == tab.self().ID() {
		return
	}

	tab.mutex.Lock()
	defer tab.mutex.Unlock()
	b := tab.bucket(n.ID())
	if contains(b.entries, n.ID()) {
		// Already in bucket, don't add.
		return
	}
	if len(b.entries) >= bucketSize {
		// Bucket full, maybe add as replacement.
		tab.addReplacement(b, n)
		return
	}
	if !tab.addIP(b, n.IP()) {
		// Can't add: IP limit reached.
		return
	}
	// Add to end of bucket:
	b.entries = append(b.entries, n)
	b.replacements = deleteNode(b.replacements, n)
	n.addedAt = time.Now()
	if tab.nodeAddedHook != nil {
		tab.nodeAddedHook(n)
	}
}

// addVerifiedNode adds a node whose existence has been verified recently to the front of a
// bucket. If the node is already in the bucket, it is moved to the front. If the bucket
// has no space, the node is added to the replacements list.
//
// There is an additional safety measure: if the table is still initializing the node
// is not added. This prevents an attack where the table could be filled by just sending
// ping repeatedly.
//
// The caller must not hold tab.mutex.
func (tab *Table) addVerifiedNode(n *node) {
	if !tab.isInitDone() {
		return
	}
	if n.ID() == tab.self().ID() {
		return
	}

	tab.mutex.Lock()
	defer tab.mutex.Unlock()
	b := tab.bucket(n.ID())
	if tab.bumpInBucket(b, n) {
		// Already in bucket, moved to front.
		return
	}
	if len(b.entries) >= bucketSize {
		// Bucket full, maybe add as replacement.
		tab.addReplacement(b, n)
		return
	}
	if !tab.addIP(b, n.IP()) {
		// Can't add: IP limit reached.
		return
	}
	// Add to front of bucket.
	b.entries, _ = pushNode(b.entries, n, bucketSize)
	b.replacements = deleteNode(b.replacements, n)
	n.addedAt = time.Now()
	if tab.nodeAddedHook != nil {
		tab.nodeAddedHook(n)
	}
}

// delete removes an entry from the node table. It is used to evacuate dead nodes.
func (tab *Table) delete(node *node) {
	tab.mutex.Lock()
	defer tab.mutex.Unlock()

	tab.deleteInBucket(tab.bucket(node.ID()), node)
}

func (tab *Table) addIP(b *bucket, ip net.IP) bool {
	if len(ip) == 0 {
		return false // Nodes without IP cannot be added.
	}
	if netutil.IsLAN(ip) {
		return true
	}
	if !tab.ips.Add(ip) {
		tab.log.Debug("IP exceeds table limit", "ip", ip)
		return false
	}
	if !b.ips.Add(ip) {
		tab.log.Debug("IP exceeds bucket limit", "ip", ip)
		tab.ips.Remove(ip)
		return false
	}
	return true
}

func (tab *Table) removeIP(b *bucket, ip net.IP) {
	if netutil.IsLAN(ip) {
		return
	}
	tab.ips.Remove(ip)
	b.ips.Remove(ip)
}

func (tab *Table) addReplacement(b *bucket, n *node) {
	for _, e := range b.replacements {
		if e.ID() == n.ID() {
			return // already in list
		}
	}
	if !tab.addIP(b, n.IP()) {
		return
	}
	var removed *node
	b.replacements, removed = pushNode(b.replacements, n, maxReplacements)
	if removed != nil {
		tab.removeIP(b, removed.IP())
	}
}

// replace removes n from the replacement list and replaces 'last' with it if it is the
// last entry in the bucket. If 'last' isn't the last entry, it has either been replaced
// with someone else or became active.
func (tab *Table) replace(b *bucket, last *node) *node {
	if len(b.entries) == 0 || b.entries[len(b.entries)-1].ID() != last.ID() {
		// Entry has moved, don't replace it.
		return nil
	}
	// Still the last entry.
	if len(b.replacements) == 0 {
		tab.deleteInBucket(b, last)
		return nil
	}
	r := b.replacements[tab.rand.Intn(len(b.replacements))]
	b.replacements = deleteNode(b.replacements, r)
	b.entries[len(b.entries)-1] = r
	tab.removeIP(b, last.IP())
	return r
}

// bumpInBucket moves the given node to the front of the bucket entry list
// if it is contained in that list.
func (tab *Table) bumpInBucket(b *bucket, n *node) bool {
	for i := range b.entries {
		if b.entries[i].ID() == n.ID() {
			if !n.IP().Equal(b.entries[i].IP()) {
				// Endpoint has changed, ensure that the new IP fits into table limits.
				tab.removeIP(b, b.entries[i].IP())
				if !tab.addIP(b, n.IP()) {
					// It doesn't, put the previous one back.
					tab.addIP(b, b.entries[i].IP())
					return false
				}
			}
			// Move it to the front.
			copy(b.entries[1:], b.entries[:i])
			b.entries[0] = n
			return true
		}
	}
	return false
}

func (tab *Table) deleteInBucket(b *bucket, n *node) {
	b.entries = deleteNode(b.entries, n)
	tab.removeIP(b, n.IP())
}

func contains(ns []*node, id enode.ID) bool {
	for _, n := range ns {
		if n.ID() == id {
			return true
		}
	}
	return false
}

// pushNode adds n to the front of list, keeping at most max items.
func pushNode(list []*node, n *node, max int) ([]*node, *node) {
	if len(list) < max {
		list = append(list, nil)
	}
	removed := list[len(list)-1]
	copy(list[1:], list)
	list[0] = n
	return list, removed
}

// deleteNode removes n from list.
func deleteNode(list []*node, n *node) []*node {
	for i := range list {
		if list[i].ID() == n.ID() {
			return append(list[:i], list[i+1:]...)
		}
	}
	return list
}

// nodesByDistance is a list of nodes, ordered by distance to target.
type nodesByDistance struct {
	entries []*node
	target  enode.ID
}

// push adds the given node to the list, keeping the total size below maxElems.
func (h *nodesByDistance) push(n *node, maxElems int) {
	ix := sort.Search(len(h.entries), func(i int) bool {
		return enode.DistCmp(h.target, h.entries[i].ID(), n.ID()) > 0
	})
	if len(h.entries) < maxElems {
		h.entries = append(h.entries, n)
	}
	if ix == len(h.entries) {
		// farther away than all nodes we already have.
		// if there was room for it, the node is now the last element.
	} else {
		// slide existing entries down to make room
		// this will overwrite the entry we just appended.
		copy(h.entries[ix+1:], h.entries[ix:])
		h.entries[ix] = n
	}
}