1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"math/big"
"math/rand"
"testing"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb/memorydb"
"github.com/ethereum/go-ethereum/rlp"
)
func randomAccount() []byte {
root := randomHash()
a := Account{
Balance: big.NewInt(rand.Int63()),
Nonce: rand.Uint64(),
Root: root[:],
CodeHash: emptyCode[:],
}
data, _ := rlp.EncodeToBytes(a)
return data
}
// TestMergeBasics tests some simple merges
func TestMergeBasics(t *testing.T) {
var (
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
for i := 0; i < 100; i++ {
h := randomHash()
data := randomAccount()
accounts[h] = data
if rand.Intn(20) < 10 {
accStorage := make(map[common.Hash][]byte)
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[h] = accStorage
}
}
// Add some (identical) layers on top
parent := newDiffLayer(emptyLayer(), common.Hash{}, accounts, storage)
child := newDiffLayer(parent, common.Hash{}, accounts, storage)
child = newDiffLayer(child, common.Hash{}, accounts, storage)
child = newDiffLayer(child, common.Hash{}, accounts, storage)
child = newDiffLayer(child, common.Hash{}, accounts, storage)
// And flatten
merged := (child.flatten()).(*diffLayer)
{ // Check account lists
// Should be zero/nil first
if got, exp := len(merged.accountList), 0; got != exp {
t.Errorf("accountList wrong, got %v exp %v", got, exp)
}
// Then set when we call AccountList
if got, exp := len(merged.AccountList()), len(accounts); got != exp {
t.Errorf("AccountList() wrong, got %v exp %v", got, exp)
}
if got, exp := len(merged.accountList), len(accounts); got != exp {
t.Errorf("accountList [2] wrong, got %v exp %v", got, exp)
}
}
{ // Check storage lists
i := 0
for aHash, sMap := range storage {
if got, exp := len(merged.storageList), i; got != exp {
t.Errorf("[1] storageList wrong, got %v exp %v", got, exp)
}
if got, exp := len(merged.StorageList(aHash)), len(sMap); got != exp {
t.Errorf("[2] StorageList() wrong, got %v exp %v", got, exp)
}
if got, exp := len(merged.storageList[aHash]), len(sMap); got != exp {
t.Errorf("storageList wrong, got %v exp %v", got, exp)
}
i++
}
}
}
// TestMergeDelete tests some deletion
func TestMergeDelete(t *testing.T) {
var (
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
h1 := common.HexToHash("0x01")
h2 := common.HexToHash("0x02")
flip := func() map[common.Hash][]byte {
accs := make(map[common.Hash][]byte)
accs[h1] = randomAccount()
accs[h2] = nil
return accs
}
flop := func() map[common.Hash][]byte {
accs := make(map[common.Hash][]byte)
accs[h1] = nil
accs[h2] = randomAccount()
return accs
}
// Add some flip-flopping layers on top
parent := newDiffLayer(emptyLayer(), common.Hash{}, flip(), storage)
child := parent.Update(common.Hash{}, flop(), storage)
child = child.Update(common.Hash{}, flip(), storage)
child = child.Update(common.Hash{}, flop(), storage)
child = child.Update(common.Hash{}, flip(), storage)
child = child.Update(common.Hash{}, flop(), storage)
child = child.Update(common.Hash{}, flip(), storage)
if data, _ := child.Account(h1); data == nil {
t.Errorf("last diff layer: expected %x to be non-nil", h1)
}
if data, _ := child.Account(h2); data != nil {
t.Errorf("last diff layer: expected %x to be nil", h2)
}
// And flatten
merged := (child.flatten()).(*diffLayer)
if data, _ := merged.Account(h1); data == nil {
t.Errorf("merged layer: expected %x to be non-nil", h1)
}
if data, _ := merged.Account(h2); data != nil {
t.Errorf("merged layer: expected %x to be nil", h2)
}
// If we add more granular metering of memory, we can enable this again,
// but it's not implemented for now
//if got, exp := merged.memory, child.memory; got != exp {
// t.Errorf("mem wrong, got %d, exp %d", got, exp)
//}
}
// This tests that if we create a new account, and set a slot, and then merge
// it, the lists will be correct.
func TestInsertAndMerge(t *testing.T) {
// Fill up a parent
var (
acc = common.HexToHash("0x01")
slot = common.HexToHash("0x02")
parent *diffLayer
child *diffLayer
)
{
var accounts = make(map[common.Hash][]byte)
var storage = make(map[common.Hash]map[common.Hash][]byte)
parent = newDiffLayer(emptyLayer(), common.Hash{}, accounts, storage)
}
{
var accounts = make(map[common.Hash][]byte)
var storage = make(map[common.Hash]map[common.Hash][]byte)
accounts[acc] = randomAccount()
accstorage := make(map[common.Hash][]byte)
storage[acc] = accstorage
storage[acc][slot] = []byte{0x01}
child = newDiffLayer(parent, common.Hash{}, accounts, storage)
}
// And flatten
merged := (child.flatten()).(*diffLayer)
{ // Check that slot value is present
got, _ := merged.Storage(acc, slot)
if exp := []byte{0x01}; bytes.Compare(got, exp) != 0 {
t.Errorf("merged slot value wrong, got %x, exp %x", got, exp)
}
}
}
func emptyLayer() *diskLayer {
return &diskLayer{
diskdb: memorydb.New(),
cache: fastcache.New(500 * 1024),
}
}
// BenchmarkSearch checks how long it takes to find a non-existing key
// BenchmarkSearch-6 200000 10481 ns/op (1K per layer)
// BenchmarkSearch-6 200000 10760 ns/op (10K per layer)
// BenchmarkSearch-6 100000 17866 ns/op
//
// BenchmarkSearch-6 500000 3723 ns/op (10k per layer, only top-level RLock()
func BenchmarkSearch(b *testing.B) {
// First, we set up 128 diff layers, with 1K items each
fill := func(parent snapshot) *diffLayer {
accounts := make(map[common.Hash][]byte)
storage := make(map[common.Hash]map[common.Hash][]byte)
for i := 0; i < 10000; i++ {
accounts[randomHash()] = randomAccount()
}
return newDiffLayer(parent, common.Hash{}, accounts, storage)
}
var layer snapshot
layer = emptyLayer()
for i := 0; i < 128; i++ {
layer = fill(layer)
}
key := crypto.Keccak256Hash([]byte{0x13, 0x38})
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.AccountRLP(key)
}
}
// BenchmarkSearchSlot checks how long it takes to find a non-existing key
// - Number of layers: 128
// - Each layers contains the account, with a couple of storage slots
// BenchmarkSearchSlot-6 100000 14554 ns/op
// BenchmarkSearchSlot-6 100000 22254 ns/op (when checking parent root using mutex)
// BenchmarkSearchSlot-6 100000 14551 ns/op (when checking parent number using atomic)
// With bloom filter:
// BenchmarkSearchSlot-6 3467835 351 ns/op
func BenchmarkSearchSlot(b *testing.B) {
// First, we set up 128 diff layers, with 1K items each
accountKey := crypto.Keccak256Hash([]byte{0x13, 0x37})
storageKey := crypto.Keccak256Hash([]byte{0x13, 0x37})
accountRLP := randomAccount()
fill := func(parent snapshot) *diffLayer {
accounts := make(map[common.Hash][]byte)
accounts[accountKey] = accountRLP
storage := make(map[common.Hash]map[common.Hash][]byte)
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 5; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[accountKey] = accStorage
}
return newDiffLayer(parent, common.Hash{}, accounts, storage)
}
var layer snapshot
layer = emptyLayer()
for i := 0; i < 128; i++ {
layer = fill(layer)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.Storage(accountKey, storageKey)
}
}
// With accountList and sorting
//BenchmarkFlatten-6 50 29890856 ns/op
//
// Without sorting and tracking accountlist
// BenchmarkFlatten-6 300 5511511 ns/op
func BenchmarkFlatten(b *testing.B) {
fill := func(parent snapshot) *diffLayer {
accounts := make(map[common.Hash][]byte)
storage := make(map[common.Hash]map[common.Hash][]byte)
for i := 0; i < 100; i++ {
accountKey := randomHash()
accounts[accountKey] = randomAccount()
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 20; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
}
storage[accountKey] = accStorage
}
return newDiffLayer(parent, common.Hash{}, accounts, storage)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
b.StopTimer()
var layer snapshot
layer = emptyLayer()
for i := 1; i < 128; i++ {
layer = fill(layer)
}
b.StartTimer()
for i := 1; i < 128; i++ {
dl, ok := layer.(*diffLayer)
if !ok {
break
}
layer = dl.flatten()
}
b.StopTimer()
}
}
// This test writes ~324M of diff layers to disk, spread over
// - 128 individual layers,
// - each with 200 accounts
// - containing 200 slots
//
// BenchmarkJournal-6 1 1471373923 ns/ops
// BenchmarkJournal-6 1 1208083335 ns/op // bufio writer
func BenchmarkJournal(b *testing.B) {
fill := func(parent snapshot) *diffLayer {
accounts := make(map[common.Hash][]byte)
storage := make(map[common.Hash]map[common.Hash][]byte)
for i := 0; i < 200; i++ {
accountKey := randomHash()
accounts[accountKey] = randomAccount()
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 200; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
}
storage[accountKey] = accStorage
}
return newDiffLayer(parent, common.Hash{}, accounts, storage)
}
layer := snapshot(new(diskLayer))
for i := 1; i < 128; i++ {
layer = fill(layer)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.Journal(new(bytes.Buffer))
}
}