• Felix Lange's avatar
    eth, p2p: remove EncodeMsg from p2p.MsgWriter · eb0e7b1b
    Felix Lange authored
    ...and make it a top-level function instead.
    
    The original idea behind having EncodeMsg in the interface was that
    implementations might be able to encode RLP data to their underlying
    writer directly instead of buffering the encoded data. The encoder
    will buffer anyway, so that doesn't matter anymore.
    
    Given the recent problems with EncodeMsg (copy-pasted implementation
    bug) I'd rather implement once, correctly.
    eb0e7b1b
message.go 6.09 KB
package p2p

import (
	"bytes"
	"encoding/binary"
	"errors"
	"fmt"
	"io"
	"io/ioutil"
	"math/big"
	"sync/atomic"

	"github.com/ethereum/go-ethereum/ethutil"
	"github.com/ethereum/go-ethereum/rlp"
)

// Msg defines the structure of a p2p message.
//
// Note that a Msg can only be sent once since the Payload reader is
// consumed during sending. It is not possible to create a Msg and
// send it any number of times. If you want to reuse an encoded
// structure, encode the payload into a byte array and create a
// separate Msg with a bytes.Reader as Payload for each send.
type Msg struct {
	Code    uint64
	Size    uint32 // size of the paylod
	Payload io.Reader
}

// NewMsg creates an RLP-encoded message with the given code.
func NewMsg(code uint64, params ...interface{}) Msg {
	buf := new(bytes.Buffer)
	for _, p := range params {
		buf.Write(ethutil.Encode(p))
	}
	return Msg{Code: code, Size: uint32(buf.Len()), Payload: buf}
}

func encodePayload(params ...interface{}) []byte {
	buf := new(bytes.Buffer)
	for _, p := range params {
		buf.Write(ethutil.Encode(p))
	}
	return buf.Bytes()
}

// Decode parse the RLP content of a message into
// the given value, which must be a pointer.
//
// For the decoding rules, please see package rlp.
func (msg Msg) Decode(val interface{}) error {
	s := rlp.NewListStream(msg.Payload, uint64(msg.Size))
	if err := s.Decode(val); err != nil {
		return newPeerError(errInvalidMsg, "(code %#x) (size %d) %v", msg.Code, msg.Size, err)
	}
	return nil
}

func (msg Msg) String() string {
	return fmt.Sprintf("msg #%v (%v bytes)", msg.Code, msg.Size)
}

// Discard reads any remaining payload data into a black hole.
func (msg Msg) Discard() error {
	_, err := io.Copy(ioutil.Discard, msg.Payload)
	return err
}

type MsgReader interface {
	ReadMsg() (Msg, error)
}

type MsgWriter interface {
	// WriteMsg sends a message. It will block until the message's
	// Payload has been consumed by the other end.
	//
	// Note that messages can be sent only once.
	WriteMsg(Msg) error
}

// MsgReadWriter provides reading and writing of encoded messages.
type MsgReadWriter interface {
	MsgReader
	MsgWriter
}

// EncodeMsg writes an RLP-encoded message with the given code and
// data elements.
func EncodeMsg(w MsgWriter, code uint64, data ...interface{}) error {
	return w.WriteMsg(NewMsg(code, data...))
}

var magicToken = []byte{34, 64, 8, 145}

func writeMsg(w io.Writer, msg Msg) error {
	// TODO: handle case when Size + len(code) + len(listhdr) overflows uint32
	code := ethutil.Encode(uint32(msg.Code))
	listhdr := makeListHeader(msg.Size + uint32(len(code)))
	payloadLen := uint32(len(listhdr)) + uint32(len(code)) + msg.Size

	start := make([]byte, 8)
	copy(start, magicToken)
	binary.BigEndian.PutUint32(start[4:], payloadLen)

	for _, b := range [][]byte{start, listhdr, code} {
		if _, err := w.Write(b); err != nil {
			return err
		}
	}
	_, err := io.CopyN(w, msg.Payload, int64(msg.Size))
	return err
}

func makeListHeader(length uint32) []byte {
	if length < 56 {
		return []byte{byte(length + 0xc0)}
	}
	enc := big.NewInt(int64(length)).Bytes()
	lenb := byte(len(enc)) + 0xf7
	return append([]byte{lenb}, enc...)
}

// readMsg reads a message header from r.
// It takes an rlp.ByteReader to ensure that the decoding doesn't buffer.
func readMsg(r rlp.ByteReader) (msg Msg, err error) {
	// read magic and payload size
	start := make([]byte, 8)
	if _, err = io.ReadFull(r, start); err != nil {
		return msg, newPeerError(errRead, "%v", err)
	}
	if !bytes.HasPrefix(start, magicToken) {
		return msg, newPeerError(errMagicTokenMismatch, "got %x, want %x", start[:4], magicToken)
	}
	size := binary.BigEndian.Uint32(start[4:])

	// decode start of RLP message to get the message code
	posr := &postrack{r, 0}
	s := rlp.NewStream(posr)
	if _, err := s.List(); err != nil {
		return msg, err
	}
	code, err := s.Uint()
	if err != nil {
		return msg, err
	}
	payloadsize := size - posr.p
	return Msg{code, payloadsize, io.LimitReader(r, int64(payloadsize))}, nil
}

// postrack wraps an rlp.ByteReader with a position counter.
type postrack struct {
	r rlp.ByteReader
	p uint32
}

func (r *postrack) Read(buf []byte) (int, error) {
	n, err := r.r.Read(buf)
	r.p += uint32(n)
	return n, err
}

func (r *postrack) ReadByte() (byte, error) {
	b, err := r.r.ReadByte()
	if err == nil {
		r.p++
	}
	return b, err
}

// MsgPipe creates a message pipe. Reads on one end are matched
// with writes on the other. The pipe is full-duplex, both ends
// implement MsgReadWriter.
func MsgPipe() (*MsgPipeRW, *MsgPipeRW) {
	var (
		c1, c2  = make(chan Msg), make(chan Msg)
		closing = make(chan struct{})
		closed  = new(int32)
		rw1     = &MsgPipeRW{c1, c2, closing, closed}
		rw2     = &MsgPipeRW{c2, c1, closing, closed}
	)
	return rw1, rw2
}

// ErrPipeClosed is returned from pipe operations after the
// pipe has been closed.
var ErrPipeClosed = errors.New("p2p: read or write on closed message pipe")

// MsgPipeRW is an endpoint of a MsgReadWriter pipe.
type MsgPipeRW struct {
	w       chan<- Msg
	r       <-chan Msg
	closing chan struct{}
	closed  *int32
}

// WriteMsg sends a messsage on the pipe.
// It blocks until the receiver has consumed the message payload.
func (p *MsgPipeRW) WriteMsg(msg Msg) error {
	if atomic.LoadInt32(p.closed) == 0 {
		consumed := make(chan struct{}, 1)
		msg.Payload = &eofSignal{msg.Payload, int64(msg.Size), consumed}
		select {
		case p.w <- msg:
			if msg.Size > 0 {
				// wait for payload read or discard
				<-consumed
			}
			return nil
		case <-p.closing:
		}
	}
	return ErrPipeClosed
}

// ReadMsg returns a message sent on the other end of the pipe.
func (p *MsgPipeRW) ReadMsg() (Msg, error) {
	if atomic.LoadInt32(p.closed) == 0 {
		select {
		case msg := <-p.r:
			return msg, nil
		case <-p.closing:
		}
	}
	return Msg{}, ErrPipeClosed
}

// Close unblocks any pending ReadMsg and WriteMsg calls on both ends
// of the pipe. They will return ErrPipeClosed. Note that Close does
// not interrupt any reads from a message payload.
func (p *MsgPipeRW) Close() error {
	if atomic.AddInt32(p.closed, 1) != 1 {
		// someone else is already closing
		atomic.StoreInt32(p.closed, 1) // avoid overflow
		return nil
	}
	close(p.closing)
	return nil
}