• gary rong's avatar
    trie: polishes to trie committer (#21351) · 053ed9cc
    gary rong authored
    * trie: update tests to check commit integrity
    
    * trie: polish committer
    
    * trie: fix typo
    
    * trie: remove hasvalue notion
    
    According to the benchmarks, type assertion between the pointer and
    interface is extremely fast.
    
    BenchmarkIntmethod-12           1000000000               1.91 ns/op
    BenchmarkInterface-12           1000000000               2.13 ns/op
    BenchmarkTypeSwitch-12          1000000000               1.81 ns/op
    BenchmarkTypeAssertion-12       2000000000               1.78 ns/op
    
    So the overhead for asserting whether the shortnode has "valuenode"
    child is super tiny. No necessary to have another field.
    
    * trie: linter nitpicks
    Co-authored-by: 's avatarMartin Holst Swende <martin@swende.se>
    Unverified
    053ed9cc
trie.go 16.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Package trie implements Merkle Patricia Tries.
package trie

import (
	"bytes"
	"fmt"
	"sync"

	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/crypto"
	"github.com/ethereum/go-ethereum/log"
	"github.com/ethereum/go-ethereum/rlp"
)

var (
	// emptyRoot is the known root hash of an empty trie.
	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")

	// emptyState is the known hash of an empty state trie entry.
	emptyState = crypto.Keccak256Hash(nil)
)

// LeafCallback is a callback type invoked when a trie operation reaches a leaf
// node. It's used by state sync and commit to allow handling external references
// between account and storage tries.
type LeafCallback func(path []byte, leaf []byte, parent common.Hash) error

// Trie is a Merkle Patricia Trie.
// The zero value is an empty trie with no database.
// Use New to create a trie that sits on top of a database.
//
// Trie is not safe for concurrent use.
type Trie struct {
	db   *Database
	root node
	// Keep track of the number leafs which have been inserted since the last
	// hashing operation. This number will not directly map to the number of
	// actually unhashed nodes
	unhashed int
}

// newFlag returns the cache flag value for a newly created node.
func (t *Trie) newFlag() nodeFlag {
	return nodeFlag{dirty: true}
}

// New creates a trie with an existing root node from db.
//
// If root is the zero hash or the sha3 hash of an empty string, the
// trie is initially empty and does not require a database. Otherwise,
// New will panic if db is nil and returns a MissingNodeError if root does
// not exist in the database. Accessing the trie loads nodes from db on demand.
func New(root common.Hash, db *Database) (*Trie, error) {
	if db == nil {
		panic("trie.New called without a database")
	}
	trie := &Trie{
		db: db,
	}
	if root != (common.Hash{}) && root != emptyRoot {
		rootnode, err := trie.resolveHash(root[:], nil)
		if err != nil {
			return nil, err
		}
		trie.root = rootnode
	}
	return trie, nil
}

// NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
// the key after the given start key.
func (t *Trie) NodeIterator(start []byte) NodeIterator {
	return newNodeIterator(t, start)
}

// Get returns the value for key stored in the trie.
// The value bytes must not be modified by the caller.
func (t *Trie) Get(key []byte) []byte {
	res, err := t.TryGet(key)
	if err != nil {
		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
	}
	return res
}

// TryGet returns the value for key stored in the trie.
// The value bytes must not be modified by the caller.
// If a node was not found in the database, a MissingNodeError is returned.
func (t *Trie) TryGet(key []byte) ([]byte, error) {
	value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0)
	if err == nil && didResolve {
		t.root = newroot
	}
	return value, err
}

func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
	switch n := (origNode).(type) {
	case nil:
		return nil, nil, false, nil
	case valueNode:
		return n, n, false, nil
	case *shortNode:
		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
			// key not found in trie
			return nil, n, false, nil
		}
		value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
		if err == nil && didResolve {
			n = n.copy()
			n.Val = newnode
		}
		return value, n, didResolve, err
	case *fullNode:
		value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
		if err == nil && didResolve {
			n = n.copy()
			n.Children[key[pos]] = newnode
		}
		return value, n, didResolve, err
	case hashNode:
		child, err := t.resolveHash(n, key[:pos])
		if err != nil {
			return nil, n, true, err
		}
		value, newnode, _, err := t.tryGet(child, key, pos)
		return value, newnode, true, err
	default:
		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
	}
}

// TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not
// possible to use keybyte-encoding as the path might contain odd nibbles.
func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) {
	item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0)
	if err != nil {
		return nil, resolved, err
	}
	if resolved > 0 {
		t.root = newroot
	}
	if item == nil {
		return nil, resolved, nil
	}
	enc, err := rlp.EncodeToBytes(item)
	if err != nil {
		log.Error("Encoding existing trie node failed", "err", err)
		return nil, resolved, err
	}
	return enc, resolved, err
}

func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item node, newnode node, resolved int, err error) {
	// If we reached the requested path, return the current node
	if pos >= len(path) {
		// Don't return collapsed hash nodes though
		if _, ok := origNode.(hashNode); !ok {
			// Short nodes have expanded keys, compact them before returning
			item := origNode
			if sn, ok := item.(*shortNode); ok {
				item = &shortNode{
					Key: hexToCompact(sn.Key),
					Val: sn.Val,
				}
			}
			return item, origNode, 0, nil
		}
	}
	// Path still needs to be traversed, descend into children
	switch n := (origNode).(type) {
	case nil:
		// Non-existent path requested, abort
		return nil, nil, 0, nil

	case valueNode:
		// Path prematurely ended, abort
		return nil, nil, 0, nil

	case *shortNode:
		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
			// Path branches off from short node
			return nil, n, 0, nil
		}
		item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key))
		if err == nil && resolved > 0 {
			n = n.copy()
			n.Val = newnode
		}
		return item, n, resolved, err

	case *fullNode:
		item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1)
		if err == nil && resolved > 0 {
			n = n.copy()
			n.Children[path[pos]] = newnode
		}
		return item, n, resolved, err

	case hashNode:
		child, err := t.resolveHash(n, path[:pos])
		if err != nil {
			return nil, n, 1, err
		}
		item, newnode, resolved, err := t.tryGetNode(child, path, pos)
		return item, newnode, resolved + 1, err

	default:
		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
	}
}

// Update associates key with value in the trie. Subsequent calls to
// Get will return value. If value has length zero, any existing value
// is deleted from the trie and calls to Get will return nil.
//
// The value bytes must not be modified by the caller while they are
// stored in the trie.
func (t *Trie) Update(key, value []byte) {
	if err := t.TryUpdate(key, value); err != nil {
		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
	}
}

// TryUpdate associates key with value in the trie. Subsequent calls to
// Get will return value. If value has length zero, any existing value
// is deleted from the trie and calls to Get will return nil.
//
// The value bytes must not be modified by the caller while they are
// stored in the trie.
//
// If a node was not found in the database, a MissingNodeError is returned.
func (t *Trie) TryUpdate(key, value []byte) error {
	t.unhashed++
	k := keybytesToHex(key)
	if len(value) != 0 {
		_, n, err := t.insert(t.root, nil, k, valueNode(value))
		if err != nil {
			return err
		}
		t.root = n
	} else {
		_, n, err := t.delete(t.root, nil, k)
		if err != nil {
			return err
		}
		t.root = n
	}
	return nil
}

func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
	if len(key) == 0 {
		if v, ok := n.(valueNode); ok {
			return !bytes.Equal(v, value.(valueNode)), value, nil
		}
		return true, value, nil
	}
	switch n := n.(type) {
	case *shortNode:
		matchlen := prefixLen(key, n.Key)
		// If the whole key matches, keep this short node as is
		// and only update the value.
		if matchlen == len(n.Key) {
			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
			if !dirty || err != nil {
				return false, n, err
			}
			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
		}
		// Otherwise branch out at the index where they differ.
		branch := &fullNode{flags: t.newFlag()}
		var err error
		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
		if err != nil {
			return false, nil, err
		}
		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
		if err != nil {
			return false, nil, err
		}
		// Replace this shortNode with the branch if it occurs at index 0.
		if matchlen == 0 {
			return true, branch, nil
		}
		// Otherwise, replace it with a short node leading up to the branch.
		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil

	case *fullNode:
		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
		if !dirty || err != nil {
			return false, n, err
		}
		n = n.copy()
		n.flags = t.newFlag()
		n.Children[key[0]] = nn
		return true, n, nil

	case nil:
		return true, &shortNode{key, value, t.newFlag()}, nil

	case hashNode:
		// We've hit a part of the trie that isn't loaded yet. Load
		// the node and insert into it. This leaves all child nodes on
		// the path to the value in the trie.
		rn, err := t.resolveHash(n, prefix)
		if err != nil {
			return false, nil, err
		}
		dirty, nn, err := t.insert(rn, prefix, key, value)
		if !dirty || err != nil {
			return false, rn, err
		}
		return true, nn, nil

	default:
		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
	}
}

// Delete removes any existing value for key from the trie.
func (t *Trie) Delete(key []byte) {
	if err := t.TryDelete(key); err != nil {
		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
	}
}

// TryDelete removes any existing value for key from the trie.
// If a node was not found in the database, a MissingNodeError is returned.
func (t *Trie) TryDelete(key []byte) error {
	t.unhashed++
	k := keybytesToHex(key)
	_, n, err := t.delete(t.root, nil, k)
	if err != nil {
		return err
	}
	t.root = n
	return nil
}

// delete returns the new root of the trie with key deleted.
// It reduces the trie to minimal form by simplifying
// nodes on the way up after deleting recursively.
func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
	switch n := n.(type) {
	case *shortNode:
		matchlen := prefixLen(key, n.Key)
		if matchlen < len(n.Key) {
			return false, n, nil // don't replace n on mismatch
		}
		if matchlen == len(key) {
			return true, nil, nil // remove n entirely for whole matches
		}
		// The key is longer than n.Key. Remove the remaining suffix
		// from the subtrie. Child can never be nil here since the
		// subtrie must contain at least two other values with keys
		// longer than n.Key.
		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
		if !dirty || err != nil {
			return false, n, err
		}
		switch child := child.(type) {
		case *shortNode:
			// Deleting from the subtrie reduced it to another
			// short node. Merge the nodes to avoid creating a
			// shortNode{..., shortNode{...}}. Use concat (which
			// always creates a new slice) instead of append to
			// avoid modifying n.Key since it might be shared with
			// other nodes.
			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
		default:
			return true, &shortNode{n.Key, child, t.newFlag()}, nil
		}

	case *fullNode:
		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
		if !dirty || err != nil {
			return false, n, err
		}
		n = n.copy()
		n.flags = t.newFlag()
		n.Children[key[0]] = nn

		// Check how many non-nil entries are left after deleting and
		// reduce the full node to a short node if only one entry is
		// left. Since n must've contained at least two children
		// before deletion (otherwise it would not be a full node) n
		// can never be reduced to nil.
		//
		// When the loop is done, pos contains the index of the single
		// value that is left in n or -2 if n contains at least two
		// values.
		pos := -1
		for i, cld := range &n.Children {
			if cld != nil {
				if pos == -1 {
					pos = i
				} else {
					pos = -2
					break
				}
			}
		}
		if pos >= 0 {
			if pos != 16 {
				// If the remaining entry is a short node, it replaces
				// n and its key gets the missing nibble tacked to the
				// front. This avoids creating an invalid
				// shortNode{..., shortNode{...}}.  Since the entry
				// might not be loaded yet, resolve it just for this
				// check.
				cnode, err := t.resolve(n.Children[pos], prefix)
				if err != nil {
					return false, nil, err
				}
				if cnode, ok := cnode.(*shortNode); ok {
					k := append([]byte{byte(pos)}, cnode.Key...)
					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
				}
			}
			// Otherwise, n is replaced by a one-nibble short node
			// containing the child.
			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
		}
		// n still contains at least two values and cannot be reduced.
		return true, n, nil

	case valueNode:
		return true, nil, nil

	case nil:
		return false, nil, nil

	case hashNode:
		// We've hit a part of the trie that isn't loaded yet. Load
		// the node and delete from it. This leaves all child nodes on
		// the path to the value in the trie.
		rn, err := t.resolveHash(n, prefix)
		if err != nil {
			return false, nil, err
		}
		dirty, nn, err := t.delete(rn, prefix, key)
		if !dirty || err != nil {
			return false, rn, err
		}
		return true, nn, nil

	default:
		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
	}
}

func concat(s1 []byte, s2 ...byte) []byte {
	r := make([]byte, len(s1)+len(s2))
	copy(r, s1)
	copy(r[len(s1):], s2)
	return r
}

func (t *Trie) resolve(n node, prefix []byte) (node, error) {
	if n, ok := n.(hashNode); ok {
		return t.resolveHash(n, prefix)
	}
	return n, nil
}

func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) {
	hash := common.BytesToHash(n)
	if node := t.db.node(hash); node != nil {
		return node, nil
	}
	return nil, &MissingNodeError{NodeHash: hash, Path: prefix}
}

// Hash returns the root hash of the trie. It does not write to the
// database and can be used even if the trie doesn't have one.
func (t *Trie) Hash() common.Hash {
	hash, cached, _ := t.hashRoot(nil)
	t.root = cached
	return common.BytesToHash(hash.(hashNode))
}

// Commit writes all nodes to the trie's memory database, tracking the internal
// and external (for account tries) references.
func (t *Trie) Commit(onleaf LeafCallback) (root common.Hash, err error) {
	if t.db == nil {
		panic("commit called on trie with nil database")
	}
	if t.root == nil {
		return emptyRoot, nil
	}
	// Derive the hash for all dirty nodes first. We hold the assumption
	// in the following procedure that all nodes are hashed.
	rootHash := t.Hash()
	h := newCommitter()
	defer returnCommitterToPool(h)

	// Do a quick check if we really need to commit, before we spin
	// up goroutines. This can happen e.g. if we load a trie for reading storage
	// values, but don't write to it.
	if _, dirty := t.root.cache(); !dirty {
		return rootHash, nil
	}
	var wg sync.WaitGroup
	if onleaf != nil {
		h.onleaf = onleaf
		h.leafCh = make(chan *leaf, leafChanSize)
		wg.Add(1)
		go func() {
			defer wg.Done()
			h.commitLoop(t.db)
		}()
	}
	var newRoot hashNode
	newRoot, err = h.Commit(t.root, t.db)
	if onleaf != nil {
		// The leafch is created in newCommitter if there was an onleaf callback
		// provided. The commitLoop only _reads_ from it, and the commit
		// operation was the sole writer. Therefore, it's safe to close this
		// channel here.
		close(h.leafCh)
		wg.Wait()
	}
	if err != nil {
		return common.Hash{}, err
	}
	t.root = newRoot
	return rootHash, nil
}

// hashRoot calculates the root hash of the given trie
func (t *Trie) hashRoot(db *Database) (node, node, error) {
	if t.root == nil {
		return hashNode(emptyRoot.Bytes()), nil, nil
	}
	// If the number of changes is below 100, we let one thread handle it
	h := newHasher(t.unhashed >= 100)
	defer returnHasherToPool(h)
	hashed, cached := h.hash(t.root, true)
	t.unhashed = 0
	return hashed, cached, nil
}

// Reset drops the referenced root node and cleans all internal state.
func (t *Trie) Reset() {
	t.root = nil
	t.unhashed = 0
}