proof_test.go 29.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package trie

import (
	"bytes"
	crand "crypto/rand"
	"encoding/binary"
	mrand "math/rand"
	"sort"
	"testing"
	"time"

	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/crypto"
	"github.com/ethereum/go-ethereum/ethdb/memorydb"
)

func init() {
	mrand.Seed(time.Now().Unix())
}

// makeProvers creates Merkle trie provers based on different implementations to
// test all variations.
func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database {
	var provers []func(key []byte) *memorydb.Database

	// Create a direct trie based Merkle prover
	provers = append(provers, func(key []byte) *memorydb.Database {
		proof := memorydb.New()
		trie.Prove(key, 0, proof)
		return proof
	})
	// Create a leaf iterator based Merkle prover
	provers = append(provers, func(key []byte) *memorydb.Database {
		proof := memorydb.New()
		if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
			for _, p := range it.Prove() {
				proof.Put(crypto.Keccak256(p), p)
			}
		}
		return proof
	})
	return provers
}

func TestProof(t *testing.T) {
	trie, vals := randomTrie(500)
	root := trie.Hash()
	for i, prover := range makeProvers(trie) {
		for _, kv := range vals {
			proof := prover(kv.k)
			if proof == nil {
				t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
			}
			val, err := VerifyProof(root, kv.k, proof)
			if err != nil {
				t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
			}
			if !bytes.Equal(val, kv.v) {
				t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
			}
		}
	}
}

func TestOneElementProof(t *testing.T) {
	trie := new(Trie)
	updateString(trie, "k", "v")
	for i, prover := range makeProvers(trie) {
		proof := prover([]byte("k"))
		if proof == nil {
			t.Fatalf("prover %d: nil proof", i)
		}
		if proof.Len() != 1 {
			t.Errorf("prover %d: proof should have one element", i)
		}
		val, err := VerifyProof(trie.Hash(), []byte("k"), proof)
		if err != nil {
			t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
		}
		if !bytes.Equal(val, []byte("v")) {
			t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
		}
	}
}

func TestBadProof(t *testing.T) {
	trie, vals := randomTrie(800)
	root := trie.Hash()
	for i, prover := range makeProvers(trie) {
		for _, kv := range vals {
			proof := prover(kv.k)
			if proof == nil {
				t.Fatalf("prover %d: nil proof", i)
			}
			it := proof.NewIterator(nil, nil)
			for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
				it.Next()
			}
			key := it.Key()
			val, _ := proof.Get(key)
			proof.Delete(key)
			it.Release()

			mutateByte(val)
			proof.Put(crypto.Keccak256(val), val)

			if _, err := VerifyProof(root, kv.k, proof); err == nil {
				t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
			}
		}
	}
}

// Tests that missing keys can also be proven. The test explicitly uses a single
// entry trie and checks for missing keys both before and after the single entry.
func TestMissingKeyProof(t *testing.T) {
	trie := new(Trie)
	updateString(trie, "k", "v")

	for i, key := range []string{"a", "j", "l", "z"} {
		proof := memorydb.New()
		trie.Prove([]byte(key), 0, proof)

		if proof.Len() != 1 {
			t.Errorf("test %d: proof should have one element", i)
		}
		val, err := VerifyProof(trie.Hash(), []byte(key), proof)
		if err != nil {
			t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
		}
		if val != nil {
			t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
		}
	}
}

type entrySlice []*kv

func (p entrySlice) Len() int           { return len(p) }
func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
func (p entrySlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

// TestRangeProof tests normal range proof with both edge proofs
// as the existent proof. The test cases are generated randomly.
func TestRangeProof(t *testing.T) {
	trie, vals := randomTrie(4096)
	var entries entrySlice
	for _, kv := range vals {
		entries = append(entries, kv)
	}
	sort.Sort(entries)
	for i := 0; i < 500; i++ {
		start := mrand.Intn(len(entries))
		end := mrand.Intn(len(entries)-start) + start + 1

		proof := memorydb.New()
		if err := trie.Prove(entries[start].k, 0, proof); err != nil {
			t.Fatalf("Failed to prove the first node %v", err)
		}
		if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
			t.Fatalf("Failed to prove the last node %v", err)
		}
		var keys [][]byte
		var vals [][]byte
		for i := start; i < end; i++ {
			keys = append(keys, entries[i].k)
			vals = append(vals, entries[i].v)
		}
		_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
		if err != nil {
			t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
		}
	}
}

// TestRangeProof tests normal range proof with two non-existent proofs.
// The test cases are generated randomly.
func TestRangeProofWithNonExistentProof(t *testing.T) {
	trie, vals := randomTrie(4096)
	var entries entrySlice
	for _, kv := range vals {
		entries = append(entries, kv)
	}
	sort.Sort(entries)
	for i := 0; i < 500; i++ {
		start := mrand.Intn(len(entries))
		end := mrand.Intn(len(entries)-start) + start + 1
		proof := memorydb.New()

		// Short circuit if the decreased key is same with the previous key
		first := decreseKey(common.CopyBytes(entries[start].k))
		if start != 0 && bytes.Equal(first, entries[start-1].k) {
			continue
		}
		// Short circuit if the decreased key is underflow
		if bytes.Compare(first, entries[start].k) > 0 {
			continue
		}
		// Short circuit if the increased key is same with the next key
		last := increseKey(common.CopyBytes(entries[end-1].k))
		if end != len(entries) && bytes.Equal(last, entries[end].k) {
			continue
		}
		// Short circuit if the increased key is overflow
		if bytes.Compare(last, entries[end-1].k) < 0 {
			continue
		}
		if err := trie.Prove(first, 0, proof); err != nil {
			t.Fatalf("Failed to prove the first node %v", err)
		}
		if err := trie.Prove(last, 0, proof); err != nil {
			t.Fatalf("Failed to prove the last node %v", err)
		}
		var keys [][]byte
		var vals [][]byte
		for i := start; i < end; i++ {
			keys = append(keys, entries[i].k)
			vals = append(vals, entries[i].v)
		}
		_, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
		if err != nil {
			t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
		}
	}
	// Special case, two edge proofs for two edge key.
	proof := memorydb.New()
	first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
	last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
	if err := trie.Prove(first, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(last, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	var k [][]byte
	var v [][]byte
	for i := 0; i < len(entries); i++ {
		k = append(k, entries[i].k)
		v = append(v, entries[i].v)
	}
	_, err := VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
	if err != nil {
		t.Fatal("Failed to verify whole rang with non-existent edges")
	}
}

// TestRangeProofWithInvalidNonExistentProof tests such scenarios:
// - There exists a gap between the first element and the left edge proof
// - There exists a gap between the last element and the right edge proof
func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
	trie, vals := randomTrie(4096)
	var entries entrySlice
	for _, kv := range vals {
		entries = append(entries, kv)
	}
	sort.Sort(entries)

	// Case 1
	start, end := 100, 200
	first := decreseKey(common.CopyBytes(entries[start].k))

	proof := memorydb.New()
	if err := trie.Prove(first, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	start = 105 // Gap created
	k := make([][]byte, 0)
	v := make([][]byte, 0)
	for i := start; i < end; i++ {
		k = append(k, entries[i].k)
		v = append(v, entries[i].v)
	}
	_, err := VerifyRangeProof(trie.Hash(), first, k[len(k)-1], k, v, proof)
	if err == nil {
		t.Fatalf("Expected to detect the error, got nil")
	}

	// Case 2
	start, end = 100, 200
	last := increseKey(common.CopyBytes(entries[end-1].k))
	proof = memorydb.New()
	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(last, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	end = 195 // Capped slice
	k = make([][]byte, 0)
	v = make([][]byte, 0)
	for i := start; i < end; i++ {
		k = append(k, entries[i].k)
		v = append(v, entries[i].v)
	}
	_, err = VerifyRangeProof(trie.Hash(), k[0], last, k, v, proof)
	if err == nil {
		t.Fatalf("Expected to detect the error, got nil")
	}
}

// TestOneElementRangeProof tests the proof with only one
// element. The first edge proof can be existent one or
// non-existent one.
func TestOneElementRangeProof(t *testing.T) {
	trie, vals := randomTrie(4096)
	var entries entrySlice
	for _, kv := range vals {
		entries = append(entries, kv)
	}
	sort.Sort(entries)

	// One element with existent edge proof, both edge proofs
	// point to the SAME key.
	start := 1000
	proof := memorydb.New()
	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	_, err := VerifyRangeProof(trie.Hash(), entries[start].k, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
	if err != nil {
		t.Fatalf("Expected no error, got %v", err)
	}

	// One element with left non-existent edge proof
	start = 1000
	first := decreseKey(common.CopyBytes(entries[start].k))
	proof = memorydb.New()
	if err := trie.Prove(first, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	_, err = VerifyRangeProof(trie.Hash(), first, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
	if err != nil {
		t.Fatalf("Expected no error, got %v", err)
	}

	// One element with right non-existent edge proof
	start = 1000
	last := increseKey(common.CopyBytes(entries[start].k))
	proof = memorydb.New()
	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(last, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	_, err = VerifyRangeProof(trie.Hash(), entries[start].k, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
	if err != nil {
		t.Fatalf("Expected no error, got %v", err)
	}

	// One element with two non-existent edge proofs
	start = 1000
	first, last = decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[start].k))
	proof = memorydb.New()
	if err := trie.Prove(first, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(last, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	_, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof)
	if err != nil {
		t.Fatalf("Expected no error, got %v", err)
	}

	// Test the mini trie with only a single element.
	tinyTrie := new(Trie)
	entry := &kv{randBytes(32), randBytes(20), false}
	tinyTrie.Update(entry.k, entry.v)

	first = common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
	last = entry.k
	proof = memorydb.New()
	if err := tinyTrie.Prove(first, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := tinyTrie.Prove(last, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	_, err = VerifyRangeProof(tinyTrie.Hash(), first, last, [][]byte{entry.k}, [][]byte{entry.v}, proof)
	if err != nil {
		t.Fatalf("Expected no error, got %v", err)
	}
}

// TestAllElementsProof tests the range proof with all elements.
// The edge proofs can be nil.
func TestAllElementsProof(t *testing.T) {
	trie, vals := randomTrie(4096)
	var entries entrySlice
	for _, kv := range vals {
		entries = append(entries, kv)
	}
	sort.Sort(entries)

	var k [][]byte
	var v [][]byte
	for i := 0; i < len(entries); i++ {
		k = append(k, entries[i].k)
		v = append(v, entries[i].v)
	}
	_, err := VerifyRangeProof(trie.Hash(), nil, nil, k, v, nil)
	if err != nil {
		t.Fatalf("Expected no error, got %v", err)
	}

	// With edge proofs, it should still work.
	proof := memorydb.New()
	if err := trie.Prove(entries[0].k, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(entries[len(entries)-1].k, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	_, err = VerifyRangeProof(trie.Hash(), k[0], k[len(k)-1], k, v, proof)
	if err != nil {
		t.Fatalf("Expected no error, got %v", err)
	}

	// Even with non-existent edge proofs, it should still work.
	proof = memorydb.New()
	first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes()
	last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes()
	if err := trie.Prove(first, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(last, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	_, err = VerifyRangeProof(trie.Hash(), first, last, k, v, proof)
	if err != nil {
		t.Fatalf("Expected no error, got %v", err)
	}
}

// TestSingleSideRangeProof tests the range starts from zero.
func TestSingleSideRangeProof(t *testing.T) {
	for i := 0; i < 64; i++ {
		trie := new(Trie)
		var entries entrySlice
		for i := 0; i < 4096; i++ {
			value := &kv{randBytes(32), randBytes(20), false}
			trie.Update(value.k, value.v)
			entries = append(entries, value)
		}
		sort.Sort(entries)

		var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
		for _, pos := range cases {
			proof := memorydb.New()
			if err := trie.Prove(common.Hash{}.Bytes(), 0, proof); err != nil {
				t.Fatalf("Failed to prove the first node %v", err)
			}
			if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
				t.Fatalf("Failed to prove the first node %v", err)
			}
			k := make([][]byte, 0)
			v := make([][]byte, 0)
			for i := 0; i <= pos; i++ {
				k = append(k, entries[i].k)
				v = append(v, entries[i].v)
			}
			_, err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k[len(k)-1], k, v, proof)
			if err != nil {
				t.Fatalf("Expected no error, got %v", err)
			}
		}
	}
}

// TestReverseSingleSideRangeProof tests the range ends with 0xffff...fff.
func TestReverseSingleSideRangeProof(t *testing.T) {
	for i := 0; i < 64; i++ {
		trie := new(Trie)
		var entries entrySlice
		for i := 0; i < 4096; i++ {
			value := &kv{randBytes(32), randBytes(20), false}
			trie.Update(value.k, value.v)
			entries = append(entries, value)
		}
		sort.Sort(entries)

		var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
		for _, pos := range cases {
			proof := memorydb.New()
			if err := trie.Prove(entries[pos].k, 0, proof); err != nil {
				t.Fatalf("Failed to prove the first node %v", err)
			}
			last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
			if err := trie.Prove(last.Bytes(), 0, proof); err != nil {
				t.Fatalf("Failed to prove the last node %v", err)
			}
			k := make([][]byte, 0)
			v := make([][]byte, 0)
			for i := pos; i < len(entries); i++ {
				k = append(k, entries[i].k)
				v = append(v, entries[i].v)
			}
			_, err := VerifyRangeProof(trie.Hash(), k[0], last.Bytes(), k, v, proof)
			if err != nil {
				t.Fatalf("Expected no error, got %v", err)
			}
		}
	}
}

// TestBadRangeProof tests a few cases which the proof is wrong.
// The prover is expected to detect the error.
func TestBadRangeProof(t *testing.T) {
	trie, vals := randomTrie(4096)
	var entries entrySlice
	for _, kv := range vals {
		entries = append(entries, kv)
	}
	sort.Sort(entries)

	for i := 0; i < 500; i++ {
		start := mrand.Intn(len(entries))
		end := mrand.Intn(len(entries)-start) + start + 1
		proof := memorydb.New()
		if err := trie.Prove(entries[start].k, 0, proof); err != nil {
			t.Fatalf("Failed to prove the first node %v", err)
		}
		if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
			t.Fatalf("Failed to prove the last node %v", err)
		}
		var keys [][]byte
		var vals [][]byte
		for i := start; i < end; i++ {
			keys = append(keys, entries[i].k)
			vals = append(vals, entries[i].v)
		}
		var first, last = keys[0], keys[len(keys)-1]
		testcase := mrand.Intn(6)
		var index int
		switch testcase {
		case 0:
			// Modified key
			index = mrand.Intn(end - start)
			keys[index] = randBytes(32) // In theory it can't be same
		case 1:
			// Modified val
			index = mrand.Intn(end - start)
			vals[index] = randBytes(20) // In theory it can't be same
		case 2:
			// Gapped entry slice
			index = mrand.Intn(end - start)
			if (index == 0 && start < 100) || (index == end-start-1 && end <= 100) {
				continue
			}
			keys = append(keys[:index], keys[index+1:]...)
			vals = append(vals[:index], vals[index+1:]...)
		case 3:
			// Out of order
			index1 := mrand.Intn(end - start)
			index2 := mrand.Intn(end - start)
			if index1 == index2 {
				continue
			}
			keys[index1], keys[index2] = keys[index2], keys[index1]
			vals[index1], vals[index2] = vals[index2], vals[index1]
		case 4:
			// Set random key to nil, do nothing
			index = mrand.Intn(end - start)
			keys[index] = nil
		case 5:
			// Set random value to nil, deletion
			index = mrand.Intn(end - start)
			vals[index] = nil
		}
		_, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof)
		if err == nil {
			t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
		}
	}
}

// TestGappedRangeProof focuses on the small trie with embedded nodes.
// If the gapped node is embedded in the trie, it should be detected too.
func TestGappedRangeProof(t *testing.T) {
	trie := new(Trie)
	var entries []*kv // Sorted entries
	for i := byte(0); i < 10; i++ {
		value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
		trie.Update(value.k, value.v)
		entries = append(entries, value)
	}
	first, last := 2, 8
	proof := memorydb.New()
	if err := trie.Prove(entries[first].k, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(entries[last-1].k, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	var keys [][]byte
	var vals [][]byte
	for i := first; i < last; i++ {
		if i == (first+last)/2 {
			continue
		}
		keys = append(keys, entries[i].k)
		vals = append(vals, entries[i].v)
	}
	_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof)
	if err == nil {
		t.Fatal("expect error, got nil")
	}
}

// TestSameSideProofs tests the element is not in the range covered by proofs
func TestSameSideProofs(t *testing.T) {
	trie, vals := randomTrie(4096)
	var entries entrySlice
	for _, kv := range vals {
		entries = append(entries, kv)
	}
	sort.Sort(entries)

	pos := 1000
	first := decreseKey(common.CopyBytes(entries[pos].k))
	first = decreseKey(first)
	last := decreseKey(common.CopyBytes(entries[pos].k))

	proof := memorydb.New()
	if err := trie.Prove(first, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(last, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	_, err := VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
	if err == nil {
		t.Fatalf("Expected error, got nil")
	}

	first = increseKey(common.CopyBytes(entries[pos].k))
	last = increseKey(common.CopyBytes(entries[pos].k))
	last = increseKey(last)

	proof = memorydb.New()
	if err := trie.Prove(first, 0, proof); err != nil {
		t.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(last, 0, proof); err != nil {
		t.Fatalf("Failed to prove the last node %v", err)
	}
	_, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof)
	if err == nil {
		t.Fatalf("Expected error, got nil")
	}
}

func TestHasRightElement(t *testing.T) {
	trie := new(Trie)
	var entries entrySlice
	for i := 0; i < 4096; i++ {
		value := &kv{randBytes(32), randBytes(20), false}
		trie.Update(value.k, value.v)
		entries = append(entries, value)
	}
	sort.Sort(entries)

	var cases = []struct {
		start   int
		end     int
		hasMore bool
	}{
		{-1, 1, true}, // single element with non-existent left proof
		{0, 1, true},  // single element with existent left proof
		{0, 10, true},
		{50, 100, true},
		{50, len(entries), false},               // No more element expected
		{len(entries) - 1, len(entries), false}, // Single last element with two existent proofs(point to same key)
		{len(entries) - 1, -1, false},           // Single last element with non-existent right proof
		{0, len(entries), false},                // The whole set with existent left proof
		{-1, len(entries), false},               // The whole set with non-existent left proof
		{-1, -1, false},                         // The whole set with non-existent left/right proof
	}
	for _, c := range cases {
		var (
			firstKey []byte
			lastKey  []byte
			start    = c.start
			end      = c.end
			proof    = memorydb.New()
		)
		if c.start == -1 {
			firstKey, start = common.Hash{}.Bytes(), 0
			if err := trie.Prove(firstKey, 0, proof); err != nil {
				t.Fatalf("Failed to prove the first node %v", err)
			}
		} else {
			firstKey = entries[c.start].k
			if err := trie.Prove(entries[c.start].k, 0, proof); err != nil {
				t.Fatalf("Failed to prove the first node %v", err)
			}
		}
		if c.end == -1 {
			lastKey, end = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes(), len(entries)
			if err := trie.Prove(lastKey, 0, proof); err != nil {
				t.Fatalf("Failed to prove the first node %v", err)
			}
		} else {
			lastKey = entries[c.end-1].k
			if err := trie.Prove(entries[c.end-1].k, 0, proof); err != nil {
				t.Fatalf("Failed to prove the first node %v", err)
			}
		}
		k := make([][]byte, 0)
		v := make([][]byte, 0)
		for i := start; i < end; i++ {
			k = append(k, entries[i].k)
			v = append(v, entries[i].v)
		}
		hasMore, err := VerifyRangeProof(trie.Hash(), firstKey, lastKey, k, v, proof)
		if err != nil {
			t.Fatalf("Expected no error, got %v", err)
		}
		if hasMore != c.hasMore {
			t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore)
		}
	}
}

// TestEmptyRangeProof tests the range proof with "no" element.
// The first edge proof must be a non-existent proof.
func TestEmptyRangeProof(t *testing.T) {
	trie, vals := randomTrie(4096)
	var entries entrySlice
	for _, kv := range vals {
		entries = append(entries, kv)
	}
	sort.Sort(entries)

	var cases = []struct {
		pos int
		err bool
	}{
		{len(entries) - 1, false},
		{500, true},
	}
	for _, c := range cases {
		proof := memorydb.New()
		first := increseKey(common.CopyBytes(entries[c.pos].k))
		if err := trie.Prove(first, 0, proof); err != nil {
			t.Fatalf("Failed to prove the first node %v", err)
		}
		_, err := VerifyRangeProof(trie.Hash(), first, nil, nil, nil, proof)
		if c.err && err == nil {
			t.Fatalf("Expected error, got nil")
		}
		if !c.err && err != nil {
			t.Fatalf("Expected no error, got %v", err)
		}
	}
}

// TestBloatedProof tests a malicious proof, where the proof is more or less the
// whole trie. Previously we didn't accept such packets, but the new APIs do, so
// lets leave this test as a bit weird, but present.
func TestBloatedProof(t *testing.T) {
	// Use a small trie
	trie, kvs := nonRandomTrie(100)
	var entries entrySlice
	for _, kv := range kvs {
		entries = append(entries, kv)
	}
	sort.Sort(entries)
	var keys [][]byte
	var vals [][]byte

	proof := memorydb.New()
	// In the 'malicious' case, we add proofs for every single item
	// (but only one key/value pair used as leaf)
	for i, entry := range entries {
		trie.Prove(entry.k, 0, proof)
		if i == 50 {
			keys = append(keys, entry.k)
			vals = append(vals, entry.v)
		}
	}
	// For reference, we use the same function, but _only_ prove the first
	// and last element
	want := memorydb.New()
	trie.Prove(keys[0], 0, want)
	trie.Prove(keys[len(keys)-1], 0, want)

	if _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof); err != nil {
		t.Fatalf("expected bloated proof to succeed, got %v", err)
	}
}

// mutateByte changes one byte in b.
func mutateByte(b []byte) {
	for r := mrand.Intn(len(b)); ; {
		new := byte(mrand.Intn(255))
		if new != b[r] {
			b[r] = new
			break
		}
	}
}

func increseKey(key []byte) []byte {
	for i := len(key) - 1; i >= 0; i-- {
		key[i]++
		if key[i] != 0x0 {
			break
		}
	}
	return key
}

func decreseKey(key []byte) []byte {
	for i := len(key) - 1; i >= 0; i-- {
		key[i]--
		if key[i] != 0xff {
			break
		}
	}
	return key
}

func BenchmarkProve(b *testing.B) {
	trie, vals := randomTrie(100)
	var keys []string
	for k := range vals {
		keys = append(keys, k)
	}

	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		kv := vals[keys[i%len(keys)]]
		proofs := memorydb.New()
		if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 {
			b.Fatalf("zero length proof for %x", kv.k)
		}
	}
}

func BenchmarkVerifyProof(b *testing.B) {
	trie, vals := randomTrie(100)
	root := trie.Hash()
	var keys []string
	var proofs []*memorydb.Database
	for k := range vals {
		keys = append(keys, k)
		proof := memorydb.New()
		trie.Prove([]byte(k), 0, proof)
		proofs = append(proofs, proof)
	}

	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		im := i % len(keys)
		if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
			b.Fatalf("key %x: %v", keys[im], err)
		}
	}
}

func BenchmarkVerifyRangeProof10(b *testing.B)   { benchmarkVerifyRangeProof(b, 10) }
func BenchmarkVerifyRangeProof100(b *testing.B)  { benchmarkVerifyRangeProof(b, 100) }
func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) }
func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) }

func benchmarkVerifyRangeProof(b *testing.B, size int) {
	trie, vals := randomTrie(8192)
	var entries entrySlice
	for _, kv := range vals {
		entries = append(entries, kv)
	}
	sort.Sort(entries)

	start := 2
	end := start + size
	proof := memorydb.New()
	if err := trie.Prove(entries[start].k, 0, proof); err != nil {
		b.Fatalf("Failed to prove the first node %v", err)
	}
	if err := trie.Prove(entries[end-1].k, 0, proof); err != nil {
		b.Fatalf("Failed to prove the last node %v", err)
	}
	var keys [][]byte
	var values [][]byte
	for i := start; i < end; i++ {
		keys = append(keys, entries[i].k)
		values = append(values, entries[i].v)
	}

	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, proof)
		if err != nil {
			b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
		}
	}
}

func BenchmarkVerifyRangeNoProof10(b *testing.B)   { benchmarkVerifyRangeNoProof(b, 100) }
func BenchmarkVerifyRangeNoProof500(b *testing.B)  { benchmarkVerifyRangeNoProof(b, 500) }
func BenchmarkVerifyRangeNoProof1000(b *testing.B) { benchmarkVerifyRangeNoProof(b, 1000) }

func benchmarkVerifyRangeNoProof(b *testing.B, size int) {
	trie, vals := randomTrie(size)
	var entries entrySlice
	for _, kv := range vals {
		entries = append(entries, kv)
	}
	sort.Sort(entries)

	var keys [][]byte
	var values [][]byte
	for _, entry := range entries {
		keys = append(keys, entry.k)
		values = append(values, entry.v)
	}
	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		_, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, nil)
		if err != nil {
			b.Fatalf("Expected no error, got %v", err)
		}
	}
}

func randomTrie(n int) (*Trie, map[string]*kv) {
	trie := new(Trie)
	vals := make(map[string]*kv)
	for i := byte(0); i < 100; i++ {
		value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
		value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
		trie.Update(value.k, value.v)
		trie.Update(value2.k, value2.v)
		vals[string(value.k)] = value
		vals[string(value2.k)] = value2
	}
	for i := 0; i < n; i++ {
		value := &kv{randBytes(32), randBytes(20), false}
		trie.Update(value.k, value.v)
		vals[string(value.k)] = value
	}
	return trie, vals
}

func randBytes(n int) []byte {
	r := make([]byte, n)
	crand.Read(r)
	return r
}

func nonRandomTrie(n int) (*Trie, map[string]*kv) {
	trie := new(Trie)
	vals := make(map[string]*kv)
	max := uint64(0xffffffffffffffff)
	for i := uint64(0); i < uint64(n); i++ {
		value := make([]byte, 32)
		key := make([]byte, 32)
		binary.LittleEndian.PutUint64(key, i)
		binary.LittleEndian.PutUint64(value, i-max)
		//value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
		elem := &kv{key, value, false}
		trie.Update(elem.k, elem.v)
		vals[string(elem.k)] = elem
	}
	return trie, vals
}