• Felföldi Zsolt's avatar
    les, les/flowcontrol: improved request serving and flow control (#18230) · c2003ed6
    Felföldi Zsolt authored
    This change
    
    - implements concurrent LES request serving even for a single peer.
    - replaces the request cost estimation method with a cost table based on
      benchmarks which gives much more consistent results. Until now the
      allowed number of light peers was just a guess which probably contributed
      a lot to the fluctuating quality of available service. Everything related
      to request cost is implemented in a single object, the 'cost tracker'. It
      uses a fixed cost table with a global 'correction factor'. Benchmark code
      is included and can be run at any time to adapt costs to low-level
      implementation changes.
    - reimplements flowcontrol.ClientManager in a cleaner and more efficient
      way, with added capabilities: There is now control over bandwidth, which
      allows using the flow control parameters for client prioritization.
      Target utilization over 100 percent is now supported to model concurrent
      request processing. Total serving bandwidth is reduced during block
      processing to prevent database contention.
    - implements an RPC API for the LES servers allowing server operators to
      assign priority bandwidth to certain clients and change prioritized
      status even while the client is connected. The new API is meant for
      cases where server operators charge for LES using an off-protocol mechanism.
    - adds a unit test for the new client manager.
    - adds an end-to-end test using the network simulator that tests bandwidth
      control functions through the new API.
    c2003ed6
control.go 11.6 KB
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Package flowcontrol implements a client side flow control mechanism
package flowcontrol

import (
	"fmt"
	"sync"
	"time"

	"github.com/ethereum/go-ethereum/common/mclock"
	"github.com/ethereum/go-ethereum/log"
)

const (
	// fcTimeConst is the time constant applied for MinRecharge during linear
	// buffer recharge period
	fcTimeConst = time.Millisecond
	// DecParamDelay is applied at server side when decreasing capacity in order to
	// avoid a buffer underrun error due to requests sent by the client before
	// receiving the capacity update announcement
	DecParamDelay = time.Second * 2
	// keepLogs is the duration of keeping logs; logging is not used if zero
	keepLogs = 0
)

// ServerParams are the flow control parameters specified by a server for a client
//
// Note: a server can assign different amounts of capacity to each client by giving
// different parameters to them.
type ServerParams struct {
	BufLimit, MinRecharge uint64
}

// scheduledUpdate represents a delayed flow control parameter update
type scheduledUpdate struct {
	time   mclock.AbsTime
	params ServerParams
}

// ClientNode is the flow control system's representation of a client
// (used in server mode only)
type ClientNode struct {
	params         ServerParams
	bufValue       uint64
	lastTime       mclock.AbsTime
	updateSchedule []scheduledUpdate
	sumCost        uint64            // sum of req costs received from this client
	accepted       map[uint64]uint64 // value = sumCost after accepting the given req
	lock           sync.Mutex
	cm             *ClientManager
	log            *logger
	cmNodeFields
}

// NewClientNode returns a new ClientNode
func NewClientNode(cm *ClientManager, params ServerParams) *ClientNode {
	node := &ClientNode{
		cm:       cm,
		params:   params,
		bufValue: params.BufLimit,
		lastTime: cm.clock.Now(),
		accepted: make(map[uint64]uint64),
	}
	if keepLogs > 0 {
		node.log = newLogger(keepLogs)
	}
	cm.connect(node)
	return node
}

// Disconnect should be called when a client is disconnected
func (node *ClientNode) Disconnect() {
	node.cm.disconnect(node)
}

// update recalculates the buffer value at a specified time while also performing
// scheduled flow control parameter updates if necessary
func (node *ClientNode) update(now mclock.AbsTime) {
	for len(node.updateSchedule) > 0 && node.updateSchedule[0].time <= now {
		node.recalcBV(node.updateSchedule[0].time)
		node.updateParams(node.updateSchedule[0].params, now)
		node.updateSchedule = node.updateSchedule[1:]
	}
	node.recalcBV(now)
}

// recalcBV recalculates the buffer value at a specified time
func (node *ClientNode) recalcBV(now mclock.AbsTime) {
	dt := uint64(now - node.lastTime)
	if now < node.lastTime {
		dt = 0
	}
	node.bufValue += node.params.MinRecharge * dt / uint64(fcTimeConst)
	if node.bufValue > node.params.BufLimit {
		node.bufValue = node.params.BufLimit
	}
	if node.log != nil {
		node.log.add(now, fmt.Sprintf("updated  bv=%d  MRR=%d  BufLimit=%d", node.bufValue, node.params.MinRecharge, node.params.BufLimit))
	}
	node.lastTime = now
}

// UpdateParams updates the flow control parameters of a client node
func (node *ClientNode) UpdateParams(params ServerParams) {
	node.lock.Lock()
	defer node.lock.Unlock()

	now := node.cm.clock.Now()
	node.update(now)
	if params.MinRecharge >= node.params.MinRecharge {
		node.updateSchedule = nil
		node.updateParams(params, now)
	} else {
		for i, s := range node.updateSchedule {
			if params.MinRecharge >= s.params.MinRecharge {
				s.params = params
				node.updateSchedule = node.updateSchedule[:i+1]
				return
			}
		}
		node.updateSchedule = append(node.updateSchedule, scheduledUpdate{time: now + mclock.AbsTime(DecParamDelay), params: params})
	}
}

// updateParams updates the flow control parameters of the node
func (node *ClientNode) updateParams(params ServerParams, now mclock.AbsTime) {
	diff := params.BufLimit - node.params.BufLimit
	if int64(diff) > 0 {
		node.bufValue += diff
	} else if node.bufValue > params.BufLimit {
		node.bufValue = params.BufLimit
	}
	node.cm.updateParams(node, params, now)
}

// AcceptRequest returns whether a new request can be accepted and the missing
// buffer amount if it was rejected due to a buffer underrun. If accepted, maxCost
// is deducted from the flow control buffer.
func (node *ClientNode) AcceptRequest(reqID, index, maxCost uint64) (accepted bool, bufShort uint64, priority int64) {
	node.lock.Lock()
	defer node.lock.Unlock()

	now := node.cm.clock.Now()
	node.update(now)
	if maxCost > node.bufValue {
		if node.log != nil {
			node.log.add(now, fmt.Sprintf("rejected  reqID=%d  bv=%d  maxCost=%d", reqID, node.bufValue, maxCost))
			node.log.dump(now)
		}
		return false, maxCost - node.bufValue, 0
	}
	node.bufValue -= maxCost
	node.sumCost += maxCost
	if node.log != nil {
		node.log.add(now, fmt.Sprintf("accepted  reqID=%d  bv=%d  maxCost=%d  sumCost=%d", reqID, node.bufValue, maxCost, node.sumCost))
	}
	node.accepted[index] = node.sumCost
	return true, 0, node.cm.accepted(node, maxCost, now)
}

// RequestProcessed should be called when the request has been processed
func (node *ClientNode) RequestProcessed(reqID, index, maxCost, realCost uint64) (bv uint64) {
	node.lock.Lock()
	defer node.lock.Unlock()

	now := node.cm.clock.Now()
	node.update(now)
	node.cm.processed(node, maxCost, realCost, now)
	bv = node.bufValue + node.sumCost - node.accepted[index]
	if node.log != nil {
		node.log.add(now, fmt.Sprintf("processed  reqID=%d  bv=%d  maxCost=%d  realCost=%d  sumCost=%d  oldSumCost=%d  reportedBV=%d", reqID, node.bufValue, maxCost, realCost, node.sumCost, node.accepted[index], bv))
	}
	delete(node.accepted, index)
	return
}

// ServerNode is the flow control system's representation of a server
// (used in client mode only)
type ServerNode struct {
	clock       mclock.Clock
	bufEstimate uint64
	bufRecharge bool
	lastTime    mclock.AbsTime
	params      ServerParams
	sumCost     uint64            // sum of req costs sent to this server
	pending     map[uint64]uint64 // value = sumCost after sending the given req
	log         *logger
	lock        sync.RWMutex
}

// NewServerNode returns a new ServerNode
func NewServerNode(params ServerParams, clock mclock.Clock) *ServerNode {
	node := &ServerNode{
		clock:       clock,
		bufEstimate: params.BufLimit,
		bufRecharge: false,
		lastTime:    clock.Now(),
		params:      params,
		pending:     make(map[uint64]uint64),
	}
	if keepLogs > 0 {
		node.log = newLogger(keepLogs)
	}
	return node
}

// UpdateParams updates the flow control parameters of the node
func (node *ServerNode) UpdateParams(params ServerParams) {
	node.lock.Lock()
	defer node.lock.Unlock()

	node.recalcBLE(mclock.Now())
	if params.BufLimit > node.params.BufLimit {
		node.bufEstimate += params.BufLimit - node.params.BufLimit
	} else {
		if node.bufEstimate > params.BufLimit {
			node.bufEstimate = params.BufLimit
		}
	}
	node.params = params
}

// recalcBLE recalculates the lowest estimate for the client's buffer value at
// the given server at the specified time
func (node *ServerNode) recalcBLE(now mclock.AbsTime) {
	if now < node.lastTime {
		return
	}
	if node.bufRecharge {
		dt := uint64(now - node.lastTime)
		node.bufEstimate += node.params.MinRecharge * dt / uint64(fcTimeConst)
		if node.bufEstimate >= node.params.BufLimit {
			node.bufEstimate = node.params.BufLimit
			node.bufRecharge = false
		}
	}
	node.lastTime = now
	if node.log != nil {
		node.log.add(now, fmt.Sprintf("updated  bufEst=%d  MRR=%d  BufLimit=%d", node.bufEstimate, node.params.MinRecharge, node.params.BufLimit))
	}
}

// safetyMargin is added to the flow control waiting time when estimated buffer value is low
const safetyMargin = time.Millisecond

// CanSend returns the minimum waiting time required before sending a request
// with the given maximum estimated cost. Second return value is the relative
// estimated buffer level after sending the request (divided by BufLimit).
func (node *ServerNode) CanSend(maxCost uint64) (time.Duration, float64) {
	node.lock.RLock()
	defer node.lock.RUnlock()

	now := node.clock.Now()
	node.recalcBLE(now)
	maxCost += uint64(safetyMargin) * node.params.MinRecharge / uint64(fcTimeConst)
	if maxCost > node.params.BufLimit {
		maxCost = node.params.BufLimit
	}
	if node.bufEstimate >= maxCost {
		relBuf := float64(node.bufEstimate-maxCost) / float64(node.params.BufLimit)
		if node.log != nil {
			node.log.add(now, fmt.Sprintf("canSend  bufEst=%d  maxCost=%d  true  relBuf=%f", node.bufEstimate, maxCost, relBuf))
		}
		return 0, relBuf
	}
	timeLeft := time.Duration((maxCost - node.bufEstimate) * uint64(fcTimeConst) / node.params.MinRecharge)
	if node.log != nil {
		node.log.add(now, fmt.Sprintf("canSend  bufEst=%d  maxCost=%d  false  timeLeft=%v", node.bufEstimate, maxCost, timeLeft))
	}
	return timeLeft, 0
}

// QueuedRequest should be called when the request has been assigned to the given
// server node, before putting it in the send queue. It is mandatory that requests
// are sent in the same order as the QueuedRequest calls are made.
func (node *ServerNode) QueuedRequest(reqID, maxCost uint64) {
	node.lock.Lock()
	defer node.lock.Unlock()

	now := node.clock.Now()
	node.recalcBLE(now)
	// Note: we do not know when requests actually arrive to the server so bufRecharge
	// is not turned on here if buffer was full; in this case it is going to be turned
	// on by the first reply's bufValue feedback
	if node.bufEstimate >= maxCost {
		node.bufEstimate -= maxCost
	} else {
		log.Error("Queued request with insufficient buffer estimate")
		node.bufEstimate = 0
	}
	node.sumCost += maxCost
	node.pending[reqID] = node.sumCost
	if node.log != nil {
		node.log.add(now, fmt.Sprintf("queued  reqID=%d  bufEst=%d  maxCost=%d  sumCost=%d", reqID, node.bufEstimate, maxCost, node.sumCost))
	}
}

// ReceivedReply adjusts estimated buffer value according to the value included in
// the latest request reply.
func (node *ServerNode) ReceivedReply(reqID, bv uint64) {
	node.lock.Lock()
	defer node.lock.Unlock()

	now := node.clock.Now()
	node.recalcBLE(now)
	if bv > node.params.BufLimit {
		bv = node.params.BufLimit
	}
	sc, ok := node.pending[reqID]
	if !ok {
		return
	}
	delete(node.pending, reqID)
	cc := node.sumCost - sc
	newEstimate := uint64(0)
	if bv > cc {
		newEstimate = bv - cc
	}
	if newEstimate > node.bufEstimate {
		// Note: we never reduce the buffer estimate based on the reported value because
		// this can only happen because of the delayed delivery of the latest reply.
		// The lowest estimate based on the previous reply can still be considered valid.
		node.bufEstimate = newEstimate
	}

	node.bufRecharge = node.bufEstimate < node.params.BufLimit
	node.lastTime = now
	if node.log != nil {
		node.log.add(now, fmt.Sprintf("received  reqID=%d  bufEst=%d  reportedBv=%d  sumCost=%d  oldSumCost=%d", reqID, node.bufEstimate, bv, node.sumCost, sc))
	}
}

// DumpLogs dumps the event log if logging is used
func (node *ServerNode) DumpLogs() {
	node.lock.Lock()
	defer node.lock.Unlock()

	if node.log != nil {
		node.log.dump(node.clock.Now())
	}
}