contracts.go 11.4 KB
Newer Older
1
// Copyright 2014 The go-ethereum Authors
2
// This file is part of the go-ethereum library.
3
//
4
// The go-ethereum library is free software: you can redistribute it and/or modify
5 6 7 8
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
9
// The go-ethereum library is distributed in the hope that it will be useful,
10
// but WITHOUT ANY WARRANTY; without even the implied warranty of
11
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 13 14
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
15
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
16

obscuren's avatar
obscuren committed
17
package vm
obscuren's avatar
obscuren committed
18 19

import (
20
	"crypto/sha256"
21
	"errors"
22
	"math/big"
23

obscuren's avatar
obscuren committed
24
	"github.com/ethereum/go-ethereum/common"
25
	"github.com/ethereum/go-ethereum/common/math"
26
	"github.com/ethereum/go-ethereum/crypto"
27
	"github.com/ethereum/go-ethereum/crypto/bn256"
28
	"github.com/ethereum/go-ethereum/params"
29
	"golang.org/x/crypto/ripemd160"
obscuren's avatar
obscuren committed
30 31
)

32
// PrecompiledContract is the basic interface for native Go contracts. The implementation
33 34 35
// requires a deterministic gas count based on the input size of the Run method of the
// contract.
type PrecompiledContract interface {
36 37
	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
obscuren's avatar
obscuren committed
38 39
}

40 41 42
// PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
// contracts used in the Frontier and Homestead releases.
var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
43
	common.BytesToAddress([]byte{1}): &ecrecover{},
44 45
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
46
	common.BytesToAddress([]byte{4}): &dataCopy{},
obscuren's avatar
obscuren committed
47 48
}

49 50 51
// PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
// contracts used in the Byzantium release.
var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
52 53 54 55
	common.BytesToAddress([]byte{1}): &ecrecover{},
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
	common.BytesToAddress([]byte{4}): &dataCopy{},
56
	common.BytesToAddress([]byte{5}): &bigModExp{},
57 58
	common.BytesToAddress([]byte{6}): &bn256Add{},
	common.BytesToAddress([]byte{7}): &bn256ScalarMul{},
59
	common.BytesToAddress([]byte{8}): &bn256Pairing{},
60 61
}

62
// RunPrecompiledContract runs and evaluates the output of a precompiled contract.
63
func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
64
	gas := p.RequiredGas(input)
65
	if contract.UseGas(gas) {
66
		return p.Run(input)
obscuren's avatar
obscuren committed
67
	}
68
	return nil, ErrOutOfGas
obscuren's avatar
obscuren committed
69 70
}

71
// ECRECOVER implemented as a native contract.
72
type ecrecover struct{}
obscuren's avatar
obscuren committed
73

74
func (c *ecrecover) RequiredGas(input []byte) uint64 {
75
	return params.EcrecoverGas
obscuren's avatar
obscuren committed
76 77
}

78
func (c *ecrecover) Run(input []byte) ([]byte, error) {
79
	const ecRecoverInputLength = 128
obscuren's avatar
obscuren committed
80

81 82
	input = common.RightPadBytes(input, ecRecoverInputLength)
	// "input" is (hash, v, r, s), each 32 bytes
83
	// but for ecrecover we want (r, s, v)
obscuren's avatar
obscuren committed
84

85 86 87
	r := new(big.Int).SetBytes(input[64:96])
	s := new(big.Int).SetBytes(input[96:128])
	v := input[63] - 27
88

89 90
	// tighter sig s values input homestead only apply to tx sigs
	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
91
		return nil, nil
92
	}
93
	// v needs to be at the end for libsecp256k1
94
	pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v))
obscuren's avatar
obscuren committed
95
	// make sure the public key is a valid one
96
	if err != nil {
97
		return nil, nil
98
	}
obscuren's avatar
obscuren committed
99

100
	// the first byte of pubkey is bitcoin heritage
101
	return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
obscuren's avatar
obscuren committed
102
}
103

104
// SHA256 implemented as a native contract.
105
type sha256hash struct{}
106

107 108 109 110
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
111
func (c *sha256hash) RequiredGas(input []byte) uint64 {
112
	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
113
}
114 115
func (c *sha256hash) Run(input []byte) ([]byte, error) {
	h := sha256.Sum256(input)
116
	return h[:], nil
117 118
}

119
// RIPEMD160 implemented as a native contract.
120
type ripemd160hash struct{}
121

122 123 124 125
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
126
func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
127
	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
128
}
129
func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
130
	ripemd := ripemd160.New()
131
	ripemd.Write(input)
132
	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
133 134
}

135
// data copy implemented as a native contract.
136 137
type dataCopy struct{}

138 139 140 141
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
142
func (c *dataCopy) RequiredGas(input []byte) uint64 {
143
	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
144
}
145 146
func (c *dataCopy) Run(in []byte) ([]byte, error) {
	return in, nil
147
}
148

149 150
// bigModExp implements a native big integer exponential modular operation.
type bigModExp struct{}
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165
var (
	big1      = big.NewInt(1)
	big4      = big.NewInt(4)
	big8      = big.NewInt(8)
	big16     = big.NewInt(16)
	big32     = big.NewInt(32)
	big64     = big.NewInt(64)
	big96     = big.NewInt(96)
	big480    = big.NewInt(480)
	big1024   = big.NewInt(1024)
	big3072   = big.NewInt(3072)
	big199680 = big.NewInt(199680)
)

166
// RequiredGas returns the gas required to execute the pre-compiled contract.
167
func (c *bigModExp) RequiredGas(input []byte) uint64 {
168
	var (
169 170 171
		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
172
	)
173 174 175 176 177
	if len(input) > 96 {
		input = input[96:]
	} else {
		input = input[:0]
	}
178 179 180 181 182
	// Retrieve the head 32 bytes of exp for the adjusted exponent length
	var expHead *big.Int
	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
		expHead = new(big.Int)
	} else {
183 184
		if expLen.Cmp(big32) > 0 {
			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
185
		} else {
186
			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
187
		}
188
	}
189 190 191 192 193 194
	// Calculate the adjusted exponent length
	var msb int
	if bitlen := expHead.BitLen(); bitlen > 0 {
		msb = bitlen - 1
	}
	adjExpLen := new(big.Int)
195 196 197
	if expLen.Cmp(big32) > 0 {
		adjExpLen.Sub(expLen, big32)
		adjExpLen.Mul(big8, adjExpLen)
198 199 200 201 202 203
	}
	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))

	// Calculate the gas cost of the operation
	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
	switch {
204
	case gas.Cmp(big64) <= 0:
205
		gas.Mul(gas, gas)
206
	case gas.Cmp(big1024) <= 0:
207
		gas = new(big.Int).Add(
208 209
			new(big.Int).Div(new(big.Int).Mul(gas, gas), big4),
			new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072),
210 211 212
		)
	default:
		gas = new(big.Int).Add(
213 214
			new(big.Int).Div(new(big.Int).Mul(gas, gas), big16),
			new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680),
215 216
		)
	}
217
	gas.Mul(gas, math.BigMax(adjExpLen, big1))
218 219 220 221 222 223 224 225 226
	gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))

	if gas.BitLen() > 64 {
		return math.MaxUint64
	}
	return gas.Uint64()
}

func (c *bigModExp) Run(input []byte) ([]byte, error) {
227
	var (
228 229 230
		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
231
	)
232 233 234 235 236 237 238 239 240 241
	if len(input) > 96 {
		input = input[96:]
	} else {
		input = input[:0]
	}
	// Handle a special case when both the base and mod length is zero
	if baseLen == 0 && modLen == 0 {
		return []byte{}, nil
	}
	// Retrieve the operands and execute the exponentiation
242
	var (
243 244 245
		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
246 247 248 249
	)
	if mod.BitLen() == 0 {
		// Modulo 0 is undefined, return zero
		return common.LeftPadBytes([]byte{}, int(modLen)), nil
250
	}
251
	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
252 253
}

254 255 256
// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newCurvePoint(blob []byte) (*bn256.G1, error) {
257 258 259
	p := new(bn256.G1)
	if _, err := p.Unmarshal(blob); err != nil {
		return nil, err
260
	}
261 262
	return p, nil
}
263

264 265 266
// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newTwistPoint(blob []byte) (*bn256.G2, error) {
267 268 269
	p := new(bn256.G2)
	if _, err := p.Unmarshal(blob); err != nil {
		return nil, err
270
	}
271
	return p, nil
272 273
}

274 275
// bn256Add implements a native elliptic curve point addition.
type bn256Add struct{}
276 277

// RequiredGas returns the gas required to execute the pre-compiled contract.
278 279
func (c *bn256Add) RequiredGas(input []byte) uint64 {
	return params.Bn256AddGas
280 281
}

282
func (c *bn256Add) Run(input []byte) ([]byte, error) {
283
	x, err := newCurvePoint(getData(input, 0, 64))
284 285
	if err != nil {
		return nil, err
286
	}
287
	y, err := newCurvePoint(getData(input, 64, 64))
288 289
	if err != nil {
		return nil, err
290
	}
291 292 293
	res := new(bn256.G1)
	res.Add(x, y)
	return res.Marshal(), nil
294 295
}

296 297
// bn256ScalarMul implements a native elliptic curve scalar multiplication.
type bn256ScalarMul struct{}
298 299

// RequiredGas returns the gas required to execute the pre-compiled contract.
300 301
func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 {
	return params.Bn256ScalarMulGas
302 303
}

304
func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) {
305
	p, err := newCurvePoint(getData(input, 0, 64))
306 307 308
	if err != nil {
		return nil, err
	}
309 310 311
	res := new(bn256.G1)
	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
	return res.Marshal(), nil
312
}
313 314

var (
315 316 317 318 319 320 321 322
	// true32Byte is returned if the bn256 pairing check succeeds.
	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}

	// false32Byte is returned if the bn256 pairing check fails.
	false32Byte = make([]byte, 32)

	// errBadPairingInput is returned if the bn256 pairing input is invalid.
	errBadPairingInput = errors.New("bad elliptic curve pairing size")
323 324
)

325 326
// bn256Pairing implements a pairing pre-compile for the bn256 curve
type bn256Pairing struct{}
327

328 329 330 331
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256Pairing) RequiredGas(input []byte) uint64 {
	return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas
}
332

333 334 335 336 337 338
func (c *bn256Pairing) Run(input []byte) ([]byte, error) {
	// Handle some corner cases cheaply
	if len(input)%192 > 0 {
		return nil, errBadPairingInput
	}
	// Convert the input into a set of coordinates
339
	var (
340 341
		cs []*bn256.G1
		ts []*bn256.G2
342
	)
343 344 345 346
	for i := 0; i < len(input); i += 192 {
		c, err := newCurvePoint(input[i : i+64])
		if err != nil {
			return nil, err
347
		}
348 349 350
		t, err := newTwistPoint(input[i+64 : i+192])
		if err != nil {
			return nil, err
351
		}
352 353
		cs = append(cs, c)
		ts = append(ts, t)
354
	}
355
	// Execute the pairing checks and return the results
356
	if bn256.PairingCheck(cs, ts) {
357 358
		return true32Byte, nil
	}
359
	return false32Byte, nil
360
}