simclock.go 4.04 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package mclock

import (
	"sync"
	"time"
)

// Simulated implements a virtual Clock for reproducible time-sensitive tests. It
// simulates a scheduler on a virtual timescale where actual processing takes zero time.
//
// The virtual clock doesn't advance on its own, call Run to advance it and execute timers.
// Since there is no way to influence the Go scheduler, testing timeout behaviour involving
// goroutines needs special care. A good way to test such timeouts is as follows: First
// perform the action that is supposed to time out. Ensure that the timer you want to test
// is created. Then run the clock until after the timeout. Finally observe the effect of
// the timeout using a channel or semaphore.
type Simulated struct {
	now       AbsTime
35
	scheduled []*simTimer
36 37
	mu        sync.RWMutex
	cond      *sync.Cond
38
	lastId    uint64
39 40
}

41 42
// simTimer implements Timer on the virtual clock.
type simTimer struct {
43 44
	do func()
	at AbsTime
45 46
	id uint64
	s  *Simulated
47 48 49 50 51 52 53 54
}

// Run moves the clock by the given duration, executing all timers before that duration.
func (s *Simulated) Run(d time.Duration) {
	s.mu.Lock()
	s.init()

	end := s.now + AbsTime(d)
55
	var do []func()
56 57 58 59 60 61
	for len(s.scheduled) > 0 {
		ev := s.scheduled[0]
		if ev.at > end {
			break
		}
		s.now = ev.at
62
		do = append(do, ev.do)
63 64 65
		s.scheduled = s.scheduled[1:]
	}
	s.now = end
66 67 68 69 70
	s.mu.Unlock()

	for _, fn := range do {
		fn()
	}
71 72
}

73
// ActiveTimers returns the number of timers that haven't fired.
74 75 76 77 78 79 80
func (s *Simulated) ActiveTimers() int {
	s.mu.RLock()
	defer s.mu.RUnlock()

	return len(s.scheduled)
}

81
// WaitForTimers waits until the clock has at least n scheduled timers.
82 83 84 85 86 87 88 89 90 91
func (s *Simulated) WaitForTimers(n int) {
	s.mu.Lock()
	defer s.mu.Unlock()
	s.init()

	for len(s.scheduled) < n {
		s.cond.Wait()
	}
}

92
// Now returns the current virtual time.
93 94 95 96 97 98 99
func (s *Simulated) Now() AbsTime {
	s.mu.RLock()
	defer s.mu.RUnlock()

	return s.now
}

100
// Sleep blocks until the clock has advanced by d.
101 102 103 104
func (s *Simulated) Sleep(d time.Duration) {
	<-s.After(d)
}

105 106
// After returns a channel which receives the current time after the clock
// has advanced by d.
107 108
func (s *Simulated) After(d time.Duration) <-chan time.Time {
	after := make(chan time.Time, 1)
109
	s.AfterFunc(d, func() {
110 111 112 113 114
		after <- (time.Time{}).Add(time.Duration(s.now))
	})
	return after
}

115 116 117
// AfterFunc runs fn after the clock has advanced by d. Unlike with the system
// clock, fn runs on the goroutine that calls Run.
func (s *Simulated) AfterFunc(d time.Duration, fn func()) Timer {
118 119 120 121 122
	s.mu.Lock()
	defer s.mu.Unlock()
	s.init()

	at := s.now + AbsTime(d)
123 124
	s.lastId++
	id := s.lastId
125 126 127 128
	l, h := 0, len(s.scheduled)
	ll := h
	for l != h {
		m := (l + h) / 2
129
		if (at < s.scheduled[m].at) || ((at == s.scheduled[m].at) && (id < s.scheduled[m].id)) {
130 131 132 133 134
			h = m
		} else {
			l = m + 1
		}
	}
135 136
	ev := &simTimer{do: fn, at: at, s: s}
	s.scheduled = append(s.scheduled, nil)
137
	copy(s.scheduled[l+1:], s.scheduled[l:ll])
138
	s.scheduled[l] = ev
139
	s.cond.Broadcast()
140
	return ev
141
}
142

143 144
func (ev *simTimer) Stop() bool {
	s := ev.s
145 146 147
	s.mu.Lock()
	defer s.mu.Unlock()

148 149 150 151 152
	for i := 0; i < len(s.scheduled); i++ {
		if s.scheduled[i] == ev {
			s.scheduled = append(s.scheduled[:i], s.scheduled[i+1:]...)
			s.cond.Broadcast()
			return true
153 154
		}
	}
155 156 157 158 159 160
	return false
}

func (s *Simulated) init() {
	if s.cond == nil {
		s.cond = sync.NewCond(&s.mu)
161 162
	}
}