pyramid.go 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package storage

import (
	"encoding/binary"
21
	"errors"
22 23
	"io"
	"sync"
24 25 26 27 28 29
	"time"
)

/*
   The main idea of a pyramid chunker is to process the input data without knowing the entire size apriori.
   For this to be achieved, the chunker tree is built from the ground up until the data is exhausted.
ferhat elmas's avatar
ferhat elmas committed
30
   This opens up new aveneus such as easy append and other sort of modifications to the tree thereby avoiding
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
   duplication of data chunks.


   Below is an example of a two level chunks tree. The leaf chunks are called data chunks and all the above
   chunks are called tree chunks. The tree chunk above data chunks is level 0 and so on until it reaches
   the root tree chunk.



                                            T10                                        <- Tree chunk lvl1
                                            |
                  __________________________|_____________________________
                 /                  |                   |                \
                /                   |                   \                 \
            __T00__             ___T01__           ___T02__           ___T03__         <- Tree chunks lvl 0
           / /     \           / /      \         / /      \         / /      \
          / /       \         / /        \       / /       \        / /        \
         D1 D2 ... D128	     D1 D2 ... D128     D1 D2 ... D128     D1 D2 ... D128      <-  Data Chunks


    The split function continuously read the data and creates data chunks and send them to storage.
    When certain no of data chunks are created (defaultBranches), a signal is sent to create a tree
    entry. When the level 0 tree entries reaches certain threshold (defaultBranches), another signal
    is sent to a tree entry one level up.. and so on... until only the data is exhausted AND only one
    tree entry is present in certain level. The key of tree entry is given out as the rootKey of the file.

*/

var (
	errLoadingTreeRootChunk = errors.New("LoadTree Error: Could not load root chunk")
	errLoadingTreeChunk     = errors.New("LoadTree Error: Could not load chunk")
)
63

64 65 66 67
const (
	ChunkProcessors       = 8
	DefaultBranches int64 = 128
	splitTimeout          = time.Minute * 5
68 69 70
)

const (
71 72
	DataChunk = 0
	TreeChunk = 1
73 74
)

75 76 77 78 79 80 81 82 83 84
type ChunkerParams struct {
	Branches int64
	Hash     string
}

func NewChunkerParams() *ChunkerParams {
	return &ChunkerParams{
		Branches: DefaultBranches,
		Hash:     SHA3Hash,
	}
85 86
}

87 88 89 90 91 92 93 94 95
// Entry to create a tree node
type TreeEntry struct {
	level         int
	branchCount   int64
	subtreeSize   uint64
	chunk         []byte
	key           []byte
	index         int  // used in append to indicate the index of existing tree entry
	updatePending bool // indicates if the entry is loaded from existing tree
96 97
}

98 99 100 101 102 103 104 105 106
func NewTreeEntry(pyramid *PyramidChunker) *TreeEntry {
	return &TreeEntry{
		level:         0,
		branchCount:   0,
		subtreeSize:   0,
		chunk:         make([]byte, pyramid.chunkSize+8),
		key:           make([]byte, pyramid.hashSize),
		index:         0,
		updatePending: false,
107 108 109
	}
}

110 111 112 113 114 115 116 117
// Used by the hash processor to create a data/tree chunk and send to storage
type chunkJob struct {
	key       Key
	chunk     []byte
	size      int64
	parentWg  *sync.WaitGroup
	chunkType int // used to identify the tree related chunks for debugging
	chunkLvl  int // leaf-1 is level 0 and goes upwards until it reaches root
118 119 120
}

type PyramidChunker struct {
121
	hashFunc    SwarmHasher
122 123 124
	chunkSize   int64
	hashSize    int64
	branches    int64
125
	workerCount int64
126
	workerLock  sync.RWMutex
127 128 129 130 131 132 133 134
}

func NewPyramidChunker(params *ChunkerParams) (self *PyramidChunker) {
	self = &PyramidChunker{}
	self.hashFunc = MakeHashFunc(params.Hash)
	self.branches = params.Branches
	self.hashSize = int64(self.hashFunc().Size())
	self.chunkSize = self.hashSize * self.branches
135
	self.workerCount = 0
136 137 138
	return
}

139 140 141 142 143 144 145 146 147
func (self *PyramidChunker) Join(key Key, chunkC chan *Chunk) LazySectionReader {
	return &LazyChunkReader{
		key:       key,
		chunkC:    chunkC,
		chunkSize: self.chunkSize,
		branches:  self.branches,
		hashSize:  self.hashSize,
	}
}
148

149 150 151 152 153
func (self *PyramidChunker) incrementWorkerCount() {
	self.workerLock.Lock()
	defer self.workerLock.Unlock()
	self.workerCount += 1
}
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
func (self *PyramidChunker) getWorkerCount() int64 {
	self.workerLock.Lock()
	defer self.workerLock.Unlock()
	return self.workerCount
}

func (self *PyramidChunker) decrementWorkerCount() {
	self.workerLock.Lock()
	defer self.workerLock.Unlock()
	self.workerCount -= 1
}

func (self *PyramidChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, storageWG, processorWG *sync.WaitGroup) (Key, error) {
	jobC := make(chan *chunkJob, 2*ChunkProcessors)
	wg := &sync.WaitGroup{}
	errC := make(chan error)
	quitC := make(chan bool)
	rootKey := make([]byte, self.hashSize)
	chunkLevel := make([][]*TreeEntry, self.branches)

	wg.Add(1)
	go self.prepareChunks(false, chunkLevel, data, rootKey, quitC, wg, jobC, processorWG, chunkC, errC, storageWG)

	// closes internal error channel if all subprocesses in the workgroup finished
	go func() {

		// waiting for all chunks to finish
		wg.Wait()

		// if storage waitgroup is non-nil, we wait for storage to finish too
		if storageWG != nil {
			storageWG.Wait()
		}
		//We close errC here because this is passed down to 8 parallel routines underneath.
		// if a error happens in one of them.. that particular routine raises error...
		// once they all complete successfully, the control comes back and we can safely close this here.
		close(errC)
	}()

	defer close(quitC)

	select {
	case err := <-errC:
		if err != nil {
			return nil, err
		}
	case <-time.NewTimer(splitTimeout).C:
202
	}
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	return rootKey, nil

}

func (self *PyramidChunker) Append(key Key, data io.Reader, chunkC chan *Chunk, storageWG, processorWG *sync.WaitGroup) (Key, error) {
	quitC := make(chan bool)
	rootKey := make([]byte, self.hashSize)
	chunkLevel := make([][]*TreeEntry, self.branches)

	// Load the right most unfinished tree chunks in every level
	self.loadTree(chunkLevel, key, chunkC, quitC)

	jobC := make(chan *chunkJob, 2*ChunkProcessors)
	wg := &sync.WaitGroup{}
	errC := make(chan error)

	wg.Add(1)
	go self.prepareChunks(true, chunkLevel, data, rootKey, quitC, wg, jobC, processorWG, chunkC, errC, storageWG)

	// closes internal error channel if all subprocesses in the workgroup finished
	go func() {

		// waiting for all chunks to finish
		wg.Wait()

		// if storage waitgroup is non-nil, we wait for storage to finish too
		if storageWG != nil {
			storageWG.Wait()
		}
		close(errC)
	}()

	defer close(quitC)

	select {
	case err := <-errC:
		if err != nil {
			return nil, err
		}
	case <-time.NewTimer(splitTimeout).C:
243
	}
244 245 246 247 248 249 250 251 252 253
	return rootKey, nil

}

func (self *PyramidChunker) processor(id int64, jobC chan *chunkJob, chunkC chan *Chunk, errC chan error, quitC chan bool, swg, wwg *sync.WaitGroup) {
	defer self.decrementWorkerCount()

	hasher := self.hashFunc()
	if wwg != nil {
		defer wwg.Done()
254
	}
255
	for {
256
		select {
257 258 259 260 261 262 263 264

		case job, ok := <-jobC:
			if !ok {
				return
			}
			self.processChunk(id, hasher, job, chunkC, swg)
		case <-quitC:
			return
265
		}
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	}
}

func (self *PyramidChunker) processChunk(id int64, hasher SwarmHash, job *chunkJob, chunkC chan *Chunk, swg *sync.WaitGroup) {
	hasher.ResetWithLength(job.chunk[:8]) // 8 bytes of length
	hasher.Write(job.chunk[8:])           // minus 8 []byte length
	h := hasher.Sum(nil)

	newChunk := &Chunk{
		Key:   h,
		SData: job.chunk,
		Size:  job.size,
		wg:    swg,
	}

	// report hash of this chunk one level up (keys corresponds to the proper subslice of the parent chunk)
	copy(job.key, h)

	// send off new chunk to storage
	if chunkC != nil {
		if swg != nil {
			swg.Add(1)
288 289
		}
	}
290
	job.parentWg.Done()
291

292 293 294
	if chunkC != nil {
		chunkC <- newChunk
	}
295 296
}

297 298 299 300 301 302
func (self *PyramidChunker) loadTree(chunkLevel [][]*TreeEntry, key Key, chunkC chan *Chunk, quitC chan bool) error {
	// Get the root chunk to get the total size
	chunk := retrieve(key, chunkC, quitC)
	if chunk == nil {
		return errLoadingTreeRootChunk
	}
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	//if data size is less than a chunk... add a parent with update as pending
	if chunk.Size <= self.chunkSize {
		newEntry := &TreeEntry{
			level:         0,
			branchCount:   1,
			subtreeSize:   uint64(chunk.Size),
			chunk:         make([]byte, self.chunkSize+8),
			key:           make([]byte, self.hashSize),
			index:         0,
			updatePending: true,
		}
		copy(newEntry.chunk[8:], chunk.Key)
		chunkLevel[0] = append(chunkLevel[0], newEntry)
		return nil
	}

	var treeSize int64
	var depth int
	treeSize = self.chunkSize
	for ; treeSize < chunk.Size; treeSize *= self.branches {
		depth++
	}

	// Add the root chunk entry
	branchCount := int64(len(chunk.SData)-8) / self.hashSize
	newEntry := &TreeEntry{
330
		level:         depth - 1,
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
		branchCount:   branchCount,
		subtreeSize:   uint64(chunk.Size),
		chunk:         chunk.SData,
		key:           key,
		index:         0,
		updatePending: true,
	}
	chunkLevel[depth-1] = append(chunkLevel[depth-1], newEntry)

	// Add the rest of the tree
	for lvl := (depth - 1); lvl >= 1; lvl-- {

		//TODO(jmozah): instead of loading finished branches and then trim in the end,
		//avoid loading them in the first place
		for _, ent := range chunkLevel[lvl] {
			branchCount = int64(len(ent.chunk)-8) / self.hashSize
			for i := int64(0); i < branchCount; i++ {
				key := ent.chunk[8+(i*self.hashSize) : 8+((i+1)*self.hashSize)]
				newChunk := retrieve(key, chunkC, quitC)
				if newChunk == nil {
					return errLoadingTreeChunk
352
				}
353 354
				bewBranchCount := int64(len(newChunk.SData)-8) / self.hashSize
				newEntry := &TreeEntry{
355
					level:         lvl - 1,
356 357 358 359 360 361
					branchCount:   bewBranchCount,
					subtreeSize:   uint64(newChunk.Size),
					chunk:         newChunk.SData,
					key:           key,
					index:         0,
					updatePending: true,
362
				}
363 364
				chunkLevel[lvl-1] = append(chunkLevel[lvl-1], newEntry)

365
			}
366 367 368 369

			// We need to get only the right most unfinished branch.. so trim all finished branches
			if int64(len(chunkLevel[lvl-1])) >= self.branches {
				chunkLevel[lvl-1] = nil
370
			}
371 372 373 374 375 376 377 378 379 380 381
		}
	}

	return nil
}

func (self *PyramidChunker) prepareChunks(isAppend bool, chunkLevel [][]*TreeEntry, data io.Reader, rootKey []byte, quitC chan bool, wg *sync.WaitGroup, jobC chan *chunkJob, processorWG *sync.WaitGroup, chunkC chan *Chunk, errC chan error, storageWG *sync.WaitGroup) {
	defer wg.Done()

	chunkWG := &sync.WaitGroup{}
	totalDataSize := 0
382

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	// processorWG keeps track of workers spawned for hashing chunks
	if processorWG != nil {
		processorWG.Add(1)
	}

	self.incrementWorkerCount()
	go self.processor(self.workerCount, jobC, chunkC, errC, quitC, storageWG, processorWG)

	parent := NewTreeEntry(self)
	var unFinishedChunk *Chunk

	if isAppend == true && len(chunkLevel[0]) != 0 {

		lastIndex := len(chunkLevel[0]) - 1
		ent := chunkLevel[0][lastIndex]

		if ent.branchCount < self.branches {
			parent = &TreeEntry{
				level:         0,
				branchCount:   ent.branchCount,
				subtreeSize:   ent.subtreeSize,
				chunk:         ent.chunk,
				key:           ent.key,
				index:         lastIndex,
				updatePending: true,
408
			}
409 410 411 412 413 414 415 416 417 418 419

			lastBranch := parent.branchCount - 1
			lastKey := parent.chunk[8+lastBranch*self.hashSize : 8+(lastBranch+1)*self.hashSize]

			unFinishedChunk = retrieve(lastKey, chunkC, quitC)
			if unFinishedChunk.Size < self.chunkSize {

				parent.subtreeSize = parent.subtreeSize - uint64(unFinishedChunk.Size)
				parent.branchCount = parent.branchCount - 1
			} else {
				unFinishedChunk = nil
420
			}
421 422
		}
	}
423

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	for index := 0; ; index++ {

		var n int
		var err error
		chunkData := make([]byte, self.chunkSize+8)
		if unFinishedChunk != nil {
			copy(chunkData, unFinishedChunk.SData)
			n, err = data.Read(chunkData[8+unFinishedChunk.Size:])
			n += int(unFinishedChunk.Size)
			unFinishedChunk = nil
		} else {
			n, err = data.Read(chunkData[8:])
		}

		totalDataSize += n
		if err != nil {
			if err == io.EOF || err == io.ErrUnexpectedEOF {
				if parent.branchCount == 1 {
					// Data is exactly one chunk.. pick the last chunk key as root
					chunkWG.Wait()
					lastChunksKey := parent.chunk[8 : 8+self.hashSize]
					copy(rootKey, lastChunksKey)
					break
				}
			} else {
				close(quitC)
450 451 452
				break
			}
		}
453

ferhat elmas's avatar
ferhat elmas committed
454
		// Data ended in chunk boundary.. just signal to start bulding tree
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		if n == 0 {
			self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, true, rootKey)
			break
		} else {

			pkey := self.enqueueDataChunk(chunkData, uint64(n), parent, chunkWG, jobC, quitC)

			// update tree related parent data structures
			parent.subtreeSize += uint64(n)
			parent.branchCount++

			// Data got exhausted... signal to send any parent tree related chunks
			if int64(n) < self.chunkSize {

				// only one data chunk .. so dont add any parent chunk
				if parent.branchCount <= 1 {
					chunkWG.Wait()
					copy(rootKey, pkey)
					break
				}

				self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, true, rootKey)
				break
			}

			if parent.branchCount == self.branches {
				self.buildTree(isAppend, chunkLevel, parent, chunkWG, jobC, quitC, false, rootKey)
				parent = NewTreeEntry(self)
			}

		}

		workers := self.getWorkerCount()
		if int64(len(jobC)) > workers && workers < ChunkProcessors {
			if processorWG != nil {
				processorWG.Add(1)
			}
			self.incrementWorkerCount()
			go self.processor(self.workerCount, jobC, chunkC, errC, quitC, storageWG, processorWG)
		}

	}

}

func (self *PyramidChunker) buildTree(isAppend bool, chunkLevel [][]*TreeEntry, ent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool, last bool, rootKey []byte) {
	chunkWG.Wait()
	self.enqueueTreeChunk(chunkLevel, ent, chunkWG, jobC, quitC, last)

	compress := false
	endLvl := self.branches
	for lvl := int64(0); lvl < self.branches; lvl++ {
		lvlCount := int64(len(chunkLevel[lvl]))
		if lvlCount >= self.branches {
			endLvl = lvl + 1
			compress = true
			break
		}
	}

	if compress == false && last == false {
		return
	}

	// Wait for all the keys to be processed before compressing the tree
	chunkWG.Wait()

	for lvl := int64(ent.level); lvl < endLvl; lvl++ {

		lvlCount := int64(len(chunkLevel[lvl]))
		if lvlCount == 1 && last == true {
			copy(rootKey, chunkLevel[lvl][0].key)
			return
		}

		for startCount := int64(0); startCount < lvlCount; startCount += self.branches {

			endCount := startCount + self.branches
			if endCount > lvlCount {
				endCount = lvlCount
			}

			var nextLvlCount int64
			var tempEntry *TreeEntry
			if len(chunkLevel[lvl+1]) > 0 {
				nextLvlCount = int64(len(chunkLevel[lvl+1]) - 1)
				tempEntry = chunkLevel[lvl+1][nextLvlCount]
			}
			if isAppend == true && tempEntry != nil && tempEntry.updatePending == true {
				updateEntry := &TreeEntry{
					level:         int(lvl + 1),
					branchCount:   0,
					subtreeSize:   0,
					chunk:         make([]byte, self.chunkSize+8),
					key:           make([]byte, self.hashSize),
					index:         int(nextLvlCount),
					updatePending: true,
				}
				for index := int64(0); index < lvlCount; index++ {
					updateEntry.branchCount++
					updateEntry.subtreeSize += chunkLevel[lvl][index].subtreeSize
					copy(updateEntry.chunk[8+(index*self.hashSize):8+((index+1)*self.hashSize)], chunkLevel[lvl][index].key[:self.hashSize])
				}

				self.enqueueTreeChunk(chunkLevel, updateEntry, chunkWG, jobC, quitC, last)

			} else {

				noOfBranches := endCount - startCount
				newEntry := &TreeEntry{
					level:         int(lvl + 1),
					branchCount:   noOfBranches,
					subtreeSize:   0,
					chunk:         make([]byte, (noOfBranches*self.hashSize)+8),
					key:           make([]byte, self.hashSize),
					index:         int(nextLvlCount),
					updatePending: false,
				}

				index := int64(0)
				for i := startCount; i < endCount; i++ {
					entry := chunkLevel[lvl][i]
					newEntry.subtreeSize += entry.subtreeSize
					copy(newEntry.chunk[8+(index*self.hashSize):8+((index+1)*self.hashSize)], entry.key[:self.hashSize])
					index++
				}

				self.enqueueTreeChunk(chunkLevel, newEntry, chunkWG, jobC, quitC, last)

			}

		}

		if isAppend == false {
			chunkWG.Wait()
			if compress == true {
				chunkLevel[lvl] = nil
			}
		}
594
	}
595

596
}
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

func (self *PyramidChunker) enqueueTreeChunk(chunkLevel [][]*TreeEntry, ent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool, last bool) {
	if ent != nil {

		// wait for data chunks to get over before processing the tree chunk
		if last == true {
			chunkWG.Wait()
		}

		binary.LittleEndian.PutUint64(ent.chunk[:8], ent.subtreeSize)
		ent.key = make([]byte, self.hashSize)
		chunkWG.Add(1)
		select {
		case jobC <- &chunkJob{ent.key, ent.chunk[:ent.branchCount*self.hashSize+8], int64(ent.subtreeSize), chunkWG, TreeChunk, 0}:
		case <-quitC:
		}

		// Update or append based on weather it is a new entry or being reused
		if ent.updatePending == true {
			chunkWG.Wait()
			chunkLevel[ent.level][ent.index] = ent
		} else {
			chunkLevel[ent.level] = append(chunkLevel[ent.level], ent)
		}

	}
}

func (self *PyramidChunker) enqueueDataChunk(chunkData []byte, size uint64, parent *TreeEntry, chunkWG *sync.WaitGroup, jobC chan *chunkJob, quitC chan bool) Key {
	binary.LittleEndian.PutUint64(chunkData[:8], size)
	pkey := parent.chunk[8+parent.branchCount*self.hashSize : 8+(parent.branchCount+1)*self.hashSize]

	chunkWG.Add(1)
	select {
	case jobC <- &chunkJob{pkey, chunkData[:size+8], int64(size), chunkWG, DataChunk, -1}:
	case <-quitC:
	}

	return pkey

637
}