api.go 74.8 KB
Newer Older
1
// Copyright 2015 The go-ethereum Authors
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package ethapi

import (
20
	"context"
21
	"encoding/hex"
22
	"errors"
23 24 25 26 27
	"fmt"
	"math/big"
	"strings"
	"time"

28
	"github.com/davecgh/go-spew/spew"
29
	"github.com/ethereum/go-ethereum/accounts"
30
	"github.com/ethereum/go-ethereum/accounts/abi"
31
	"github.com/ethereum/go-ethereum/accounts/keystore"
32
	"github.com/ethereum/go-ethereum/accounts/scwallet"
33
	"github.com/ethereum/go-ethereum/common"
34
	"github.com/ethereum/go-ethereum/common/hexutil"
35
	"github.com/ethereum/go-ethereum/common/math"
36
	"github.com/ethereum/go-ethereum/consensus"
37
	"github.com/ethereum/go-ethereum/consensus/misc"
38
	"github.com/ethereum/go-ethereum/core"
39
	"github.com/ethereum/go-ethereum/core/state"
40 41 42
	"github.com/ethereum/go-ethereum/core/types"
	"github.com/ethereum/go-ethereum/core/vm"
	"github.com/ethereum/go-ethereum/crypto"
43
	"github.com/ethereum/go-ethereum/eth/tracers/logger"
44
	"github.com/ethereum/go-ethereum/log"
45
	"github.com/ethereum/go-ethereum/p2p"
46
	"github.com/ethereum/go-ethereum/params"
47 48
	"github.com/ethereum/go-ethereum/rlp"
	"github.com/ethereum/go-ethereum/rpc"
49
	"github.com/tyler-smith/go-bip39"
50 51
)

52 53
// EthereumAPI provides an API to access Ethereum related information.
type EthereumAPI struct {
54
	b Backend
55 56
}

57 58 59
// NewEthereumAPI creates a new Ethereum protocol API.
func NewEthereumAPI(b Backend) *EthereumAPI {
	return &EthereumAPI{b}
60 61
}

62
// GasPrice returns a suggestion for a gas price for legacy transactions.
63
func (s *EthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) {
64 65 66 67 68 69 70 71 72 73
	tipcap, err := s.b.SuggestGasTipCap(ctx)
	if err != nil {
		return nil, err
	}
	if head := s.b.CurrentHeader(); head.BaseFee != nil {
		tipcap.Add(tipcap, head.BaseFee)
	}
	return (*hexutil.Big)(tipcap), err
}

74
// MaxPriorityFeePerGas returns a suggestion for a gas tip cap for dynamic fee transactions.
75
func (s *EthereumAPI) MaxPriorityFeePerGas(ctx context.Context) (*hexutil.Big, error) {
76 77 78 79 80
	tipcap, err := s.b.SuggestGasTipCap(ctx)
	if err != nil {
		return nil, err
	}
	return (*hexutil.Big)(tipcap), err
81 82
}

83
type feeHistoryResult struct {
84
	OldestBlock  *hexutil.Big     `json:"oldestBlock"`
85 86 87
	Reward       [][]*hexutil.Big `json:"reward,omitempty"`
	BaseFee      []*hexutil.Big   `json:"baseFeePerGas,omitempty"`
	GasUsedRatio []float64        `json:"gasUsedRatio"`
88 89
}

90
// FeeHistory returns the fee market history.
91
func (s *EthereumAPI) FeeHistory(ctx context.Context, blockCount math.HexOrDecimal64, lastBlock rpc.BlockNumber, rewardPercentiles []float64) (*feeHistoryResult, error) {
92
	oldest, reward, baseFee, gasUsed, err := s.b.FeeHistory(ctx, uint64(blockCount), lastBlock, rewardPercentiles)
93
	if err != nil {
94
		return nil, err
95
	}
96
	results := &feeHistoryResult{
97
		OldestBlock:  (*hexutil.Big)(oldest),
98
		GasUsedRatio: gasUsed,
99 100 101
	}
	if reward != nil {
		results.Reward = make([][]*hexutil.Big, len(reward))
102 103 104 105
		for i, w := range reward {
			results.Reward[i] = make([]*hexutil.Big, len(w))
			for j, v := range w {
				results.Reward[i][j] = (*hexutil.Big)(v)
106 107 108 109 110 111 112 113 114 115 116 117
			}
		}
	}
	if baseFee != nil {
		results.BaseFee = make([]*hexutil.Big, len(baseFee))
		for i, v := range baseFee {
			results.BaseFee[i] = (*hexutil.Big)(v)
		}
	}
	return results, nil
}

118
// Syncing returns false in case the node is currently not syncing with the network. It can be up-to-date or has not
119
// yet received the latest block headers from its pears. In case it is synchronizing:
120
// - startingBlock: block number this node started to synchronize from
121 122 123 124
// - currentBlock:  block number this node is currently importing
// - highestBlock:  block number of the highest block header this node has received from peers
// - pulledStates:  number of state entries processed until now
// - knownStates:   number of known state entries that still need to be pulled
125
func (s *EthereumAPI) Syncing() (interface{}, error) {
126
	progress := s.b.SyncProgress()
127 128

	// Return not syncing if the synchronisation already completed
129
	if progress.CurrentBlock >= progress.HighestBlock {
130 131 132 133
		return false, nil
	}
	// Otherwise gather the block sync stats
	return map[string]interface{}{
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
		"startingBlock":       hexutil.Uint64(progress.StartingBlock),
		"currentBlock":        hexutil.Uint64(progress.CurrentBlock),
		"highestBlock":        hexutil.Uint64(progress.HighestBlock),
		"syncedAccounts":      hexutil.Uint64(progress.SyncedAccounts),
		"syncedAccountBytes":  hexutil.Uint64(progress.SyncedAccountBytes),
		"syncedBytecodes":     hexutil.Uint64(progress.SyncedBytecodes),
		"syncedBytecodeBytes": hexutil.Uint64(progress.SyncedBytecodeBytes),
		"syncedStorage":       hexutil.Uint64(progress.SyncedStorage),
		"syncedStorageBytes":  hexutil.Uint64(progress.SyncedStorageBytes),
		"healedTrienodes":     hexutil.Uint64(progress.HealedTrienodes),
		"healedTrienodeBytes": hexutil.Uint64(progress.HealedTrienodeBytes),
		"healedBytecodes":     hexutil.Uint64(progress.HealedBytecodes),
		"healedBytecodeBytes": hexutil.Uint64(progress.HealedBytecodeBytes),
		"healingTrienodes":    hexutil.Uint64(progress.HealingTrienodes),
		"healingBytecode":     hexutil.Uint64(progress.HealingBytecode),
149 150 151
	}, nil
}

152
// TxPoolAPI offers and API for the transaction pool. It only operates on data that is non-confidential.
153
type TxPoolAPI struct {
154 155 156
	b Backend
}

157 158 159
// NewTxPoolAPI creates a new tx pool service that gives information about the transaction pool.
func NewTxPoolAPI(b Backend) *TxPoolAPI {
	return &TxPoolAPI{b}
160 161 162
}

// Content returns the transactions contained within the transaction pool.
163
func (s *TxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction {
164 165 166
	content := map[string]map[string]map[string]*RPCTransaction{
		"pending": make(map[string]map[string]*RPCTransaction),
		"queued":  make(map[string]map[string]*RPCTransaction),
167 168
	}
	pending, queue := s.b.TxPoolContent()
169
	curHeader := s.b.CurrentHeader()
170
	// Flatten the pending transactions
171 172
	for account, txs := range pending {
		dump := make(map[string]*RPCTransaction)
173
		for _, tx := range txs {
174
			dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
175 176 177 178
		}
		content["pending"][account.Hex()] = dump
	}
	// Flatten the queued transactions
179 180
	for account, txs := range queue {
		dump := make(map[string]*RPCTransaction)
181
		for _, tx := range txs {
182
			dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
183 184 185 186 187 188
		}
		content["queued"][account.Hex()] = dump
	}
	return content
}

189
// ContentFrom returns the transactions contained within the transaction pool.
190
func (s *TxPoolAPI) ContentFrom(addr common.Address) map[string]map[string]*RPCTransaction {
191 192 193 194 195 196 197
	content := make(map[string]map[string]*RPCTransaction, 2)
	pending, queue := s.b.TxPoolContentFrom(addr)
	curHeader := s.b.CurrentHeader()

	// Build the pending transactions
	dump := make(map[string]*RPCTransaction, len(pending))
	for _, tx := range pending {
198
		dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
199 200 201 202 203 204
	}
	content["pending"] = dump

	// Build the queued transactions
	dump = make(map[string]*RPCTransaction, len(queue))
	for _, tx := range queue {
205
		dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
206 207 208 209 210 211
	}
	content["queued"] = dump

	return content
}

212
// Status returns the number of pending and queued transaction in the pool.
213
func (s *TxPoolAPI) Status() map[string]hexutil.Uint {
214
	pending, queue := s.b.Stats()
215 216 217
	return map[string]hexutil.Uint{
		"pending": hexutil.Uint(pending),
		"queued":  hexutil.Uint(queue),
218 219 220 221 222
	}
}

// Inspect retrieves the content of the transaction pool and flattens it into an
// easily inspectable list.
223
func (s *TxPoolAPI) Inspect() map[string]map[string]map[string]string {
224 225 226
	content := map[string]map[string]map[string]string{
		"pending": make(map[string]map[string]string),
		"queued":  make(map[string]map[string]string),
227 228 229 230 231 232
	}
	pending, queue := s.b.TxPoolContent()

	// Define a formatter to flatten a transaction into a string
	var format = func(tx *types.Transaction) string {
		if to := tx.To(); to != nil {
233
			return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice())
234
		}
235
		return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice())
236 237
	}
	// Flatten the pending transactions
238 239
	for account, txs := range pending {
		dump := make(map[string]string)
240 241
		for _, tx := range txs {
			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
242 243 244 245
		}
		content["pending"][account.Hex()] = dump
	}
	// Flatten the queued transactions
246 247
	for account, txs := range queue {
		dump := make(map[string]string)
248 249
		for _, tx := range txs {
			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
250 251 252 253 254 255
		}
		content["queued"][account.Hex()] = dump
	}
	return content
}

256
// EthereumAccountAPI provides an API to access accounts managed by this node.
257
// It offers only methods that can retrieve accounts.
258
type EthereumAccountAPI struct {
259 260 261
	am *accounts.Manager
}

262 263 264
// NewEthereumAccountAPI creates a new EthereumAccountAPI.
func NewEthereumAccountAPI(am *accounts.Manager) *EthereumAccountAPI {
	return &EthereumAccountAPI{am: am}
265 266
}

267 268
// Accounts returns the collection of accounts this node manages.
func (s *EthereumAccountAPI) Accounts() []common.Address {
269
	return s.am.Accounts()
270 271
}

272
// PersonalAccountAPI provides an API to access accounts managed by this node.
273 274
// It offers methods to create, (un)lock en list accounts. Some methods accept
// passwords and are therefore considered private by default.
275
type PersonalAccountAPI struct {
276 277 278
	am        *accounts.Manager
	nonceLock *AddrLocker
	b         Backend
279 280
}

281 282 283
// NewPersonalAccountAPI create a new PersonalAccountAPI.
func NewPersonalAccountAPI(b Backend, nonceLock *AddrLocker) *PersonalAccountAPI {
	return &PersonalAccountAPI{
284 285 286
		am:        b.AccountManager(),
		nonceLock: nonceLock,
		b:         b,
287 288 289
	}
}

290
// ListAccounts will return a list of addresses for accounts this node manages.
291
func (s *PersonalAccountAPI) ListAccounts() []common.Address {
292
	return s.am.Accounts()
293 294
}

295 296 297 298 299
// rawWallet is a JSON representation of an accounts.Wallet interface, with its
// data contents extracted into plain fields.
type rawWallet struct {
	URL      string             `json:"url"`
	Status   string             `json:"status"`
300 301
	Failure  string             `json:"failure,omitempty"`
	Accounts []accounts.Account `json:"accounts,omitempty"`
302 303 304
}

// ListWallets will return a list of wallets this node manages.
305
func (s *PersonalAccountAPI) ListWallets() []rawWallet {
306
	wallets := make([]rawWallet, 0) // return [] instead of nil if empty
307
	for _, wallet := range s.am.Wallets() {
308 309 310
		status, failure := wallet.Status()

		raw := rawWallet{
311
			URL:      wallet.URL().String(),
312
			Status:   status,
313
			Accounts: wallet.Accounts(),
314 315 316 317 318
		}
		if failure != nil {
			raw.Failure = failure.Error()
		}
		wallets = append(wallets, raw)
319 320 321 322
	}
	return wallets
}

323 324 325 326
// OpenWallet initiates a hardware wallet opening procedure, establishing a USB
// connection and attempting to authenticate via the provided passphrase. Note,
// the method may return an extra challenge requiring a second open (e.g. the
// Trezor PIN matrix challenge).
327
func (s *PersonalAccountAPI) OpenWallet(url string, passphrase *string) error {
328 329 330 331 332 333 334 335 336 337 338
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return err
	}
	pass := ""
	if passphrase != nil {
		pass = *passphrase
	}
	return wallet.Open(pass)
}

339
// DeriveAccount requests an HD wallet to derive a new account, optionally pinning
340
// it for later reuse.
341
func (s *PersonalAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) {
342 343 344 345
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return accounts.Account{}, err
	}
346 347 348 349
	derivPath, err := accounts.ParseDerivationPath(path)
	if err != nil {
		return accounts.Account{}, err
	}
350 351 352
	if pin == nil {
		pin = new(bool)
	}
353
	return wallet.Derive(derivPath, *pin)
354 355
}

356
// NewAccount will create a new account and returns the address for the new account.
357
func (s *PersonalAccountAPI) NewAccount(password string) (common.Address, error) {
358 359 360 361 362
	ks, err := fetchKeystore(s.am)
	if err != nil {
		return common.Address{}, err
	}
	acc, err := ks.NewAccount(password)
363
	if err == nil {
364 365 366
		log.Info("Your new key was generated", "address", acc.Address)
		log.Warn("Please backup your key file!", "path", acc.URL.Path)
		log.Warn("Please remember your password!")
367 368 369 370 371
		return acc.Address, nil
	}
	return common.Address{}, err
}

372
// fetchKeystore retrieves the encrypted keystore from the account manager.
373 374 375 376 377
func fetchKeystore(am *accounts.Manager) (*keystore.KeyStore, error) {
	if ks := am.Backends(keystore.KeyStoreType); len(ks) > 0 {
		return ks[0].(*keystore.KeyStore), nil
	}
	return nil, errors.New("local keystore not used")
378 379
}

380 381
// ImportRawKey stores the given hex encoded ECDSA key into the key directory,
// encrypting it with the passphrase.
382
func (s *PersonalAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) {
383
	key, err := crypto.HexToECDSA(privkey)
384 385 386
	if err != nil {
		return common.Address{}, err
	}
387 388 389 390 391
	ks, err := fetchKeystore(s.am)
	if err != nil {
		return common.Address{}, err
	}
	acc, err := ks.ImportECDSA(key, password)
392 393 394 395 396 397
	return acc.Address, err
}

// UnlockAccount will unlock the account associated with the given address with
// the given password for duration seconds. If duration is nil it will use a
// default of 300 seconds. It returns an indication if the account was unlocked.
398
func (s *PersonalAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) {
399 400 401 402 403 404 405
	// When the API is exposed by external RPC(http, ws etc), unless the user
	// explicitly specifies to allow the insecure account unlocking, otherwise
	// it is disabled.
	if s.b.ExtRPCEnabled() && !s.b.AccountManager().Config().InsecureUnlockAllowed {
		return false, errors.New("account unlock with HTTP access is forbidden")
	}

406
	const max = uint64(time.Duration(math.MaxInt64) / time.Second)
407
	var d time.Duration
408
	if duration == nil {
409
		d = 300 * time.Second
410 411
	} else if *duration > max {
		return false, errors.New("unlock duration too large")
412 413
	} else {
		d = time.Duration(*duration) * time.Second
414
	}
415 416 417 418 419
	ks, err := fetchKeystore(s.am)
	if err != nil {
		return false, err
	}
	err = ks.TimedUnlock(accounts.Account{Address: addr}, password, d)
420 421 422
	if err != nil {
		log.Warn("Failed account unlock attempt", "address", addr, "err", err)
	}
423
	return err == nil, err
424 425 426
}

// LockAccount will lock the account associated with the given address when it's unlocked.
427
func (s *PersonalAccountAPI) LockAccount(addr common.Address) bool {
428 429 430 431
	if ks, err := fetchKeystore(s.am); err == nil {
		return ks.Lock(addr) == nil
	}
	return false
432 433
}

434
// signTransaction sets defaults and signs the given transaction
435 436
// NOTE: the caller needs to ensure that the nonceLock is held, if applicable,
// and release it after the transaction has been submitted to the tx pool
437
func (s *PersonalAccountAPI) signTransaction(ctx context.Context, args *TransactionArgs, passwd string) (*types.Transaction, error) {
438
	// Look up the wallet containing the requested signer
439
	account := accounts.Account{Address: args.from()}
440 441
	wallet, err := s.am.Find(account)
	if err != nil {
442
		return nil, err
443 444 445
	}
	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
446
		return nil, err
447
	}
448
	// Assemble the transaction and sign with the wallet
449
	tx := args.toTransaction()
450

451
	return wallet.SignTxWithPassphrase(account, passwd, tx, s.b.ChainConfig().ChainID)
452 453 454
}

// SendTransaction will create a transaction from the given arguments and
455 456
// tries to sign it with the key associated with args.From. If the given
// passwd isn't able to decrypt the key it fails.
457
func (s *PersonalAccountAPI) SendTransaction(ctx context.Context, args TransactionArgs, passwd string) (common.Hash, error) {
458
	if args.Nonce == nil {
459
		// Hold the mutex around signing to prevent concurrent assignment of
460
		// the same nonce to multiple accounts.
461 462
		s.nonceLock.LockAddr(args.from())
		defer s.nonceLock.UnlockAddr(args.from())
463
	}
464
	signed, err := s.signTransaction(ctx, &args, passwd)
465
	if err != nil {
466
		log.Warn("Failed transaction send attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err)
467 468
		return common.Hash{}, err
	}
469
	return SubmitTransaction(ctx, s.b, signed)
470 471
}

472
// SignTransaction will create a transaction from the given arguments and
473
// tries to sign it with the key associated with args.From. If the given passwd isn't
474 475
// able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast
// to other nodes
476
func (s *PersonalAccountAPI) SignTransaction(ctx context.Context, args TransactionArgs, passwd string) (*SignTransactionResult, error) {
477 478
	// No need to obtain the noncelock mutex, since we won't be sending this
	// tx into the transaction pool, but right back to the user
479 480 481
	if args.From == nil {
		return nil, fmt.Errorf("sender not specified")
	}
482 483 484
	if args.Gas == nil {
		return nil, fmt.Errorf("gas not specified")
	}
485 486
	if args.GasPrice == nil && (args.MaxFeePerGas == nil || args.MaxPriorityFeePerGas == nil) {
		return nil, fmt.Errorf("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas")
487 488 489 490
	}
	if args.Nonce == nil {
		return nil, fmt.Errorf("nonce not specified")
	}
491
	// Before actually signing the transaction, ensure the transaction fee is reasonable.
492 493
	tx := args.toTransaction()
	if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil {
494 495
		return nil, err
	}
496
	signed, err := s.signTransaction(ctx, &args, passwd)
497
	if err != nil {
498
		log.Warn("Failed transaction sign attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err)
499 500
		return nil, err
	}
501
	data, err := signed.MarshalBinary()
502 503 504 505 506 507
	if err != nil {
		return nil, err
	}
	return &SignTransactionResult{data, signed}, nil
}

508
// Sign calculates an Ethereum ECDSA signature for:
509
// keccak256("\x19Ethereum Signed Message:\n" + len(message) + message))
510
//
511 512 513
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
514 515 516
// The key used to calculate the signature is decrypted with the given password.
//
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign
517
func (s *PersonalAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) {
518 519 520 521 522 523 524 525
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Assemble sign the data with the wallet
526
	signature, err := wallet.SignTextWithPassphrase(account, passwd, data)
527
	if err != nil {
528
		log.Warn("Failed data sign attempt", "address", addr, "err", err)
529 530
		return nil, err
	}
531
	signature[crypto.RecoveryIDOffset] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
532
	return signature, nil
533 534 535 536 537 538 539 540
}

// EcRecover returns the address for the account that was used to create the signature.
// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
// the address of:
// hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message})
// addr = ecrecover(hash, signature)
//
541
// Note, the signature must conform to the secp256k1 curve R, S and V values, where
542
// the V value must be 27 or 28 for legacy reasons.
543
//
544
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
545
func (s *PersonalAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) {
546 547
	if len(sig) != crypto.SignatureLength {
		return common.Address{}, fmt.Errorf("signature must be %d bytes long", crypto.SignatureLength)
548
	}
549
	if sig[crypto.RecoveryIDOffset] != 27 && sig[crypto.RecoveryIDOffset] != 28 {
550
		return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
551
	}
552
	sig[crypto.RecoveryIDOffset] -= 27 // Transform yellow paper V from 27/28 to 0/1
553

554
	rpk, err := crypto.SigToPub(accounts.TextHash(data), sig)
555 556 557
	if err != nil {
		return common.Address{}, err
	}
558
	return crypto.PubkeyToAddress(*rpk), nil
559 560
}

561
// InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key.
562
func (s *PersonalAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) {
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return "", err
	}

	entropy, err := bip39.NewEntropy(256)
	if err != nil {
		return "", err
	}

	mnemonic, err := bip39.NewMnemonic(entropy)
	if err != nil {
		return "", err
	}

	seed := bip39.NewSeed(mnemonic, "")

	switch wallet := wallet.(type) {
	case *scwallet.Wallet:
		return mnemonic, wallet.Initialize(seed)
	default:
584
		return "", fmt.Errorf("specified wallet does not support initialization")
585 586 587
	}
}

588
// Unpair deletes a pairing between wallet and geth.
589
func (s *PersonalAccountAPI) Unpair(ctx context.Context, url string, pin string) error {
590 591 592 593 594 595 596 597 598
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return err
	}

	switch wallet := wallet.(type) {
	case *scwallet.Wallet:
		return wallet.Unpair([]byte(pin))
	default:
599
		return fmt.Errorf("specified wallet does not support pairing")
600 601 602
	}
}

603 604
// BlockChainAPI provides an API to access Ethereum blockchain data.
type BlockChainAPI struct {
605
	b Backend
606 607
}

608 609 610
// NewBlockChainAPI creates a new Ethereum blockchain API.
func NewBlockChainAPI(b Backend) *BlockChainAPI {
	return &BlockChainAPI{b}
611 612
}

613
// ChainId is the EIP-155 replay-protection chain id for the current Ethereum chain config.
614 615 616 617 618
//
// Note, this method does not conform to EIP-695 because the configured chain ID is always
// returned, regardless of the current head block. We used to return an error when the chain
// wasn't synced up to a block where EIP-155 is enabled, but this behavior caused issues
// in CL clients.
619 620
func (api *BlockChainAPI) ChainId() *hexutil.Big {
	return (*hexutil.Big)(api.b.ChainConfig().ChainID)
621 622
}

623
// BlockNumber returns the block number of the chain head.
624
func (s *BlockChainAPI) BlockNumber() hexutil.Uint64 {
625
	header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available
626
	return hexutil.Uint64(header.Number.Uint64())
627 628 629 630 631
}

// GetBalance returns the amount of wei for the given address in the state of the
// given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta
// block numbers are also allowed.
632
func (s *BlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Big, error) {
633
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
634 635 636
	if state == nil || err != nil {
		return nil, err
	}
637
	return (*hexutil.Big)(state.GetBalance(address)), state.Error()
638 639
}

640 641 642 643 644 645 646 647 648 649
// Result structs for GetProof
type AccountResult struct {
	Address      common.Address  `json:"address"`
	AccountProof []string        `json:"accountProof"`
	Balance      *hexutil.Big    `json:"balance"`
	CodeHash     common.Hash     `json:"codeHash"`
	Nonce        hexutil.Uint64  `json:"nonce"`
	StorageHash  common.Hash     `json:"storageHash"`
	StorageProof []StorageResult `json:"storageProof"`
}
650

651 652 653 654 655 656 657
type StorageResult struct {
	Key   string       `json:"key"`
	Value *hexutil.Big `json:"value"`
	Proof []string     `json:"proof"`
}

// GetProof returns the Merkle-proof for a given account and optionally some storage keys.
658
func (s *BlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNrOrHash rpc.BlockNumberOrHash) (*AccountResult, error) {
659
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
660 661 662
	if state == nil || err != nil {
		return nil, err
	}
663 664 665 666
	storageTrie, err := state.StorageTrie(address)
	if err != nil {
		return nil, err
	}
667 668 669 670 671 672 673 674 675 676 677 678 679
	storageHash := types.EmptyRootHash
	codeHash := state.GetCodeHash(address)
	storageProof := make([]StorageResult, len(storageKeys))

	// if we have a storageTrie, (which means the account exists), we can update the storagehash
	if storageTrie != nil {
		storageHash = storageTrie.Hash()
	} else {
		// no storageTrie means the account does not exist, so the codeHash is the hash of an empty bytearray.
		codeHash = crypto.Keccak256Hash(nil)
	}

	// create the proof for the storageKeys
680 681 682 683 684
	for i, hexKey := range storageKeys {
		key, err := decodeHash(hexKey)
		if err != nil {
			return nil, err
		}
685
		if storageTrie != nil {
686
			proof, storageError := state.GetStorageProof(address, key)
687 688 689
			if storageError != nil {
				return nil, storageError
			}
690
			storageProof[i] = StorageResult{hexKey, (*hexutil.Big)(state.GetState(address, key).Big()), toHexSlice(proof)}
691
		} else {
692
			storageProof[i] = StorageResult{hexKey, &hexutil.Big{}, []string{}}
693 694 695 696 697 698 699 700 701 702 703
		}
	}

	// create the accountProof
	accountProof, proofErr := state.GetProof(address)
	if proofErr != nil {
		return nil, proofErr
	}

	return &AccountResult{
		Address:      address,
704
		AccountProof: toHexSlice(accountProof),
705 706 707 708 709 710 711 712
		Balance:      (*hexutil.Big)(state.GetBalance(address)),
		CodeHash:     codeHash,
		Nonce:        hexutil.Uint64(state.GetNonce(address)),
		StorageHash:  storageHash,
		StorageProof: storageProof,
	}, state.Error()
}

713
// decodeHash parses a hex-encoded 32-byte hash. The input may optionally
714
// be prefixed by 0x and can have a byte length up to 32.
715 716 717 718
func decodeHash(s string) (common.Hash, error) {
	if strings.HasPrefix(s, "0x") || strings.HasPrefix(s, "0X") {
		s = s[2:]
	}
719 720 721
	if (len(s) & 1) > 0 {
		s = "0" + s
	}
722 723 724 725 726 727 728 729 730 731
	b, err := hex.DecodeString(s)
	if err != nil {
		return common.Hash{}, fmt.Errorf("hex string invalid")
	}
	if len(b) > 32 {
		return common.Hash{}, fmt.Errorf("hex string too long, want at most 32 bytes")
	}
	return common.BytesToHash(b), nil
}

732 733 734
// GetHeaderByNumber returns the requested canonical block header.
// * When blockNr is -1 the chain head is returned.
// * When blockNr is -2 the pending chain head is returned.
735
func (s *BlockChainAPI) GetHeaderByNumber(ctx context.Context, number rpc.BlockNumber) (map[string]interface{}, error) {
736 737
	header, err := s.b.HeaderByNumber(ctx, number)
	if header != nil && err == nil {
738
		response := s.rpcMarshalHeader(ctx, header)
739 740 741 742 743 744 745 746 747 748 749 750
		if number == rpc.PendingBlockNumber {
			// Pending header need to nil out a few fields
			for _, field := range []string{"hash", "nonce", "miner"} {
				response[field] = nil
			}
		}
		return response, err
	}
	return nil, err
}

// GetHeaderByHash returns the requested header by hash.
751
func (s *BlockChainAPI) GetHeaderByHash(ctx context.Context, hash common.Hash) map[string]interface{} {
752
	header, _ := s.b.HeaderByHash(ctx, hash)
753
	if header != nil {
754
		return s.rpcMarshalHeader(ctx, header)
755 756 757 758 759
	}
	return nil
}

// GetBlockByNumber returns the requested canonical block.
760 761 762 763
//   - When blockNr is -1 the chain head is returned.
//   - When blockNr is -2 the pending chain head is returned.
//   - When fullTx is true all transactions in the block are returned, otherwise
//     only the transaction hash is returned.
764
func (s *BlockChainAPI) GetBlockByNumber(ctx context.Context, number rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) {
765 766
	block, err := s.b.BlockByNumber(ctx, number)
	if block != nil && err == nil {
767
		response, err := s.rpcMarshalBlock(ctx, block, true, fullTx)
768
		if err == nil && number == rpc.PendingBlockNumber {
769
			// Pending blocks need to nil out a few fields
770
			for _, field := range []string{"hash", "nonce", "miner"} {
771 772 773 774 775 776 777 778 779 780
				response[field] = nil
			}
		}
		return response, err
	}
	return nil, err
}

// GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full
// detail, otherwise only the transaction hash is returned.
781
func (s *BlockChainAPI) GetBlockByHash(ctx context.Context, hash common.Hash, fullTx bool) (map[string]interface{}, error) {
782
	block, err := s.b.BlockByHash(ctx, hash)
783
	if block != nil {
784
		return s.rpcMarshalBlock(ctx, block, true, fullTx)
785 786 787 788
	}
	return nil, err
}

789
// GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index.
790
func (s *BlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) {
791 792 793
	block, err := s.b.BlockByNumber(ctx, blockNr)
	if block != nil {
		uncles := block.Uncles()
794
		if index >= hexutil.Uint(len(uncles)) {
795
			log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index)
796 797
			return nil, nil
		}
798
		block = types.NewBlockWithHeader(uncles[index])
799
		return s.rpcMarshalBlock(ctx, block, false, false)
800 801 802 803
	}
	return nil, err
}

804
// GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index.
805
func (s *BlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) {
806
	block, err := s.b.BlockByHash(ctx, blockHash)
807 808
	if block != nil {
		uncles := block.Uncles()
809
		if index >= hexutil.Uint(len(uncles)) {
810
			log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index)
811 812
			return nil, nil
		}
813
		block = types.NewBlockWithHeader(uncles[index])
814
		return s.rpcMarshalBlock(ctx, block, false, false)
815 816 817 818 819
	}
	return nil, err
}

// GetUncleCountByBlockNumber returns number of uncles in the block for the given block number
820
func (s *BlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
821
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
822 823
		n := hexutil.Uint(len(block.Uncles()))
		return &n
824 825 826 827 828
	}
	return nil
}

// GetUncleCountByBlockHash returns number of uncles in the block for the given block hash
829
func (s *BlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
830
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
831 832
		n := hexutil.Uint(len(block.Uncles()))
		return &n
833 834 835 836 837
	}
	return nil
}

// GetCode returns the code stored at the given address in the state for the given block number.
838
func (s *BlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
839
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
840
	if state == nil || err != nil {
841
		return nil, err
842
	}
843 844
	code := state.GetCode(address)
	return code, state.Error()
845 846 847 848 849
}

// GetStorageAt returns the storage from the state at the given address, key and
// block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block
// numbers are also allowed.
850
func (s *BlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, hexKey string, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
851
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
852
	if state == nil || err != nil {
853
		return nil, err
854
	}
855 856 857 858 859
	key, err := decodeHash(hexKey)
	if err != nil {
		return nil, fmt.Errorf("unable to decode storage key: %s", err)
	}
	res := state.GetState(address, key)
860
	return res[:], state.Error()
861 862
}

863 864
// OverrideAccount indicates the overriding fields of account during the execution
// of a message call.
865 866 867 868
// Note, state and stateDiff can't be specified at the same time. If state is
// set, message execution will only use the data in the given state. Otherwise
// if statDiff is set, all diff will be applied first and then execute the call
// message.
869
type OverrideAccount struct {
870 871 872 873 874 875 876
	Nonce     *hexutil.Uint64              `json:"nonce"`
	Code      *hexutil.Bytes               `json:"code"`
	Balance   **hexutil.Big                `json:"balance"`
	State     *map[common.Hash]common.Hash `json:"state"`
	StateDiff *map[common.Hash]common.Hash `json:"stateDiff"`
}

877
// StateOverride is the collection of overridden accounts.
878
type StateOverride map[common.Address]OverrideAccount
879

880 881 882 883
// Apply overrides the fields of specified accounts into the given state.
func (diff *StateOverride) Apply(state *state.StateDB) error {
	if diff == nil {
		return nil
884
	}
885
	for addr, account := range *diff {
886 887 888 889 890 891 892 893 894 895 896 897 898
		// Override account nonce.
		if account.Nonce != nil {
			state.SetNonce(addr, uint64(*account.Nonce))
		}
		// Override account(contract) code.
		if account.Code != nil {
			state.SetCode(addr, *account.Code)
		}
		// Override account balance.
		if account.Balance != nil {
			state.SetBalance(addr, (*big.Int)(*account.Balance))
		}
		if account.State != nil && account.StateDiff != nil {
899
			return fmt.Errorf("account %s has both 'state' and 'stateDiff'", addr.Hex())
900 901 902 903 904 905 906 907 908 909 910 911
		}
		// Replace entire state if caller requires.
		if account.State != nil {
			state.SetStorage(addr, *account.State)
		}
		// Apply state diff into specified accounts.
		if account.StateDiff != nil {
			for key, value := range *account.StateDiff {
				state.SetState(addr, key, value)
			}
		}
	}
912 913 914 915
	// Now finalize the changes. Finalize is normally performed between transactions.
	// By using finalize, the overrides are semantically behaving as
	// if they were created in a transaction just before the tracing occur.
	state.Finalise(false)
916 917 918
	return nil
}

919 920 921 922
// BlockOverrides is a set of header fields to override.
type BlockOverrides struct {
	Number     *hexutil.Big
	Difficulty *hexutil.Big
923
	Time       *hexutil.Uint64
924 925 926
	GasLimit   *hexutil.Uint64
	Coinbase   *common.Address
	Random     *common.Hash
927
	BaseFee    *hexutil.Big
928 929 930 931 932 933 934 935 936 937 938 939 940 941
}

// Apply overrides the given header fields into the given block context.
func (diff *BlockOverrides) Apply(blockCtx *vm.BlockContext) {
	if diff == nil {
		return
	}
	if diff.Number != nil {
		blockCtx.BlockNumber = diff.Number.ToInt()
	}
	if diff.Difficulty != nil {
		blockCtx.Difficulty = diff.Difficulty.ToInt()
	}
	if diff.Time != nil {
942
		blockCtx.Time = uint64(*diff.Time)
943 944 945 946 947 948 949 950 951 952
	}
	if diff.GasLimit != nil {
		blockCtx.GasLimit = uint64(*diff.GasLimit)
	}
	if diff.Coinbase != nil {
		blockCtx.Coinbase = *diff.Coinbase
	}
	if diff.Random != nil {
		blockCtx.Random = diff.Random
	}
953 954 955
	if diff.BaseFee != nil {
		blockCtx.BaseFee = diff.BaseFee.ToInt()
	}
956 957
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
// ChainContextBackend provides methods required to implement ChainContext.
type ChainContextBackend interface {
	Engine() consensus.Engine
	HeaderByNumber(context.Context, rpc.BlockNumber) (*types.Header, error)
}

// ChainContext is an implementation of core.ChainContext. It's main use-case
// is instantiating a vm.BlockContext without having access to the BlockChain object.
type ChainContext struct {
	b   ChainContextBackend
	ctx context.Context
}

// NewChainContext creates a new ChainContext object.
func NewChainContext(ctx context.Context, backend ChainContextBackend) *ChainContext {
	return &ChainContext{ctx: ctx, b: backend}
}

func (context *ChainContext) Engine() consensus.Engine {
	return context.b.Engine()
}

func (context *ChainContext) GetHeader(hash common.Hash, number uint64) *types.Header {
	// This method is called to get the hash for a block number when executing the BLOCKHASH
	// opcode. Hence no need to search for non-canonical blocks.
	header, err := context.b.HeaderByNumber(context.ctx, rpc.BlockNumber(number))
	if err != nil || header.Hash() != hash {
		return nil
	}
	return header
}

func DoCall(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) {
991 992 993 994 995 996 997 998 999
	defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now())

	state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
	if state == nil || err != nil {
		return nil, err
	}
	if err := overrides.Apply(state); err != nil {
		return nil, err
	}
1000 1001 1002
	// Setup context so it may be cancelled the call has completed
	// or, in case of unmetered gas, setup a context with a timeout.
	var cancel context.CancelFunc
1003 1004
	if timeout > 0 {
		ctx, cancel = context.WithTimeout(ctx, timeout)
1005 1006
	} else {
		ctx, cancel = context.WithCancel(ctx)
1007
	}
1008 1009
	// Make sure the context is cancelled when the call has completed
	// this makes sure resources are cleaned up.
1010
	defer cancel()
1011 1012

	// Get a new instance of the EVM.
1013 1014 1015 1016
	msg, err := args.ToMessage(globalGasCap, header.BaseFee)
	if err != nil {
		return nil, err
	}
1017 1018 1019 1020 1021
	blockCtx := core.NewEVMBlockContext(header, NewChainContext(ctx, b), nil)
	if blockOverrides != nil {
		blockOverrides.Apply(&blockCtx)
	}
	evm, vmError, err := b.GetEVM(ctx, msg, state, header, &vm.Config{NoBaseFee: true}, &blockCtx)
1022
	if err != nil {
1023
		return nil, err
1024 1025 1026 1027
	}
	// Wait for the context to be done and cancel the evm. Even if the
	// EVM has finished, cancelling may be done (repeatedly)
	go func() {
1028 1029
		<-ctx.Done()
		evm.Cancel()
1030 1031
	}()

1032
	// Execute the message.
1033
	gp := new(core.GasPool).AddGas(math.MaxUint64)
1034
	result, err := core.ApplyMessage(evm, msg, gp)
1035
	if err := vmError(); err != nil {
1036
		return nil, err
1037
	}
1038

1039 1040
	// If the timer caused an abort, return an appropriate error message
	if evm.Cancelled() {
1041
		return nil, fmt.Errorf("execution aborted (timeout = %v)", timeout)
1042
	}
1043
	if err != nil {
1044
		return result, fmt.Errorf("err: %w (supplied gas %d)", err, msg.GasLimit)
1045 1046
	}
	return result, nil
1047 1048
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
func newRevertError(result *core.ExecutionResult) *revertError {
	reason, errUnpack := abi.UnpackRevert(result.Revert())
	err := errors.New("execution reverted")
	if errUnpack == nil {
		err = fmt.Errorf("execution reverted: %v", reason)
	}
	return &revertError{
		error:  err,
		reason: hexutil.Encode(result.Revert()),
	}
}

1061
// revertError is an API error that encompasses an EVM revertal with JSON error
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
// code and a binary data blob.
type revertError struct {
	error
	reason string // revert reason hex encoded
}

// ErrorCode returns the JSON error code for a revertal.
// See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal
func (e *revertError) ErrorCode() int {
	return 3
}

// ErrorData returns the hex encoded revert reason.
func (e *revertError) ErrorData() interface{} {
	return e.reason
}

1079
// Call executes the given transaction on the state for the given block number.
1080 1081 1082 1083 1084
//
// Additionally, the caller can specify a batch of contract for fields overriding.
//
// Note, this function doesn't make and changes in the state/blockchain and is
// useful to execute and retrieve values.
1085 1086
func (s *BlockChainAPI) Call(ctx context.Context, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides) (hexutil.Bytes, error) {
	result, err := DoCall(ctx, s.b, args, blockNrOrHash, overrides, blockOverrides, s.b.RPCEVMTimeout(), s.b.RPCGasCap())
1087 1088 1089
	if err != nil {
		return nil, err
	}
1090 1091 1092
	// If the result contains a revert reason, try to unpack and return it.
	if len(result.Revert()) > 0 {
		return nil, newRevertError(result)
1093
	}
1094
	return result.Return(), result.Err
1095 1096
}

1097
func DoEstimateGas(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, gasCap uint64) (hexutil.Uint64, error) {
1098
	// Binary search the gas requirement, as it may be higher than the amount used
1099
	var (
1100 1101 1102
		lo  uint64 = params.TxGas - 1
		hi  uint64
		cap uint64
1103
	)
1104 1105 1106 1107 1108
	// Use zero address if sender unspecified.
	if args.From == nil {
		args.From = new(common.Address)
	}
	// Determine the highest gas limit can be used during the estimation.
1109 1110
	if args.Gas != nil && uint64(*args.Gas) >= params.TxGas {
		hi = uint64(*args.Gas)
1111
	} else {
1112
		// Retrieve the block to act as the gas ceiling
1113
		block, err := b.BlockByNumberOrHash(ctx, blockNrOrHash)
1114
		if err != nil {
1115
			return 0, err
1116
		}
1117 1118 1119
		if block == nil {
			return 0, errors.New("block not found")
		}
1120
		hi = block.GasLimit()
1121
	}
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	// Normalize the max fee per gas the call is willing to spend.
	var feeCap *big.Int
	if args.GasPrice != nil && (args.MaxFeePerGas != nil || args.MaxPriorityFeePerGas != nil) {
		return 0, errors.New("both gasPrice and (maxFeePerGas or maxPriorityFeePerGas) specified")
	} else if args.GasPrice != nil {
		feeCap = args.GasPrice.ToInt()
	} else if args.MaxFeePerGas != nil {
		feeCap = args.MaxFeePerGas.ToInt()
	} else {
		feeCap = common.Big0
	}
1133
	// Recap the highest gas limit with account's available balance.
1134
	if feeCap.BitLen() != 0 {
1135 1136 1137 1138 1139 1140 1141 1142
		state, _, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return 0, err
		}
		balance := state.GetBalance(*args.From) // from can't be nil
		available := new(big.Int).Set(balance)
		if args.Value != nil {
			if args.Value.ToInt().Cmp(available) >= 0 {
1143
				return 0, core.ErrInsufficientFundsForTransfer
1144 1145 1146
			}
			available.Sub(available, args.Value.ToInt())
		}
1147
		allowance := new(big.Int).Div(available, feeCap)
1148 1149 1150

		// If the allowance is larger than maximum uint64, skip checking
		if allowance.IsUint64() && hi > allowance.Uint64() {
1151 1152 1153 1154 1155
			transfer := args.Value
			if transfer == nil {
				transfer = new(hexutil.Big)
			}
			log.Warn("Gas estimation capped by limited funds", "original", hi, "balance", balance,
1156
				"sent", transfer.ToInt(), "maxFeePerGas", feeCap, "fundable", allowance)
1157 1158 1159 1160
			hi = allowance.Uint64()
		}
	}
	// Recap the highest gas allowance with specified gascap.
1161
	if gasCap != 0 && hi > gasCap {
1162
		log.Warn("Caller gas above allowance, capping", "requested", hi, "cap", gasCap)
1163
		hi = gasCap
1164
	}
1165
	cap = hi
1166

1167
	// Create a helper to check if a gas allowance results in an executable transaction
1168
	executable := func(gas uint64) (bool, *core.ExecutionResult, error) {
1169
		args.Gas = (*hexutil.Uint64)(&gas)
1170

1171
		result, err := DoCall(ctx, b, args, blockNrOrHash, nil, nil, 0, gasCap)
1172
		if err != nil {
1173
			if errors.Is(err, core.ErrIntrinsicGas) {
1174 1175 1176
				return true, nil, nil // Special case, raise gas limit
			}
			return true, nil, err // Bail out
1177
		}
1178
		return result.Failed(), result, nil
1179 1180 1181 1182
	}
	// Execute the binary search and hone in on an executable gas limit
	for lo+1 < hi {
		mid := (hi + lo) / 2
1183 1184 1185 1186
		failed, _, err := executable(mid)

		// If the error is not nil(consensus error), it means the provided message
		// call or transaction will never be accepted no matter how much gas it is
1187
		// assigned. Return the error directly, don't struggle any more.
1188 1189 1190 1191
		if err != nil {
			return 0, err
		}
		if failed {
1192
			lo = mid
1193 1194 1195 1196 1197 1198
		} else {
			hi = mid
		}
	}
	// Reject the transaction as invalid if it still fails at the highest allowance
	if hi == cap {
1199 1200 1201 1202 1203 1204 1205
		failed, result, err := executable(hi)
		if err != nil {
			return 0, err
		}
		if failed {
			if result != nil && result.Err != vm.ErrOutOfGas {
				if len(result.Revert()) > 0 {
1206
					return 0, newRevertError(result)
1207
				}
1208
				return 0, result.Err
1209 1210
			}
			// Otherwise, the specified gas cap is too low
1211
			return 0, fmt.Errorf("gas required exceeds allowance (%d)", cap)
1212 1213
		}
	}
1214
	return hexutil.Uint64(hi), nil
1215 1216
}

1217 1218
// EstimateGas returns an estimate of the amount of gas needed to execute the
// given transaction against the current pending block.
1219
func (s *BlockChainAPI) EstimateGas(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (hexutil.Uint64, error) {
1220 1221 1222 1223 1224
	bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber)
	if blockNrOrHash != nil {
		bNrOrHash = *blockNrOrHash
	}
	return DoEstimateGas(ctx, s.b, args, bNrOrHash, s.b.RPCGasCap())
1225 1226
}

1227
// RPCMarshalHeader converts the given header to the RPC output .
1228
func RPCMarshalHeader(head *types.Header) map[string]interface{} {
1229
	result := map[string]interface{}{
1230
		"number":           (*hexutil.Big)(head.Number),
1231
		"hash":             head.Hash(),
1232 1233 1234 1235 1236 1237
		"parentHash":       head.ParentHash,
		"nonce":            head.Nonce,
		"mixHash":          head.MixDigest,
		"sha3Uncles":       head.UncleHash,
		"logsBloom":        head.Bloom,
		"stateRoot":        head.Root,
1238
		"miner":            head.Coinbase,
1239
		"difficulty":       (*hexutil.Big)(head.Difficulty),
1240
		"extraData":        hexutil.Bytes(head.Extra),
1241
		"size":             hexutil.Uint64(head.Size()),
1242 1243
		"gasLimit":         hexutil.Uint64(head.GasLimit),
		"gasUsed":          hexutil.Uint64(head.GasUsed),
1244
		"timestamp":        hexutil.Uint64(head.Time),
1245
		"transactionsRoot": head.TxHash,
1246
		"receiptsRoot":     head.ReceiptHash,
1247
	}
1248 1249 1250 1251 1252

	if head.BaseFee != nil {
		result["baseFeePerGas"] = (*hexutil.Big)(head.BaseFee)
	}

1253 1254 1255 1256
	if head.WithdrawalsHash != nil {
		result["withdrawalsRoot"] = head.WithdrawalsHash
	}

1257
	return result
1258 1259 1260 1261 1262
}

// RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are
// returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
// transaction hashes.
1263
func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool, config *params.ChainConfig) (map[string]interface{}, error) {
1264
	fields := RPCMarshalHeader(block.Header())
1265
	fields["size"] = hexutil.Uint64(block.Size())
1266 1267 1268 1269 1270 1271 1272

	if inclTx {
		formatTx := func(tx *types.Transaction) (interface{}, error) {
			return tx.Hash(), nil
		}
		if fullTx {
			formatTx = func(tx *types.Transaction) (interface{}, error) {
1273
				return newRPCTransactionFromBlockHash(block, tx.Hash(), config), nil
1274 1275
			}
		}
1276
		txs := block.Transactions()
1277 1278
		transactions := make([]interface{}, len(txs))
		var err error
1279
		for i, tx := range txs {
1280 1281 1282 1283 1284 1285
			if transactions[i], err = formatTx(tx); err != nil {
				return nil, err
			}
		}
		fields["transactions"] = transactions
	}
1286
	uncles := block.Uncles()
1287 1288 1289 1290 1291
	uncleHashes := make([]common.Hash, len(uncles))
	for i, uncle := range uncles {
		uncleHashes[i] = uncle.Hash()
	}
	fields["uncles"] = uncleHashes
1292 1293 1294
	if block.Header().WithdrawalsHash != nil {
		fields["withdrawals"] = block.Withdrawals()
	}
1295 1296 1297
	return fields, nil
}

1298
// rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires
1299 1300
// a `BlockchainAPI`.
func (s *BlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} {
1301
	fields := RPCMarshalHeader(header)
1302
	fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, header.Hash()))
1303 1304 1305 1306
	return fields
}

// rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires
1307 1308
// a `BlockchainAPI`.
func (s *BlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
1309
	fields, err := RPCMarshalBlock(b, inclTx, fullTx, s.b.ChainConfig())
1310 1311 1312
	if err != nil {
		return nil, err
	}
1313
	if inclTx {
1314
		fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, b.Hash()))
1315
	}
1316 1317 1318
	return fields, err
}

1319 1320
// RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction
type RPCTransaction struct {
1321 1322 1323 1324 1325
	BlockHash        *common.Hash      `json:"blockHash"`
	BlockNumber      *hexutil.Big      `json:"blockNumber"`
	From             common.Address    `json:"from"`
	Gas              hexutil.Uint64    `json:"gas"`
	GasPrice         *hexutil.Big      `json:"gasPrice"`
1326 1327
	GasFeeCap        *hexutil.Big      `json:"maxFeePerGas,omitempty"`
	GasTipCap        *hexutil.Big      `json:"maxPriorityFeePerGas,omitempty"`
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	Hash             common.Hash       `json:"hash"`
	Input            hexutil.Bytes     `json:"input"`
	Nonce            hexutil.Uint64    `json:"nonce"`
	To               *common.Address   `json:"to"`
	TransactionIndex *hexutil.Uint64   `json:"transactionIndex"`
	Value            *hexutil.Big      `json:"value"`
	Type             hexutil.Uint64    `json:"type"`
	Accesses         *types.AccessList `json:"accessList,omitempty"`
	ChainID          *hexutil.Big      `json:"chainId,omitempty"`
	V                *hexutil.Big      `json:"v"`
	R                *hexutil.Big      `json:"r"`
	S                *hexutil.Big      `json:"s"`
1340 1341
}

1342 1343
// newRPCTransaction returns a transaction that will serialize to the RPC
// representation, with the given location metadata set (if available).
1344 1345
func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, blockTime uint64, index uint64, baseFee *big.Int, config *params.ChainConfig) *RPCTransaction {
	signer := types.MakeSigner(config, new(big.Int).SetUint64(blockNumber), blockTime)
1346
	from, _ := types.Sender(signer, tx)
1347
	v, r, s := tx.RawSignatureValues()
1348
	result := &RPCTransaction{
1349
		Type:     hexutil.Uint64(tx.Type()),
1350
		From:     from,
1351
		Gas:      hexutil.Uint64(tx.Gas()),
1352
		GasPrice: (*hexutil.Big)(tx.GasPrice()),
1353
		Hash:     tx.Hash(),
1354
		Input:    hexutil.Bytes(tx.Data()),
1355
		Nonce:    hexutil.Uint64(tx.Nonce()),
1356
		To:       tx.To(),
1357 1358 1359 1360
		Value:    (*hexutil.Big)(tx.Value()),
		V:        (*hexutil.Big)(v),
		R:        (*hexutil.Big)(r),
		S:        (*hexutil.Big)(s),
1361
	}
1362
	if blockHash != (common.Hash{}) {
1363
		result.BlockHash = &blockHash
1364
		result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber))
1365
		result.TransactionIndex = (*hexutil.Uint64)(&index)
1366
	}
1367
	switch tx.Type() {
1368 1369
	case types.LegacyTxType:
		// if a legacy transaction has an EIP-155 chain id, include it explicitly
1370
		if id := tx.ChainId(); id.Sign() != 0 {
1371 1372
			result.ChainID = (*hexutil.Big)(id)
		}
1373 1374 1375 1376 1377
	case types.AccessListTxType:
		al := tx.AccessList()
		result.Accesses = &al
		result.ChainID = (*hexutil.Big)(tx.ChainId())
	case types.DynamicFeeTxType:
1378 1379 1380
		al := tx.AccessList()
		result.Accesses = &al
		result.ChainID = (*hexutil.Big)(tx.ChainId())
1381 1382
		result.GasFeeCap = (*hexutil.Big)(tx.GasFeeCap())
		result.GasTipCap = (*hexutil.Big)(tx.GasTipCap())
1383 1384
		// if the transaction has been mined, compute the effective gas price
		if baseFee != nil && blockHash != (common.Hash{}) {
1385 1386
			// price = min(tip, gasFeeCap - baseFee) + baseFee
			price := math.BigMin(new(big.Int).Add(tx.GasTipCap(), baseFee), tx.GasFeeCap())
1387 1388
			result.GasPrice = (*hexutil.Big)(price)
		} else {
1389
			result.GasPrice = (*hexutil.Big)(tx.GasFeeCap())
1390
		}
1391
	}
1392
	return result
1393 1394
}

1395 1396
// NewRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation
func NewRPCPendingTransaction(tx *types.Transaction, current *types.Header, config *params.ChainConfig) *RPCTransaction {
1397 1398 1399 1400 1401
	var (
		baseFee     *big.Int
		blockNumber = uint64(0)
		blockTime   = uint64(0)
	)
1402 1403
	if current != nil {
		baseFee = misc.CalcBaseFee(config, current)
1404
		blockNumber = current.Number.Uint64()
1405
		blockTime = current.Time
1406
	}
1407
	return newRPCTransaction(tx, common.Hash{}, blockNumber, blockTime, 0, baseFee, config)
1408 1409
}

1410
// newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation.
1411
func newRPCTransactionFromBlockIndex(b *types.Block, index uint64, config *params.ChainConfig) *RPCTransaction {
1412 1413 1414
	txs := b.Transactions()
	if index >= uint64(len(txs)) {
		return nil
1415
	}
1416
	return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), b.Time(), index, b.BaseFee(), config)
1417
}
1418

1419 1420 1421 1422 1423 1424
// newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index.
func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes {
	txs := b.Transactions()
	if index >= uint64(len(txs)) {
		return nil
	}
1425
	blob, _ := txs[index].MarshalBinary()
1426
	return blob
1427 1428
}

1429
// newRPCTransactionFromBlockHash returns a transaction that will serialize to the RPC representation.
1430
func newRPCTransactionFromBlockHash(b *types.Block, hash common.Hash, config *params.ChainConfig) *RPCTransaction {
1431
	for idx, tx := range b.Transactions() {
1432
		if tx.Hash() == hash {
1433
			return newRPCTransactionFromBlockIndex(b, uint64(idx), config)
1434 1435
		}
	}
1436
	return nil
1437 1438
}

1439
// accessListResult returns an optional accesslist
1440
// It's the result of the `debug_createAccessList` RPC call.
1441 1442 1443 1444 1445 1446 1447
// It contains an error if the transaction itself failed.
type accessListResult struct {
	Accesslist *types.AccessList `json:"accessList"`
	Error      string            `json:"error,omitempty"`
	GasUsed    hexutil.Uint64    `json:"gasUsed"`
}

1448
// CreateAccessList creates an EIP-2930 type AccessList for the given transaction.
1449
// Reexec and BlockNrOrHash can be specified to create the accessList on top of a certain state.
1450
func (s *BlockChainAPI) CreateAccessList(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (*accessListResult, error) {
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber)
	if blockNrOrHash != nil {
		bNrOrHash = *blockNrOrHash
	}
	acl, gasUsed, vmerr, err := AccessList(ctx, s.b, bNrOrHash, args)
	if err != nil {
		return nil, err
	}
	result := &accessListResult{Accesslist: &acl, GasUsed: hexutil.Uint64(gasUsed)}
	if vmerr != nil {
		result.Error = vmerr.Error()
	}
	return result, nil
}

// AccessList creates an access list for the given transaction.
// If the accesslist creation fails an error is returned.
// If the transaction itself fails, an vmErr is returned.
1469
func AccessList(ctx context.Context, b Backend, blockNrOrHash rpc.BlockNumberOrHash, args TransactionArgs) (acl types.AccessList, gasUsed uint64, vmErr error, err error) {
1470 1471 1472 1473 1474
	// Retrieve the execution context
	db, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
	if db == nil || err != nil {
		return nil, 0, nil, err
	}
1475 1476 1477 1478 1479
	// If the gas amount is not set, default to RPC gas cap.
	if args.Gas == nil {
		tmp := hexutil.Uint64(b.RPCGasCap())
		args.Gas = &tmp
	}
1480 1481 1482 1483 1484 1485 1486 1487 1488

	// Ensure any missing fields are filled, extract the recipient and input data
	if err := args.setDefaults(ctx, b); err != nil {
		return nil, 0, nil, err
	}
	var to common.Address
	if args.To != nil {
		to = *args.To
	} else {
1489
		to = crypto.CreateAddress(args.from(), uint64(*args.Nonce))
1490
	}
1491
	isPostMerge := header.Difficulty.Cmp(common.Big0) == 0
1492
	// Retrieve the precompiles since they don't need to be added to the access list
1493
	precompiles := vm.ActivePrecompiles(b.ChainConfig().Rules(header.Number, isPostMerge, header.Time))
1494 1495

	// Create an initial tracer
1496
	prevTracer := logger.NewAccessListTracer(nil, args.from(), to, precompiles)
1497
	if args.AccessList != nil {
1498
		prevTracer = logger.NewAccessListTracer(*args.AccessList, args.from(), to, precompiles)
1499 1500 1501 1502 1503 1504 1505 1506
	}
	for {
		// Retrieve the current access list to expand
		accessList := prevTracer.AccessList()
		log.Trace("Creating access list", "input", accessList)

		// Copy the original db so we don't modify it
		statedb := db.Copy()
1507 1508 1509 1510 1511 1512
		// Set the accesslist to the last al
		args.AccessList = &accessList
		msg, err := args.ToMessage(b.RPCGasCap(), header.BaseFee)
		if err != nil {
			return nil, 0, nil, err
		}
1513 1514

		// Apply the transaction with the access list tracer
1515
		tracer := logger.NewAccessListTracer(accessList, args.from(), to, precompiles)
1516
		config := vm.Config{Tracer: tracer, NoBaseFee: true}
1517
		vmenv, _, err := b.GetEVM(ctx, msg, statedb, header, &config, nil)
1518 1519 1520
		if err != nil {
			return nil, 0, nil, err
		}
1521
		res, err := core.ApplyMessage(vmenv, msg, new(core.GasPool).AddGas(msg.GasLimit))
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		if err != nil {
			return nil, 0, nil, fmt.Errorf("failed to apply transaction: %v err: %v", args.toTransaction().Hash(), err)
		}
		if tracer.Equal(prevTracer) {
			return accessList, res.UsedGas, res.Err, nil
		}
		prevTracer = tracer
	}
}

1532 1533
// TransactionAPI exposes methods for reading and creating transaction data.
type TransactionAPI struct {
1534 1535
	b         Backend
	nonceLock *AddrLocker
1536
	signer    types.Signer
1537 1538
}

1539 1540
// NewTransactionAPI creates a new RPC service with methods for interacting with transactions.
func NewTransactionAPI(b Backend, nonceLock *AddrLocker) *TransactionAPI {
1541 1542 1543
	// The signer used by the API should always be the 'latest' known one because we expect
	// signers to be backwards-compatible with old transactions.
	signer := types.LatestSigner(b.ChainConfig())
1544
	return &TransactionAPI{b, nonceLock, signer}
1545 1546 1547
}

// GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number.
1548
func (s *TransactionAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
1549
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1550 1551
		n := hexutil.Uint(len(block.Transactions()))
		return &n
1552 1553 1554 1555 1556
	}
	return nil
}

// GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash.
1557
func (s *TransactionAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
1558
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1559 1560
		n := hexutil.Uint(len(block.Transactions()))
		return &n
1561 1562 1563 1564 1565
	}
	return nil
}

// GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index.
1566
func (s *TransactionAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction {
1567
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1568
		return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig())
1569
	}
1570
	return nil
1571 1572 1573
}

// GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index.
1574
func (s *TransactionAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction {
1575
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1576
		return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig())
1577
	}
1578
	return nil
1579 1580
}

1581
// GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index.
1582
func (s *TransactionAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes {
1583
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1584
		return newRPCRawTransactionFromBlockIndex(block, uint64(index))
1585
	}
1586
	return nil
1587 1588 1589
}

// GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index.
1590
func (s *TransactionAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes {
1591
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1592
		return newRPCRawTransactionFromBlockIndex(block, uint64(index))
1593
	}
1594
	return nil
1595 1596
}

1597
// GetTransactionCount returns the number of transactions the given address has sent for the given block number
1598
func (s *TransactionAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) {
1599
	// Ask transaction pool for the nonce which includes pending transactions
1600
	if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber {
1601 1602 1603 1604 1605 1606 1607
		nonce, err := s.b.GetPoolNonce(ctx, address)
		if err != nil {
			return nil, err
		}
		return (*hexutil.Uint64)(&nonce), nil
	}
	// Resolve block number and use its state to ask for the nonce
1608
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
1609 1610 1611
	if state == nil || err != nil {
		return nil, err
	}
1612 1613
	nonce := state.GetNonce(address)
	return (*hexutil.Uint64)(&nonce), state.Error()
1614 1615 1616
}

// GetTransactionByHash returns the transaction for the given hash
1617
func (s *TransactionAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) {
1618
	// Try to return an already finalized transaction
1619 1620 1621 1622 1623
	tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
		return nil, err
	}
	if tx != nil {
1624 1625 1626 1627
		header, err := s.b.HeaderByHash(ctx, blockHash)
		if err != nil {
			return nil, err
		}
1628
		return newRPCTransaction(tx, blockHash, blockNumber, header.Time, index, header.BaseFee, s.b.ChainConfig()), nil
1629
	}
1630 1631
	// No finalized transaction, try to retrieve it from the pool
	if tx := s.b.GetPoolTransaction(hash); tx != nil {
1632
		return NewRPCPendingTransaction(tx, s.b.CurrentHeader(), s.b.ChainConfig()), nil
1633
	}
1634

1635
	// Transaction unknown, return as such
1636
	return nil, nil
1637 1638
}

1639
// GetRawTransactionByHash returns the bytes of the transaction for the given hash.
1640
func (s *TransactionAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
1641
	// Retrieve a finalized transaction, or a pooled otherwise
1642 1643 1644 1645 1646
	tx, _, _, _, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
		return nil, err
	}
	if tx == nil {
1647 1648 1649 1650
		if tx = s.b.GetPoolTransaction(hash); tx == nil {
			// Transaction not found anywhere, abort
			return nil, nil
		}
1651
	}
1652
	// Serialize to RLP and return
1653
	return tx.MarshalBinary()
1654 1655
}

1656
// GetTransactionReceipt returns the transaction receipt for the given transaction hash.
1657
func (s *TransactionAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) {
1658 1659
	tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
1660 1661
		// When the transaction doesn't exist, the RPC method should return JSON null
		// as per specification.
1662
		return nil, nil
1663
	}
1664 1665 1666 1667
	header, err := s.b.HeaderByHash(ctx, blockHash)
	if err != nil {
		return nil, err
	}
1668 1669 1670 1671
	receipts, err := s.b.GetReceipts(ctx, blockHash)
	if err != nil {
		return nil, err
	}
1672
	if uint64(len(receipts)) <= index {
1673
		return nil, nil
1674
	}
1675
	receipt := receipts[index]
1676

1677
	// Derive the sender.
1678
	signer := types.MakeSigner(s.b.ChainConfig(), header.Number, header.Time)
1679
	from, _ := types.Sender(signer, tx)
1680 1681

	fields := map[string]interface{}{
1682 1683
		"blockHash":         blockHash,
		"blockNumber":       hexutil.Uint64(blockNumber),
1684
		"transactionHash":   hash,
1685
		"transactionIndex":  hexutil.Uint64(index),
1686 1687
		"from":              from,
		"to":                tx.To(),
1688 1689
		"gasUsed":           hexutil.Uint64(receipt.GasUsed),
		"cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed),
1690 1691
		"contractAddress":   nil,
		"logs":              receipt.Logs,
1692
		"logsBloom":         receipt.Bloom,
1693
		"type":              hexutil.Uint(tx.Type()),
1694
		"effectiveGasPrice": (*hexutil.Big)(receipt.EffectiveGasPrice),
1695
	}
1696

1697 1698 1699 1700
	// Assign receipt status or post state.
	if len(receipt.PostState) > 0 {
		fields["root"] = hexutil.Bytes(receipt.PostState)
	} else {
1701
		fields["status"] = hexutil.Uint(receipt.Status)
1702
	}
1703
	if receipt.Logs == nil {
1704
		fields["logs"] = []*types.Log{}
1705
	}
1706

1707
	// If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation
1708
	if receipt.ContractAddress != (common.Address{}) {
1709 1710 1711 1712 1713 1714
		fields["contractAddress"] = receipt.ContractAddress
	}
	return fields, nil
}

// sign is a helper function that signs a transaction with the private key of the given address.
1715
func (s *TransactionAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) {
1716 1717 1718 1719 1720 1721 1722 1723
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Request the wallet to sign the transaction
1724
	return wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
1725 1726
}

1727 1728
// SubmitTransaction is a helper function that submits tx to txPool and logs a message.
func SubmitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) {
1729 1730
	// If the transaction fee cap is already specified, ensure the
	// fee of the given transaction is _reasonable_.
1731 1732
	if err := checkTxFee(tx.GasPrice(), tx.Gas(), b.RPCTxFeeCap()); err != nil {
		return common.Hash{}, err
1733
	}
1734 1735 1736 1737
	if !b.UnprotectedAllowed() && !tx.Protected() {
		// Ensure only eip155 signed transactions are submitted if EIP155Required is set.
		return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC")
	}
1738
	if err := b.SendTx(ctx, tx); err != nil {
1739 1740
		return common.Hash{}, err
	}
1741
	// Print a log with full tx details for manual investigations and interventions
1742 1743
	head := b.CurrentBlock()
	signer := types.MakeSigner(b.ChainConfig(), head.Number, head.Time)
1744 1745 1746 1747 1748
	from, err := types.Sender(signer, tx)
	if err != nil {
		return common.Hash{}, err
	}

1749 1750
	if tx.To() == nil {
		addr := crypto.CreateAddress(from, tx.Nonce())
1751
		log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "contract", addr.Hex(), "value", tx.Value())
1752
	} else {
1753
		log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "recipient", tx.To(), "value", tx.Value())
1754
	}
1755
	return tx.Hash(), nil
1756 1757 1758 1759
}

// SendTransaction creates a transaction for the given argument, sign it and submit it to the
// transaction pool.
1760
func (s *TransactionAPI) SendTransaction(ctx context.Context, args TransactionArgs) (common.Hash, error) {
1761
	// Look up the wallet containing the requested signer
1762
	account := accounts.Account{Address: args.from()}
1763 1764 1765 1766 1767

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return common.Hash{}, err
	}
1768 1769

	if args.Nonce == nil {
1770
		// Hold the mutex around signing to prevent concurrent assignment of
1771
		// the same nonce to multiple accounts.
1772 1773
		s.nonceLock.LockAddr(args.from())
		defer s.nonceLock.UnlockAddr(args.from())
1774 1775 1776 1777 1778 1779
	}

	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
		return common.Hash{}, err
	}
1780
	// Assemble the transaction and sign with the wallet
1781
	tx := args.toTransaction()
1782

1783
	signed, err := wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
1784 1785 1786
	if err != nil {
		return common.Hash{}, err
	}
1787
	return SubmitTransaction(ctx, s.b, signed)
1788 1789
}

1790 1791 1792
// FillTransaction fills the defaults (nonce, gas, gasPrice or 1559 fields)
// on a given unsigned transaction, and returns it to the caller for further
// processing (signing + broadcast).
1793
func (s *TransactionAPI) FillTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) {
1794 1795 1796 1797 1798 1799
	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
		return nil, err
	}
	// Assemble the transaction and obtain rlp
	tx := args.toTransaction()
1800
	data, err := tx.MarshalBinary()
1801 1802 1803 1804 1805 1806
	if err != nil {
		return nil, err
	}
	return &SignTransactionResult{data, tx}, nil
}

1807 1808
// SendRawTransaction will add the signed transaction to the transaction pool.
// The sender is responsible for signing the transaction and using the correct nonce.
1809
func (s *TransactionAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) {
1810
	tx := new(types.Transaction)
1811
	if err := tx.UnmarshalBinary(input); err != nil {
1812
		return common.Hash{}, err
1813
	}
1814
	return SubmitTransaction(ctx, s.b, tx)
1815 1816
}

1817
// Sign calculates an ECDSA signature for:
1818
// keccak256("\x19Ethereum Signed Message:\n" + len(message) + message).
1819
//
1820 1821 1822
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
1823 1824 1825
// The account associated with addr must be unlocked.
//
// https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
1826
func (s *TransactionAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) {
1827 1828 1829 1830 1831 1832 1833 1834
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Sign the requested hash with the wallet
1835
	signature, err := wallet.SignText(account, data)
1836
	if err == nil {
1837
		signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
1838 1839
	}
	return signature, err
1840 1841 1842 1843
}

// SignTransactionResult represents a RLP encoded signed transaction.
type SignTransactionResult struct {
1844 1845
	Raw hexutil.Bytes      `json:"raw"`
	Tx  *types.Transaction `json:"tx"`
1846 1847 1848 1849 1850
}

// SignTransaction will sign the given transaction with the from account.
// The node needs to have the private key of the account corresponding with
// the given from address and it needs to be unlocked.
1851
func (s *TransactionAPI) SignTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) {
1852 1853 1854
	if args.Gas == nil {
		return nil, fmt.Errorf("gas not specified")
	}
1855 1856
	if args.GasPrice == nil && (args.MaxPriorityFeePerGas == nil || args.MaxFeePerGas == nil) {
		return nil, fmt.Errorf("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas")
1857
	}
1858
	if args.Nonce == nil {
1859
		return nil, fmt.Errorf("nonce not specified")
1860
	}
1861 1862
	if err := args.setDefaults(ctx, s.b); err != nil {
		return nil, err
1863
	}
1864
	// Before actually sign the transaction, ensure the transaction fee is reasonable.
1865 1866
	tx := args.toTransaction()
	if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil {
1867 1868
		return nil, err
	}
1869
	signed, err := s.sign(args.from(), tx)
1870 1871 1872
	if err != nil {
		return nil, err
	}
1873
	data, err := signed.MarshalBinary()
1874 1875 1876
	if err != nil {
		return nil, err
	}
1877
	return &SignTransactionResult{data, signed}, nil
1878 1879
}

1880 1881
// PendingTransactions returns the transactions that are in the transaction pool
// and have a from address that is one of the accounts this node manages.
1882
func (s *TransactionAPI) PendingTransactions() ([]*RPCTransaction, error) {
1883 1884 1885 1886
	pending, err := s.b.GetPoolTransactions()
	if err != nil {
		return nil, err
	}
1887 1888 1889 1890 1891 1892
	accounts := make(map[common.Address]struct{})
	for _, wallet := range s.b.AccountManager().Wallets() {
		for _, account := range wallet.Accounts() {
			accounts[account.Address] = struct{}{}
		}
	}
1893
	curHeader := s.b.CurrentHeader()
1894 1895
	transactions := make([]*RPCTransaction, 0, len(pending))
	for _, tx := range pending {
1896
		from, _ := types.Sender(s.signer, tx)
1897
		if _, exists := accounts[from]; exists {
1898
			transactions = append(transactions, NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()))
1899 1900
		}
	}
1901
	return transactions, nil
1902 1903
}

1904 1905
// Resend accepts an existing transaction and a new gas price and limit. It will remove
// the given transaction from the pool and reinsert it with the new gas price and limit.
1906
func (s *TransactionAPI) Resend(ctx context.Context, sendArgs TransactionArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) {
1907 1908 1909 1910 1911 1912 1913
	if sendArgs.Nonce == nil {
		return common.Hash{}, fmt.Errorf("missing transaction nonce in transaction spec")
	}
	if err := sendArgs.setDefaults(ctx, s.b); err != nil {
		return common.Hash{}, err
	}
	matchTx := sendArgs.toTransaction()
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927

	// Before replacing the old transaction, ensure the _new_ transaction fee is reasonable.
	var price = matchTx.GasPrice()
	if gasPrice != nil {
		price = gasPrice.ToInt()
	}
	var gas = matchTx.Gas()
	if gasLimit != nil {
		gas = uint64(*gasLimit)
	}
	if err := checkTxFee(price, gas, s.b.RPCTxFeeCap()); err != nil {
		return common.Hash{}, err
	}
	// Iterate the pending list for replacement
1928 1929 1930 1931
	pending, err := s.b.GetPoolTransactions()
	if err != nil {
		return common.Hash{}, err
	}
1932
	for _, p := range pending {
1933 1934
		wantSigHash := s.signer.Hash(matchTx)
		pFrom, err := types.Sender(s.signer, p)
1935
		if err == nil && pFrom == sendArgs.from() && s.signer.Hash(p) == wantSigHash {
1936
			// Match. Re-sign and send the transaction.
1937
			if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 {
1938
				sendArgs.GasPrice = gasPrice
1939
			}
1940
			if gasLimit != nil && *gasLimit != 0 {
1941
				sendArgs.Gas = gasLimit
1942
			}
1943
			signedTx, err := s.sign(sendArgs.from(), sendArgs.toTransaction())
1944 1945 1946 1947 1948 1949 1950 1951 1952
			if err != nil {
				return common.Hash{}, err
			}
			if err = s.b.SendTx(ctx, signedTx); err != nil {
				return common.Hash{}, err
			}
			return signedTx.Hash(), nil
		}
	}
1953
	return common.Hash{}, fmt.Errorf("transaction %#x not found", matchTx.Hash())
1954 1955
}

1956 1957 1958
// DebugAPI is the collection of Ethereum APIs exposed over the debugging
// namespace.
type DebugAPI struct {
1959 1960 1961
	b Backend
}

1962 1963 1964
// NewDebugAPI creates a new instance of DebugAPI.
func NewDebugAPI(b Backend) *DebugAPI {
	return &DebugAPI{b: b}
1965 1966
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
// GetRawHeader retrieves the RLP encoding for a single header.
func (api *DebugAPI) GetRawHeader(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
	var hash common.Hash
	if h, ok := blockNrOrHash.Hash(); ok {
		hash = h
	} else {
		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return nil, err
		}
		hash = block.Hash()
	}
	header, _ := api.b.HeaderByHash(ctx, hash)
1980
	if header == nil {
1981
		return nil, fmt.Errorf("header #%d not found", hash)
1982
	}
1983
	return rlp.EncodeToBytes(header)
1984 1985
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
// GetRawBlock retrieves the RLP encoded for a single block.
func (api *DebugAPI) GetRawBlock(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
	var hash common.Hash
	if h, ok := blockNrOrHash.Hash(); ok {
		hash = h
	} else {
		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return nil, err
		}
		hash = block.Hash()
	}
	block, _ := api.b.BlockByHash(ctx, hash)
1999
	if block == nil {
2000
		return nil, fmt.Errorf("block #%d not found", hash)
2001
	}
2002
	return rlp.EncodeToBytes(block)
2003 2004
}

2005
// GetRawReceipts retrieves the binary-encoded receipts of a single block.
2006
func (api *DebugAPI) GetRawReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]hexutil.Bytes, error) {
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	var hash common.Hash
	if h, ok := blockNrOrHash.Hash(); ok {
		hash = h
	} else {
		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return nil, err
		}
		hash = block.Hash()
	}
	receipts, err := api.b.GetReceipts(ctx, hash)
	if err != nil {
		return nil, err
	}
	result := make([]hexutil.Bytes, len(receipts))
	for i, receipt := range receipts {
		b, err := receipt.MarshalBinary()
		if err != nil {
			return nil, err
		}
		result[i] = b
	}
	return result, nil
}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
// GetRawTransaction returns the bytes of the transaction for the given hash.
func (s *DebugAPI) GetRawTransaction(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
	// Retrieve a finalized transaction, or a pooled otherwise
	tx, _, _, _, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
		return nil, err
	}
	if tx == nil {
		if tx = s.b.GetPoolTransaction(hash); tx == nil {
			// Transaction not found anywhere, abort
			return nil, nil
		}
	}
	return tx.MarshalBinary()
}

2048
// PrintBlock retrieves a block and returns its pretty printed form.
2049
func (api *DebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) {
2050 2051 2052 2053
	block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
	if block == nil {
		return "", fmt.Errorf("block #%d not found", number)
	}
2054
	return spew.Sdump(block), nil
2055 2056
}

2057
// ChaindbProperty returns leveldb properties of the key-value database.
2058
func (api *DebugAPI) ChaindbProperty(property string) (string, error) {
2059 2060 2061 2062 2063
	if property == "" {
		property = "leveldb.stats"
	} else if !strings.HasPrefix(property, "leveldb.") {
		property = "leveldb." + property
	}
2064
	return api.b.ChainDb().Stat(property)
2065 2066
}

2067 2068
// ChaindbCompact flattens the entire key-value database into a single level,
// removing all unused slots and merging all keys.
2069
func (api *DebugAPI) ChaindbCompact() error {
2070
	for b := byte(0); b < 255; b++ {
2071
		log.Info("Compacting chain database", "range", fmt.Sprintf("0x%0.2X-0x%0.2X", b, b+1))
2072
		if err := api.b.ChainDb().Compact([]byte{b}, []byte{b + 1}); err != nil {
2073
			log.Error("Database compaction failed", "err", err)
2074 2075 2076 2077 2078 2079
			return err
		}
	}
	return nil
}

2080
// SetHead rewinds the head of the blockchain to a previous block.
2081
func (api *DebugAPI) SetHead(number hexutil.Uint64) {
2082
	api.b.SetHead(uint64(number))
2083 2084
}

2085 2086
// NetAPI offers network related RPC methods
type NetAPI struct {
2087 2088
	net            *p2p.Server
	networkVersion uint64
2089 2090
}

2091 2092 2093
// NewNetAPI creates a new net API instance.
func NewNetAPI(net *p2p.Server, networkVersion uint64) *NetAPI {
	return &NetAPI{net, networkVersion}
2094 2095 2096
}

// Listening returns an indication if the node is listening for network connections.
2097
func (s *NetAPI) Listening() bool {
2098 2099 2100 2101
	return true // always listening
}

// PeerCount returns the number of connected peers
2102
func (s *NetAPI) PeerCount() hexutil.Uint {
2103
	return hexutil.Uint(s.net.PeerCount())
2104 2105
}

2106
// Version returns the current ethereum protocol version.
2107
func (s *NetAPI) Version() string {
2108 2109 2110
	return fmt.Sprintf("%d", s.networkVersion)
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
// checkTxFee is an internal function used to check whether the fee of
// the given transaction is _reasonable_(under the cap).
func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error {
	// Short circuit if there is no cap for transaction fee at all.
	if cap == 0 {
		return nil
	}
	feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether)))
	feeFloat, _ := feeEth.Float64()
	if feeFloat > cap {
		return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap)
	}
	return nil
}
2125 2126 2127 2128 2129 2130 2131 2132 2133

// toHexSlice creates a slice of hex-strings based on []byte.
func toHexSlice(b [][]byte) []string {
	r := make([]string, len(b))
	for i := range b {
		r[i] = hexutil.Encode(b[i])
	}
	return r
}