net.go 35.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package discv5

import (
	"bytes"
	"crypto/ecdsa"
	"errors"
	"fmt"
	"net"
	"time"

	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/common/mclock"
	"github.com/ethereum/go-ethereum/crypto"
	"github.com/ethereum/go-ethereum/crypto/sha3"
31
	"github.com/ethereum/go-ethereum/log"
32
	"github.com/ethereum/go-ethereum/p2p/netutil"
33 34 35 36 37 38 39 40 41 42
	"github.com/ethereum/go-ethereum/rlp"
)

var (
	errInvalidEvent = errors.New("invalid in current state")
	errNoQuery      = errors.New("no pending query")
	errWrongAddress = errors.New("unknown sender address")
)

const (
43 44 45 46
	autoRefreshInterval   = 1 * time.Hour
	bucketRefreshInterval = 1 * time.Minute
	seedCount             = 30
	seedMaxAge            = 5 * 24 * time.Hour
47
	lowPort               = 1024
48 49 50 51 52 53 54 55 56 57
)

const testTopic = "foo"

const (
	printTestImgLogs = false
)

// Network manages the table and all protocol interaction.
type Network struct {
58 59 60
	db          *nodeDB // database of known nodes
	conn        transport
	netrestrict *netutil.Netlist
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

	closed           chan struct{}          // closed when loop is done
	closeReq         chan struct{}          // 'request to close'
	refreshReq       chan []*Node           // lookups ask for refresh on this channel
	refreshResp      chan (<-chan struct{}) // ...and get the channel to block on from this one
	read             chan ingressPacket     // ingress packets arrive here
	timeout          chan timeoutEvent
	queryReq         chan *findnodeQuery // lookups submit findnode queries on this channel
	tableOpReq       chan func()
	tableOpResp      chan struct{}
	topicRegisterReq chan topicRegisterReq
	topicSearchReq   chan topicSearchReq

	// State of the main loop.
	tab           *Table
	topictab      *topicTable
	ticketStore   *ticketStore
	nursery       []*Node
	nodes         map[NodeID]*Node // tracks active nodes with state != known
	timeoutTimers map[timeoutEvent]*time.Timer

	// Revalidation queues.
	// Nodes put on these queues will be pinged eventually.
	slowRevalidateQueue []*Node
	fastRevalidateQueue []*Node

	// Buffers for state transition.
	sendBuf []*ingressPacket
}

// transport is implemented by the UDP transport.
// it is an interface so we can test without opening lots of UDP
// sockets and without generating a private key.
type transport interface {
	sendPing(remote *Node, remoteAddr *net.UDPAddr, topics []Topic) (hash []byte)
	sendNeighbours(remote *Node, nodes []*Node)
	sendFindnodeHash(remote *Node, target common.Hash)
	sendTopicRegister(remote *Node, topics []Topic, topicIdx int, pong []byte)
	sendTopicNodes(remote *Node, queryHash common.Hash, nodes []*Node)

	send(remote *Node, ptype nodeEvent, p interface{}) (hash []byte)

	localAddr() *net.UDPAddr
	Close()
}

type findnodeQuery struct {
	remote   *Node
	target   common.Hash
	reply    chan<- []*Node
	nresults int // counter for received nodes
}

type topicRegisterReq struct {
	add   bool
	topic Topic
}

type topicSearchReq struct {
120 121 122 123 124 125 126 127 128
	topic  Topic
	found  chan<- *Node
	lookup chan<- bool
	delay  time.Duration
}

type topicSearchResult struct {
	target lookupInfo
	nodes  []*Node
129 130 131 132 133 134 135
}

type timeoutEvent struct {
	ev   nodeEvent
	node *Node
}

136
func newNetwork(conn transport, ourPubkey ecdsa.PublicKey, dbPath string, netrestrict *netutil.Netlist) (*Network, error) {
137 138 139 140 141 142 143 144 145 146 147 148 149 150
	ourID := PubkeyID(&ourPubkey)

	var db *nodeDB
	if dbPath != "<no database>" {
		var err error
		if db, err = newNodeDB(dbPath, Version, ourID); err != nil {
			return nil, err
		}
	}

	tab := newTable(ourID, conn.localAddr())
	net := &Network{
		db:               db,
		conn:             conn,
151
		netrestrict:      netrestrict,
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
		tab:              tab,
		topictab:         newTopicTable(db, tab.self),
		ticketStore:      newTicketStore(),
		refreshReq:       make(chan []*Node),
		refreshResp:      make(chan (<-chan struct{})),
		closed:           make(chan struct{}),
		closeReq:         make(chan struct{}),
		read:             make(chan ingressPacket, 100),
		timeout:          make(chan timeoutEvent),
		timeoutTimers:    make(map[timeoutEvent]*time.Timer),
		tableOpReq:       make(chan func()),
		tableOpResp:      make(chan struct{}),
		queryReq:         make(chan *findnodeQuery),
		topicRegisterReq: make(chan topicRegisterReq),
		topicSearchReq:   make(chan topicSearchReq),
		nodes:            make(map[NodeID]*Node),
	}
	go net.loop()
	return net, nil
}

// Close terminates the network listener and flushes the node database.
func (net *Network) Close() {
	net.conn.Close()
	select {
	case <-net.closed:
	case net.closeReq <- struct{}{}:
		<-net.closed
	}
}

// Self returns the local node.
// The returned node should not be modified by the caller.
func (net *Network) Self() *Node {
	return net.tab.self
}

// ReadRandomNodes fills the given slice with random nodes from the
// table. It will not write the same node more than once. The nodes in
// the slice are copies and can be modified by the caller.
func (net *Network) ReadRandomNodes(buf []*Node) (n int) {
	net.reqTableOp(func() { n = net.tab.readRandomNodes(buf) })
	return n
}

// SetFallbackNodes sets the initial points of contact. These nodes
// are used to connect to the network if the table is empty and there
// are no known nodes in the database.
func (net *Network) SetFallbackNodes(nodes []*Node) error {
	nursery := make([]*Node, 0, len(nodes))
	for _, n := range nodes {
		if err := n.validateComplete(); err != nil {
			return fmt.Errorf("bad bootstrap/fallback node %q (%v)", n, err)
		}
		// Recompute cpy.sha because the node might not have been
		// created by NewNode or ParseNode.
		cpy := *n
		cpy.sha = crypto.Keccak256Hash(n.ID[:])
		nursery = append(nursery, &cpy)
	}
	net.reqRefresh(nursery)
	return nil
}

// Resolve searches for a specific node with the given ID.
// It returns nil if the node could not be found.
func (net *Network) Resolve(targetID NodeID) *Node {
	result := net.lookup(crypto.Keccak256Hash(targetID[:]), true)
	for _, n := range result {
		if n.ID == targetID {
			return n
		}
	}
	return nil
}

// Lookup performs a network search for nodes close
// to the given target. It approaches the target by querying
// nodes that are closer to it on each iteration.
// The given target does not need to be an actual node
// identifier.
//
// The local node may be included in the result.
func (net *Network) Lookup(targetID NodeID) []*Node {
	return net.lookup(crypto.Keccak256Hash(targetID[:]), false)
}

func (net *Network) lookup(target common.Hash, stopOnMatch bool) []*Node {
	var (
		asked          = make(map[NodeID]bool)
		seen           = make(map[NodeID]bool)
		reply          = make(chan []*Node, alpha)
		result         = nodesByDistance{target: target}
		pendingQueries = 0
	)
	// Get initial answers from the local node.
	result.push(net.tab.self, bucketSize)
	for {
		// Ask the α closest nodes that we haven't asked yet.
		for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
			n := result.entries[i]
			if !asked[n.ID] {
				asked[n.ID] = true
				pendingQueries++
				net.reqQueryFindnode(n, target, reply)
			}
		}
		if pendingQueries == 0 {
			// We have asked all closest nodes, stop the search.
			break
		}
		// Wait for the next reply.
264 265 266 267 268 269 270 271 272
		select {
		case nodes := <-reply:
			for _, n := range nodes {
				if n != nil && !seen[n.ID] {
					seen[n.ID] = true
					result.push(n, bucketSize)
					if stopOnMatch && n.sha == target {
						return result.entries
					}
273 274
				}
			}
275 276 277 278 279
			pendingQueries--
		case <-time.After(respTimeout):
			// forget all pending requests, start new ones
			pendingQueries = 0
			reply = make(chan []*Node, alpha)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
		}
	}
	return result.entries
}

func (net *Network) RegisterTopic(topic Topic, stop <-chan struct{}) {
	select {
	case net.topicRegisterReq <- topicRegisterReq{true, topic}:
	case <-net.closed:
		return
	}
	select {
	case <-net.closed:
	case <-stop:
		select {
		case net.topicRegisterReq <- topicRegisterReq{false, topic}:
		case <-net.closed:
		}
	}
}

301 302
func (net *Network) SearchTopic(topic Topic, setPeriod <-chan time.Duration, found chan<- *Node, lookup chan<- bool) {
	for {
303 304
		select {
		case <-net.closed:
305 306 307 308 309 310 311 312 313 314
			return
		case delay, ok := <-setPeriod:
			select {
			case net.topicSearchReq <- topicSearchReq{topic: topic, found: found, lookup: lookup, delay: delay}:
			case <-net.closed:
				return
			}
			if !ok {
				return
			}
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		}
	}
}

func (net *Network) reqRefresh(nursery []*Node) <-chan struct{} {
	select {
	case net.refreshReq <- nursery:
		return <-net.refreshResp
	case <-net.closed:
		return net.closed
	}
}

func (net *Network) reqQueryFindnode(n *Node, target common.Hash, reply chan []*Node) bool {
	q := &findnodeQuery{remote: n, target: target, reply: reply}
	select {
	case net.queryReq <- q:
		return true
	case <-net.closed:
		return false
	}
}

func (net *Network) reqReadPacket(pkt ingressPacket) {
	select {
	case net.read <- pkt:
	case <-net.closed:
	}
}

func (net *Network) reqTableOp(f func()) (called bool) {
	select {
	case net.tableOpReq <- f:
		<-net.tableOpResp
		return true
	case <-net.closed:
		return false
	}
}

// TODO: external address handling.

357 358 359 360 361 362 363
type topicSearchInfo struct {
	lookupChn chan<- bool
	period    time.Duration
}

const maxSearchCount = 5

364 365
func (net *Network) loop() {
	var (
366 367 368
		refreshTimer       = time.NewTicker(autoRefreshInterval)
		bucketRefreshTimer = time.NewTimer(bucketRefreshInterval)
		refreshDone        chan struct{} // closed when the 'refresh' lookup has ended
369 370 371 372 373 374 375 376 377 378 379 380 381 382
	)

	// Tracking the next ticket to register.
	var (
		nextTicket        *ticketRef
		nextRegisterTimer *time.Timer
		nextRegisterTime  <-chan time.Time
	)
	defer func() {
		if nextRegisterTimer != nil {
			nextRegisterTimer.Stop()
		}
	}()
	resetNextTicket := func() {
383 384 385
		ticket, timeout := net.ticketStore.nextFilteredTicket()
		if nextTicket != ticket {
			nextTicket = ticket
386 387 388 389
			if nextRegisterTimer != nil {
				nextRegisterTimer.Stop()
				nextRegisterTime = nil
			}
390
			if ticket != nil {
391 392 393 394 395 396 397 398 399 400 401
				nextRegisterTimer = time.NewTimer(timeout)
				nextRegisterTime = nextRegisterTimer.C
			}
		}
	}

	// Tracking registration and search lookups.
	var (
		topicRegisterLookupTarget lookupInfo
		topicRegisterLookupDone   chan []*Node
		topicRegisterLookupTick   = time.NewTimer(0)
402
		searchReqWhenRefreshDone  []topicSearchReq
403 404
		searchInfo                = make(map[Topic]topicSearchInfo)
		activeSearchCount         int
405
	)
406 407
	topicSearchLookupDone := make(chan topicSearchResult, 100)
	topicSearch := make(chan Topic, 100)
408 409 410 411 412 413 414 415 416 417
	<-topicRegisterLookupTick.C

	statsDump := time.NewTicker(10 * time.Second)

loop:
	for {
		resetNextTicket()

		select {
		case <-net.closeReq:
418
			log.Trace("<-net.closeReq")
419 420 421 422
			break loop

		// Ingress packet handling.
		case pkt := <-net.read:
423
			//fmt.Println("read", pkt.ev)
424
			log.Trace("<-net.read")
425 426 427 428 429 430
			n := net.internNode(&pkt)
			prestate := n.state
			status := "ok"
			if err := net.handle(n, pkt.ev, &pkt); err != nil {
				status = err.Error()
			}
431 432
			log.Trace("", "msg", log.Lazy{Fn: func() string {
				return fmt.Sprintf("<<< (%d) %v from %x@%v: %v -> %v (%v)",
433
					net.tab.count, pkt.ev, pkt.remoteID[:8], pkt.remoteAddr, prestate, n.state, status)
434
			}})
435 436 437 438
			// TODO: persist state if n.state goes >= known, delete if it goes <= known

		// State transition timeouts.
		case timeout := <-net.timeout:
439
			log.Trace("<-net.timeout")
440 441 442 443 444 445 446 447 448 449
			if net.timeoutTimers[timeout] == nil {
				// Stale timer (was aborted).
				continue
			}
			delete(net.timeoutTimers, timeout)
			prestate := timeout.node.state
			status := "ok"
			if err := net.handle(timeout.node, timeout.ev, nil); err != nil {
				status = err.Error()
			}
450 451
			log.Trace("", "msg", log.Lazy{Fn: func() string {
				return fmt.Sprintf("--- (%d) %v for %x@%v: %v -> %v (%v)",
452
					net.tab.count, timeout.ev, timeout.node.ID[:8], timeout.node.addr(), prestate, timeout.node.state, status)
453
			}})
454 455 456

		// Querying.
		case q := <-net.queryReq:
457
			log.Trace("<-net.queryReq")
458 459 460 461 462 463
			if !q.start(net) {
				q.remote.deferQuery(q)
			}

		// Interacting with the table.
		case f := <-net.tableOpReq:
464
			log.Trace("<-net.tableOpReq")
465 466 467 468 469
			f()
			net.tableOpResp <- struct{}{}

		// Topic registration stuff.
		case req := <-net.topicRegisterReq:
470
			log.Trace("<-net.topicRegisterReq")
471 472 473 474 475 476 477 478 479 480
			if !req.add {
				net.ticketStore.removeRegisterTopic(req.topic)
				continue
			}
			net.ticketStore.addTopic(req.topic, true)
			// If we're currently waiting idle (nothing to look up), give the ticket store a
			// chance to start it sooner. This should speed up convergence of the radius
			// determination for new topics.
			// if topicRegisterLookupDone == nil {
			if topicRegisterLookupTarget.target == (common.Hash{}) {
481
				log.Trace("topicRegisterLookupTarget == null")
482 483 484 485 486 487 488 489 490
				if topicRegisterLookupTick.Stop() {
					<-topicRegisterLookupTick.C
				}
				target, delay := net.ticketStore.nextRegisterLookup()
				topicRegisterLookupTarget = target
				topicRegisterLookupTick.Reset(delay)
			}

		case nodes := <-topicRegisterLookupDone:
491
			log.Trace("<-topicRegisterLookupDone")
492 493 494 495 496 497 498 499 500 501
			net.ticketStore.registerLookupDone(topicRegisterLookupTarget, nodes, func(n *Node) []byte {
				net.ping(n, n.addr())
				return n.pingEcho
			})
			target, delay := net.ticketStore.nextRegisterLookup()
			topicRegisterLookupTarget = target
			topicRegisterLookupTick.Reset(delay)
			topicRegisterLookupDone = nil

		case <-topicRegisterLookupTick.C:
502
			log.Trace("<-topicRegisterLookupTick")
503 504 505 506 507 508 509 510 511 512 513 514
			if (topicRegisterLookupTarget.target == common.Hash{}) {
				target, delay := net.ticketStore.nextRegisterLookup()
				topicRegisterLookupTarget = target
				topicRegisterLookupTick.Reset(delay)
				topicRegisterLookupDone = nil
			} else {
				topicRegisterLookupDone = make(chan []*Node)
				target := topicRegisterLookupTarget.target
				go func() { topicRegisterLookupDone <- net.lookup(target, false) }()
			}

		case <-nextRegisterTime:
515
			log.Trace("<-nextRegisterTime")
516 517 518 519 520
			net.ticketStore.ticketRegistered(*nextTicket)
			//fmt.Println("sendTopicRegister", nextTicket.t.node.addr().String(), nextTicket.t.topics, nextTicket.idx, nextTicket.t.pong)
			net.conn.sendTopicRegister(nextTicket.t.node, nextTicket.t.topics, nextTicket.idx, nextTicket.t.pong)

		case req := <-net.topicSearchReq:
521
			if refreshDone == nil {
522
				log.Trace("<-net.topicSearchReq")
523 524 525 526 527 528 529 530 531
				info, ok := searchInfo[req.topic]
				if ok {
					if req.delay == time.Duration(0) {
						delete(searchInfo, req.topic)
						net.ticketStore.removeSearchTopic(req.topic)
					} else {
						info.period = req.delay
						searchInfo[req.topic] = info
					}
532 533
					continue
				}
534 535 536 537 538 539 540
				if req.delay != time.Duration(0) {
					var info topicSearchInfo
					info.period = req.delay
					info.lookupChn = req.lookup
					searchInfo[req.topic] = info
					net.ticketStore.addSearchTopic(req.topic, req.found)
					topicSearch <- req.topic
541 542 543
				}
			} else {
				searchReqWhenRefreshDone = append(searchReqWhenRefreshDone, req)
544 545
			}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
		case topic := <-topicSearch:
			if activeSearchCount < maxSearchCount {
				activeSearchCount++
				target := net.ticketStore.nextSearchLookup(topic)
				go func() {
					nodes := net.lookup(target.target, false)
					topicSearchLookupDone <- topicSearchResult{target: target, nodes: nodes}
				}()
			}
			period := searchInfo[topic].period
			if period != time.Duration(0) {
				go func() {
					time.Sleep(period)
					topicSearch <- topic
				}()
			}

		case res := <-topicSearchLookupDone:
			activeSearchCount--
			if lookupChn := searchInfo[res.target.topic].lookupChn; lookupChn != nil {
				lookupChn <- net.ticketStore.radius[res.target.topic].converged
			}
568 569
			net.ticketStore.searchLookupDone(res.target, res.nodes, func(n *Node, topic Topic) []byte {
				if n.state != nil && n.state.canQuery {
570 571 572 573 574 575 576
					return net.conn.send(n, topicQueryPacket, topicQuery{Topic: topic}) // TODO: set expiration
				} else {
					if n.state == unknown {
						net.ping(n, n.addr())
					}
					return nil
				}
577 578 579
			})

		case <-statsDump.C:
580
			log.Trace("<-statsDump.C")
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
			/*r, ok := net.ticketStore.radius[testTopic]
			if !ok {
				fmt.Printf("(%x) no radius @ %v\n", net.tab.self.ID[:8], time.Now())
			} else {
				topics := len(net.ticketStore.tickets)
				tickets := len(net.ticketStore.nodes)
				rad := r.radius / (maxRadius/10000+1)
				fmt.Printf("(%x) topics:%d radius:%d tickets:%d @ %v\n", net.tab.self.ID[:8], topics, rad, tickets, time.Now())
			}*/

			tm := mclock.Now()
			for topic, r := range net.ticketStore.radius {
				if printTestImgLogs {
					rad := r.radius / (maxRadius/1000000 + 1)
					minrad := r.minRadius / (maxRadius/1000000 + 1)
					fmt.Printf("*R %d %v %016x %v\n", tm/1000000, topic, net.tab.self.sha[:8], rad)
					fmt.Printf("*MR %d %v %016x %v\n", tm/1000000, topic, net.tab.self.sha[:8], minrad)
				}
			}
			for topic, t := range net.topictab.topics {
				wp := t.wcl.nextWaitPeriod(tm)
				if printTestImgLogs {
					fmt.Printf("*W %d %v %016x %d\n", tm/1000000, topic, net.tab.self.sha[:8], wp/1000000)
				}
			}

		// Periodic / lookup-initiated bucket refresh.
		case <-refreshTimer.C:
609
			log.Trace("<-refreshTimer.C")
610 611 612 613 614 615
			// TODO: ideally we would start the refresh timer after
			// fallback nodes have been set for the first time.
			if refreshDone == nil {
				refreshDone = make(chan struct{})
				net.refresh(refreshDone)
			}
616 617 618 619 620 621
		case <-bucketRefreshTimer.C:
			target := net.tab.chooseBucketRefreshTarget()
			go func() {
				net.lookup(target, false)
				bucketRefreshTimer.Reset(bucketRefreshInterval)
			}()
622
		case newNursery := <-net.refreshReq:
623
			log.Trace("<-net.refreshReq")
624 625 626 627 628 629 630 631 632
			if newNursery != nil {
				net.nursery = newNursery
			}
			if refreshDone == nil {
				refreshDone = make(chan struct{})
				net.refresh(refreshDone)
			}
			net.refreshResp <- refreshDone
		case <-refreshDone:
633 634 635 636 637 638 639 640 641 642 643 644 645 646
			log.Trace("<-net.refreshDone", "table size", net.tab.count)
			if net.tab.count != 0 {
				refreshDone = nil
				list := searchReqWhenRefreshDone
				searchReqWhenRefreshDone = nil
				go func() {
					for _, req := range list {
						net.topicSearchReq <- req
					}
				}()
			} else {
				refreshDone = make(chan struct{})
				net.refresh(refreshDone)
			}
647 648
		}
	}
649
	log.Trace("loop stopped")
650

651
	log.Debug(fmt.Sprintf("shutting down"))
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	if net.conn != nil {
		net.conn.Close()
	}
	if refreshDone != nil {
		// TODO: wait for pending refresh.
		//<-refreshResults
	}
	// Cancel all pending timeouts.
	for _, timer := range net.timeoutTimers {
		timer.Stop()
	}
	if net.db != nil {
		net.db.close()
	}
	close(net.closed)
}

// Everything below runs on the Network.loop goroutine
// and can modify Node, Table and Network at any time without locking.

func (net *Network) refresh(done chan<- struct{}) {
	var seeds []*Node
	if net.db != nil {
		seeds = net.db.querySeeds(seedCount, seedMaxAge)
	}
	if len(seeds) == 0 {
		seeds = net.nursery
	}
	if len(seeds) == 0 {
681
		log.Trace("no seed nodes found")
682 683 684 685
		close(done)
		return
	}
	for _, n := range seeds {
686
		log.Debug("", "msg", log.Lazy{Fn: func() string {
687 688 689 690 691 692
			var age string
			if net.db != nil {
				age = time.Since(net.db.lastPong(n.ID)).String()
			} else {
				age = "unknown"
			}
693 694
			return fmt.Sprintf("seed node (age %s): %v", age, n)
		}})
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
		n = net.internNodeFromDB(n)
		if n.state == unknown {
			net.transition(n, verifyinit)
		}
		// Force-add the seed node so Lookup does something.
		// It will be deleted again if verification fails.
		net.tab.add(n)
	}
	// Start self lookup to fill up the buckets.
	go func() {
		net.Lookup(net.tab.self.ID)
		close(done)
	}()
}

// Node Interning.

func (net *Network) internNode(pkt *ingressPacket) *Node {
	if n := net.nodes[pkt.remoteID]; n != nil {
714 715 716
		n.IP = pkt.remoteAddr.IP
		n.UDP = uint16(pkt.remoteAddr.Port)
		n.TCP = uint16(pkt.remoteAddr.Port)
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		return n
	}
	n := NewNode(pkt.remoteID, pkt.remoteAddr.IP, uint16(pkt.remoteAddr.Port), uint16(pkt.remoteAddr.Port))
	n.state = unknown
	net.nodes[pkt.remoteID] = n
	return n
}

func (net *Network) internNodeFromDB(dbn *Node) *Node {
	if n := net.nodes[dbn.ID]; n != nil {
		return n
	}
	n := NewNode(dbn.ID, dbn.IP, dbn.UDP, dbn.TCP)
	n.state = unknown
	net.nodes[n.ID] = n
	return n
}

735
func (net *Network) internNodeFromNeighbours(sender *net.UDPAddr, rn rpcNode) (n *Node, err error) {
736 737 738
	if rn.ID == net.tab.self.ID {
		return nil, errors.New("is self")
	}
739 740 741
	if rn.UDP <= lowPort {
		return nil, errors.New("low port")
	}
742 743 744
	n = net.nodes[rn.ID]
	if n == nil {
		// We haven't seen this node before.
745
		n, err = nodeFromRPC(sender, rn)
746 747 748
		if net.netrestrict != nil && !net.netrestrict.Contains(n.IP) {
			return n, errors.New("not contained in netrestrict whitelist")
		}
749
		if err == nil {
750
			n.state = unknown
751 752 753 754
			net.nodes[n.ID] = n
		}
		return n, err
	}
755
	if !n.IP.Equal(rn.IP) || n.UDP != rn.UDP || n.TCP != rn.TCP {
756 757 758 759 760 761 762 763 764
		if n.state == known {
			// reject address change if node is known by us
			err = fmt.Errorf("metadata mismatch: got %v, want %v", rn, n)
		} else {
			// accept otherwise; this will be handled nicer with signed ENRs
			n.IP = rn.IP
			n.UDP = rn.UDP
			n.TCP = rn.TCP
		}
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	}
	return n, err
}

// nodeNetGuts is embedded in Node and contains fields.
type nodeNetGuts struct {
	// This is a cached copy of sha3(ID) which is used for node
	// distance calculations. This is part of Node in order to make it
	// possible to write tests that need a node at a certain distance.
	// In those tests, the content of sha will not actually correspond
	// with ID.
	sha common.Hash

	// State machine fields. Access to these fields
	// is restricted to the Network.loop goroutine.
	state             *nodeState
	pingEcho          []byte           // hash of last ping sent by us
	pingTopics        []Topic          // topic set sent by us in last ping
	deferredQueries   []*findnodeQuery // queries that can't be sent yet
	pendingNeighbours *findnodeQuery   // current query, waiting for reply
	queryTimeouts     int
}

func (n *nodeNetGuts) deferQuery(q *findnodeQuery) {
	n.deferredQueries = append(n.deferredQueries, q)
}

func (n *nodeNetGuts) startNextQuery(net *Network) {
	if len(n.deferredQueries) == 0 {
		return
	}
	nextq := n.deferredQueries[0]
	if nextq.start(net) {
		n.deferredQueries = append(n.deferredQueries[:0], n.deferredQueries[1:]...)
	}
}

func (q *findnodeQuery) start(net *Network) bool {
	// Satisfy queries against the local node directly.
	if q.remote == net.tab.self {
		closest := net.tab.closest(crypto.Keccak256Hash(q.target[:]), bucketSize)
		q.reply <- closest.entries
		return true
	}
	if q.remote.state.canQuery && q.remote.pendingNeighbours == nil {
		net.conn.sendFindnodeHash(q.remote, q.target)
		net.timedEvent(respTimeout, q.remote, neighboursTimeout)
		q.remote.pendingNeighbours = q
		return true
	}
	// If the node is not known yet, it won't accept queries.
	// Initiate the transition to known.
	// The request will be sent later when the node reaches known state.
	if q.remote.state == unknown {
		net.transition(q.remote, verifyinit)
	}
	return false
}

// Node Events (the input to the state machine).

type nodeEvent uint

//go:generate stringer -type=nodeEvent

const (
	invalidEvent nodeEvent = iota // zero is reserved

	// Packet type events.
	// These correspond to packet types in the UDP protocol.
	pingPacket
	pongPacket
	findnodePacket
	neighborsPacket
	findnodeHashPacket
	topicRegisterPacket
	topicQueryPacket
	topicNodesPacket

	// Non-packet events.
	// Event values in this category are allocated outside
	// the packet type range (packet types are encoded as a single byte).
	pongTimeout nodeEvent = iota + 256
	pingTimeout
	neighboursTimeout
)

// Node State Machine.

type nodeState struct {
	name     string
	handle   func(*Network, *Node, nodeEvent, *ingressPacket) (next *nodeState, err error)
	enter    func(*Network, *Node)
	canQuery bool
}

func (s *nodeState) String() string {
	return s.name
}

var (
	unknown          *nodeState
	verifyinit       *nodeState
	verifywait       *nodeState
	remoteverifywait *nodeState
	known            *nodeState
	contested        *nodeState
	unresponsive     *nodeState
)

func init() {
	unknown = &nodeState{
		name: "unknown",
		enter: func(net *Network, n *Node) {
			net.tab.delete(n)
			n.pingEcho = nil
			// Abort active queries.
			for _, q := range n.deferredQueries {
				q.reply <- nil
			}
			n.deferredQueries = nil
			if n.pendingNeighbours != nil {
				n.pendingNeighbours.reply <- nil
				n.pendingNeighbours = nil
			}
			n.queryTimeouts = 0
		},
		handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
			switch ev {
			case pingPacket:
				net.handlePing(n, pkt)
				net.ping(n, pkt.remoteAddr)
				return verifywait, nil
			default:
				return unknown, errInvalidEvent
			}
		},
	}

	verifyinit = &nodeState{
		name: "verifyinit",
		enter: func(net *Network, n *Node) {
			net.ping(n, n.addr())
		},
		handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
			switch ev {
			case pingPacket:
				net.handlePing(n, pkt)
				return verifywait, nil
			case pongPacket:
				err := net.handleKnownPong(n, pkt)
				return remoteverifywait, err
			case pongTimeout:
				return unknown, nil
			default:
				return verifyinit, errInvalidEvent
			}
		},
	}

	verifywait = &nodeState{
		name: "verifywait",
		handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
			switch ev {
929 930 931
			case pingPacket:
				net.handlePing(n, pkt)
				return verifywait, nil
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
			case pongPacket:
				err := net.handleKnownPong(n, pkt)
				return known, err
			case pongTimeout:
				return unknown, nil
			default:
				return verifywait, errInvalidEvent
			}
		},
	}

	remoteverifywait = &nodeState{
		name: "remoteverifywait",
		enter: func(net *Network, n *Node) {
			net.timedEvent(respTimeout, n, pingTimeout)
		},
		handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
			switch ev {
			case pingPacket:
				net.handlePing(n, pkt)
				return remoteverifywait, nil
			case pingTimeout:
				return known, nil
			default:
				return remoteverifywait, errInvalidEvent
			}
		},
	}

	known = &nodeState{
		name:     "known",
		canQuery: true,
		enter: func(net *Network, n *Node) {
			n.queryTimeouts = 0
			n.startNextQuery(net)
			// Insert into the table and start revalidation of the last node
			// in the bucket if it is full.
			last := net.tab.add(n)
			if last != nil && last.state == known {
				// TODO: do this asynchronously
				net.transition(last, contested)
			}
		},
		handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
			switch ev {
			case pingPacket:
				net.handlePing(n, pkt)
				return known, nil
			case pongPacket:
				err := net.handleKnownPong(n, pkt)
				return known, err
			default:
				return net.handleQueryEvent(n, ev, pkt)
			}
		},
	}

	contested = &nodeState{
		name:     "contested",
		canQuery: true,
		enter: func(net *Network, n *Node) {
			net.ping(n, n.addr())
		},
		handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
			switch ev {
			case pongPacket:
				// Node is still alive.
				err := net.handleKnownPong(n, pkt)
				return known, err
			case pongTimeout:
				net.tab.deleteReplace(n)
				return unresponsive, nil
			case pingPacket:
				net.handlePing(n, pkt)
				return contested, nil
			default:
				return net.handleQueryEvent(n, ev, pkt)
			}
		},
	}

	unresponsive = &nodeState{
		name:     "unresponsive",
		canQuery: true,
		handle: func(net *Network, n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
			switch ev {
			case pingPacket:
				net.handlePing(n, pkt)
				return known, nil
			case pongPacket:
				err := net.handleKnownPong(n, pkt)
				return known, err
			default:
				return net.handleQueryEvent(n, ev, pkt)
			}
		},
	}
}

// handle processes packets sent by n and events related to n.
func (net *Network) handle(n *Node, ev nodeEvent, pkt *ingressPacket) error {
1033
	//fmt.Println("handle", n.addr().String(), n.state, ev)
1034 1035
	if pkt != nil {
		if err := net.checkPacket(n, ev, pkt); err != nil {
1036
			//fmt.Println("check err:", err)
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
			return err
		}
		// Start the background expiration goroutine after the first
		// successful communication. Subsequent calls have no effect if it
		// is already running. We do this here instead of somewhere else
		// so that the search for seed nodes also considers older nodes
		// that would otherwise be removed by the expirer.
		if net.db != nil {
			net.db.ensureExpirer()
		}
	}
	if n.state == nil {
		n.state = unknown //???
	}
	next, err := n.state.handle(net, n, ev, pkt)
	net.transition(n, next)
1053
	//fmt.Println("new state:", n.state)
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	return err
}

func (net *Network) checkPacket(n *Node, ev nodeEvent, pkt *ingressPacket) error {
	// Replay prevention checks.
	switch ev {
	case pingPacket, findnodeHashPacket, neighborsPacket:
		// TODO: check date is > last date seen
		// TODO: check ping version
	case pongPacket:
		if !bytes.Equal(pkt.data.(*pong).ReplyTok, n.pingEcho) {
			// fmt.Println("pong reply token mismatch")
			return fmt.Errorf("pong reply token mismatch")
		}
		n.pingEcho = nil
	}
	// Address validation.
	// TODO: Ideally we would do the following:
	//  - reject all packets with wrong address except ping.
	//  - for ping with new address, transition to verifywait but keep the
	//    previous node (with old address) around. if the new one reaches known,
	//    swap it out.
	return nil
}

func (net *Network) transition(n *Node, next *nodeState) {
	if n.state != next {
		n.state = next
		if next.enter != nil {
			next.enter(net, n)
		}
	}

	// TODO: persist/unpersist node
}

func (net *Network) timedEvent(d time.Duration, n *Node, ev nodeEvent) {
	timeout := timeoutEvent{ev, n}
	net.timeoutTimers[timeout] = time.AfterFunc(d, func() {
		select {
		case net.timeout <- timeout:
		case <-net.closed:
		}
	})
}

func (net *Network) abortTimedEvent(n *Node, ev nodeEvent) {
	timer := net.timeoutTimers[timeoutEvent{ev, n}]
	if timer != nil {
		timer.Stop()
		delete(net.timeoutTimers, timeoutEvent{ev, n})
	}
}

func (net *Network) ping(n *Node, addr *net.UDPAddr) {
1109 1110 1111 1112 1113
	//fmt.Println("ping", n.addr().String(), n.ID.String(), n.sha.Hex())
	if n.pingEcho != nil || n.ID == net.tab.self.ID {
		//fmt.Println(" not sent")
		return
	}
1114
	log.Trace("Pinging remote node", "node", n.ID)
1115 1116 1117 1118 1119 1120
	n.pingTopics = net.ticketStore.regTopicSet()
	n.pingEcho = net.conn.sendPing(n, addr, n.pingTopics)
	net.timedEvent(respTimeout, n, pongTimeout)
}

func (net *Network) handlePing(n *Node, pkt *ingressPacket) {
1121
	log.Trace("Handling remote ping", "node", n.ID)
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	ping := pkt.data.(*ping)
	n.TCP = ping.From.TCP
	t := net.topictab.getTicket(n, ping.Topics)

	pong := &pong{
		To:         makeEndpoint(n.addr(), n.TCP), // TODO: maybe use known TCP port from DB
		ReplyTok:   pkt.hash,
		Expiration: uint64(time.Now().Add(expiration).Unix()),
	}
	ticketToPong(t, pong)
	net.conn.send(n, pongPacket, pong)
}

func (net *Network) handleKnownPong(n *Node, pkt *ingressPacket) error {
1136
	log.Trace("Handling known pong", "node", n.ID)
1137 1138 1139 1140 1141 1142 1143
	net.abortTimedEvent(n, pongTimeout)
	now := mclock.Now()
	ticket, err := pongToTicket(now, n.pingTopics, n, pkt)
	if err == nil {
		// fmt.Printf("(%x) ticket: %+v\n", net.tab.self.ID[:8], pkt.data)
		net.ticketStore.addTicket(now, pkt.data.(*pong).ReplyTok, ticket)
	} else {
1144
		log.Trace("Failed to convert pong to ticket", "err", err)
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	}
	n.pingEcho = nil
	n.pingTopics = nil
	return err
}

func (net *Network) handleQueryEvent(n *Node, ev nodeEvent, pkt *ingressPacket) (*nodeState, error) {
	switch ev {
	case findnodePacket:
		target := crypto.Keccak256Hash(pkt.data.(*findnode).Target[:])
		results := net.tab.closest(target, bucketSize).entries
		net.conn.sendNeighbours(n, results)
		return n.state, nil
	case neighborsPacket:
1159
		err := net.handleNeighboursPacket(n, pkt)
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		return n.state, err
	case neighboursTimeout:
		if n.pendingNeighbours != nil {
			n.pendingNeighbours.reply <- nil
			n.pendingNeighbours = nil
		}
		n.queryTimeouts++
		if n.queryTimeouts > maxFindnodeFailures && n.state == known {
			return contested, errors.New("too many timeouts")
		}
		return n.state, nil

	// v5

	case findnodeHashPacket:
		results := net.tab.closest(pkt.data.(*findnodeHash).Target, bucketSize).entries
		net.conn.sendNeighbours(n, results)
		return n.state, nil
	case topicRegisterPacket:
		//fmt.Println("got topicRegisterPacket")
		regdata := pkt.data.(*topicRegister)
		pong, err := net.checkTopicRegister(regdata)
		if err != nil {
			//fmt.Println(err)
			return n.state, fmt.Errorf("bad waiting ticket: %v", err)
		}
		net.topictab.useTicket(n, pong.TicketSerial, regdata.Topics, int(regdata.Idx), pong.Expiration, pong.WaitPeriods)
		return n.state, nil
	case topicQueryPacket:
		// TODO: handle expiration
		topic := pkt.data.(*topicQuery).Topic
		results := net.topictab.getEntries(topic)
		if _, ok := net.ticketStore.tickets[topic]; ok {
			results = append(results, net.tab.self) // we're not registering in our own table but if we're advertising, return ourselves too
		}
		if len(results) > 10 {
			results = results[:10]
		}
		var hash common.Hash
		copy(hash[:], pkt.hash)
		net.conn.sendTopicNodes(n, hash, results)
		return n.state, nil
	case topicNodesPacket:
		p := pkt.data.(*topicNodes)
		if net.ticketStore.gotTopicNodes(n, p.Echo, p.Nodes) {
			n.queryTimeouts++
			if n.queryTimeouts > maxFindnodeFailures && n.state == known {
				return contested, errors.New("too many timeouts")
			}
		}
		return n.state, nil

	default:
		return n.state, errInvalidEvent
	}
}

func (net *Network) checkTopicRegister(data *topicRegister) (*pong, error) {
	var pongpkt ingressPacket
	if err := decodePacket(data.Pong, &pongpkt); err != nil {
		return nil, err
	}
	if pongpkt.ev != pongPacket {
		return nil, errors.New("is not pong packet")
	}
	if pongpkt.remoteID != net.tab.self.ID {
		return nil, errors.New("not signed by us")
	}
	// check that we previously authorised all topics
	// that the other side is trying to register.
	if rlpHash(data.Topics) != pongpkt.data.(*pong).TopicHash {
		return nil, errors.New("topic hash mismatch")
	}
	if data.Idx < 0 || int(data.Idx) >= len(data.Topics) {
		return nil, errors.New("topic index out of range")
	}
	return pongpkt.data.(*pong), nil
}

func rlpHash(x interface{}) (h common.Hash) {
	hw := sha3.NewKeccak256()
	rlp.Encode(hw, x)
	hw.Sum(h[:0])
	return h
}

1246
func (net *Network) handleNeighboursPacket(n *Node, pkt *ingressPacket) error {
1247 1248 1249 1250 1251
	if n.pendingNeighbours == nil {
		return errNoQuery
	}
	net.abortTimedEvent(n, neighboursTimeout)

1252
	req := pkt.data.(*neighbors)
1253 1254
	nodes := make([]*Node, len(req.Nodes))
	for i, rn := range req.Nodes {
1255
		nn, err := net.internNodeFromNeighbours(pkt.remoteAddr, rn)
1256
		if err != nil {
1257
			log.Debug(fmt.Sprintf("invalid neighbour (%v) from %x@%v: %v", rn.IP, n.ID[:8], pkt.remoteAddr, err))
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
			continue
		}
		nodes[i] = nn
		// Start validation of query results immediately.
		// This fills the table quickly.
		// TODO: generates way too many packets, maybe do it via queue.
		if nn.state == unknown {
			net.transition(nn, verifyinit)
		}
	}
	// TODO: don't ignore second packet
	n.pendingNeighbours.reply <- nodes
	n.pendingNeighbours = nil
	// Now that this query is done, start the next one.
	n.startNextQuery(net)
	return nil
}