api.go 74.4 KB
Newer Older
1
// Copyright 2015 The go-ethereum Authors
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package ethapi

import (
20
	"bytes"
21
	"context"
22
	"errors"
23 24 25 26 27
	"fmt"
	"math/big"
	"strings"
	"time"

28
	"github.com/davecgh/go-spew/spew"
29
	"github.com/ethereum/go-ethereum/accounts"
30
	"github.com/ethereum/go-ethereum/accounts/abi"
31
	"github.com/ethereum/go-ethereum/accounts/keystore"
32
	"github.com/ethereum/go-ethereum/accounts/scwallet"
33
	"github.com/ethereum/go-ethereum/common"
34
	"github.com/ethereum/go-ethereum/common/hexutil"
35
	"github.com/ethereum/go-ethereum/common/math"
36
	"github.com/ethereum/go-ethereum/consensus/clique"
37
	"github.com/ethereum/go-ethereum/consensus/ethash"
38
	"github.com/ethereum/go-ethereum/core"
39
	"github.com/ethereum/go-ethereum/core/state"
40 41 42
	"github.com/ethereum/go-ethereum/core/types"
	"github.com/ethereum/go-ethereum/core/vm"
	"github.com/ethereum/go-ethereum/crypto"
43
	"github.com/ethereum/go-ethereum/log"
44
	"github.com/ethereum/go-ethereum/p2p"
45
	"github.com/ethereum/go-ethereum/params"
46 47
	"github.com/ethereum/go-ethereum/rlp"
	"github.com/ethereum/go-ethereum/rpc"
48
	"github.com/tyler-smith/go-bip39"
49 50 51 52 53
)

// PublicEthereumAPI provides an API to access Ethereum related information.
// It offers only methods that operate on public data that is freely available to anyone.
type PublicEthereumAPI struct {
54
	b Backend
55 56
}

57
// NewPublicEthereumAPI creates a new Ethereum protocol API.
58 59
func NewPublicEthereumAPI(b Backend) *PublicEthereumAPI {
	return &PublicEthereumAPI{b}
60 61 62
}

// GasPrice returns a suggestion for a gas price.
63 64 65
func (s *PublicEthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) {
	price, err := s.b.SuggestPrice(ctx)
	return (*hexutil.Big)(price), err
66 67 68 69 70 71 72 73 74 75
}

// Syncing returns false in case the node is currently not syncing with the network. It can be up to date or has not
// yet received the latest block headers from its pears. In case it is synchronizing:
// - startingBlock: block number this node started to synchronise from
// - currentBlock:  block number this node is currently importing
// - highestBlock:  block number of the highest block header this node has received from peers
// - pulledStates:  number of state entries processed until now
// - knownStates:   number of known state entries that still need to be pulled
func (s *PublicEthereumAPI) Syncing() (interface{}, error) {
76
	progress := s.b.Downloader().Progress()
77 78

	// Return not syncing if the synchronisation already completed
79
	if progress.CurrentBlock >= progress.HighestBlock {
80 81 82 83
		return false, nil
	}
	// Otherwise gather the block sync stats
	return map[string]interface{}{
84 85 86 87 88
		"startingBlock": hexutil.Uint64(progress.StartingBlock),
		"currentBlock":  hexutil.Uint64(progress.CurrentBlock),
		"highestBlock":  hexutil.Uint64(progress.HighestBlock),
		"pulledStates":  hexutil.Uint64(progress.PulledStates),
		"knownStates":   hexutil.Uint64(progress.KnownStates),
89 90 91 92 93 94 95 96 97 98 99 100 101 102
	}, nil
}

// PublicTxPoolAPI offers and API for the transaction pool. It only operates on data that is non confidential.
type PublicTxPoolAPI struct {
	b Backend
}

// NewPublicTxPoolAPI creates a new tx pool service that gives information about the transaction pool.
func NewPublicTxPoolAPI(b Backend) *PublicTxPoolAPI {
	return &PublicTxPoolAPI{b}
}

// Content returns the transactions contained within the transaction pool.
103 104 105 106
func (s *PublicTxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction {
	content := map[string]map[string]map[string]*RPCTransaction{
		"pending": make(map[string]map[string]*RPCTransaction),
		"queued":  make(map[string]map[string]*RPCTransaction),
107 108 109 110
	}
	pending, queue := s.b.TxPoolContent()

	// Flatten the pending transactions
111 112
	for account, txs := range pending {
		dump := make(map[string]*RPCTransaction)
113 114
		for _, tx := range txs {
			dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx)
115 116 117 118
		}
		content["pending"][account.Hex()] = dump
	}
	// Flatten the queued transactions
119 120
	for account, txs := range queue {
		dump := make(map[string]*RPCTransaction)
121 122
		for _, tx := range txs {
			dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx)
123 124 125 126 127 128 129
		}
		content["queued"][account.Hex()] = dump
	}
	return content
}

// Status returns the number of pending and queued transaction in the pool.
130
func (s *PublicTxPoolAPI) Status() map[string]hexutil.Uint {
131
	pending, queue := s.b.Stats()
132 133 134
	return map[string]hexutil.Uint{
		"pending": hexutil.Uint(pending),
		"queued":  hexutil.Uint(queue),
135 136 137 138 139
	}
}

// Inspect retrieves the content of the transaction pool and flattens it into an
// easily inspectable list.
140 141 142 143
func (s *PublicTxPoolAPI) Inspect() map[string]map[string]map[string]string {
	content := map[string]map[string]map[string]string{
		"pending": make(map[string]map[string]string),
		"queued":  make(map[string]map[string]string),
144 145 146 147 148 149
	}
	pending, queue := s.b.TxPoolContent()

	// Define a formatter to flatten a transaction into a string
	var format = func(tx *types.Transaction) string {
		if to := tx.To(); to != nil {
150
			return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice())
151
		}
152
		return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice())
153 154
	}
	// Flatten the pending transactions
155 156
	for account, txs := range pending {
		dump := make(map[string]string)
157 158
		for _, tx := range txs {
			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
159 160 161 162
		}
		content["pending"][account.Hex()] = dump
	}
	// Flatten the queued transactions
163 164
	for account, txs := range queue {
		dump := make(map[string]string)
165 166
		for _, tx := range txs {
			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
		}
		content["queued"][account.Hex()] = dump
	}
	return content
}

// PublicAccountAPI provides an API to access accounts managed by this node.
// It offers only methods that can retrieve accounts.
type PublicAccountAPI struct {
	am *accounts.Manager
}

// NewPublicAccountAPI creates a new PublicAccountAPI.
func NewPublicAccountAPI(am *accounts.Manager) *PublicAccountAPI {
	return &PublicAccountAPI{am: am}
}

// Accounts returns the collection of accounts this node manages
185
func (s *PublicAccountAPI) Accounts() []common.Address {
186
	return s.am.Accounts()
187 188 189 190 191 192
}

// PrivateAccountAPI provides an API to access accounts managed by this node.
// It offers methods to create, (un)lock en list accounts. Some methods accept
// passwords and are therefore considered private by default.
type PrivateAccountAPI struct {
193 194 195
	am        *accounts.Manager
	nonceLock *AddrLocker
	b         Backend
196 197 198
}

// NewPrivateAccountAPI create a new PrivateAccountAPI.
199
func NewPrivateAccountAPI(b Backend, nonceLock *AddrLocker) *PrivateAccountAPI {
200
	return &PrivateAccountAPI{
201 202 203
		am:        b.AccountManager(),
		nonceLock: nonceLock,
		b:         b,
204 205 206
	}
}

207
// listAccounts will return a list of addresses for accounts this node manages.
208
func (s *PrivateAccountAPI) ListAccounts() []common.Address {
209
	return s.am.Accounts()
210 211
}

212 213 214 215 216
// rawWallet is a JSON representation of an accounts.Wallet interface, with its
// data contents extracted into plain fields.
type rawWallet struct {
	URL      string             `json:"url"`
	Status   string             `json:"status"`
217 218
	Failure  string             `json:"failure,omitempty"`
	Accounts []accounts.Account `json:"accounts,omitempty"`
219 220 221 222
}

// ListWallets will return a list of wallets this node manages.
func (s *PrivateAccountAPI) ListWallets() []rawWallet {
223
	wallets := make([]rawWallet, 0) // return [] instead of nil if empty
224
	for _, wallet := range s.am.Wallets() {
225 226 227
		status, failure := wallet.Status()

		raw := rawWallet{
228
			URL:      wallet.URL().String(),
229
			Status:   status,
230
			Accounts: wallet.Accounts(),
231 232 233 234 235
		}
		if failure != nil {
			raw.Failure = failure.Error()
		}
		wallets = append(wallets, raw)
236 237 238 239
	}
	return wallets
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
// OpenWallet initiates a hardware wallet opening procedure, establishing a USB
// connection and attempting to authenticate via the provided passphrase. Note,
// the method may return an extra challenge requiring a second open (e.g. the
// Trezor PIN matrix challenge).
func (s *PrivateAccountAPI) OpenWallet(url string, passphrase *string) error {
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return err
	}
	pass := ""
	if passphrase != nil {
		pass = *passphrase
	}
	return wallet.Open(pass)
}

256 257 258 259 260 261 262
// DeriveAccount requests a HD wallet to derive a new account, optionally pinning
// it for later reuse.
func (s *PrivateAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) {
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return accounts.Account{}, err
	}
263 264 265 266
	derivPath, err := accounts.ParseDerivationPath(path)
	if err != nil {
		return accounts.Account{}, err
	}
267 268 269
	if pin == nil {
		pin = new(bool)
	}
270
	return wallet.Derive(derivPath, *pin)
271 272
}

273 274
// NewAccount will create a new account and returns the address for the new account.
func (s *PrivateAccountAPI) NewAccount(password string) (common.Address, error) {
275 276 277 278 279
	ks, err := fetchKeystore(s.am)
	if err != nil {
		return common.Address{}, err
	}
	acc, err := ks.NewAccount(password)
280
	if err == nil {
281 282 283
		log.Info("Your new key was generated", "address", acc.Address)
		log.Warn("Please backup your key file!", "path", acc.URL.Path)
		log.Warn("Please remember your password!")
284 285 286 287 288
		return acc.Address, nil
	}
	return common.Address{}, err
}

289
// fetchKeystore retrieves the encrypted keystore from the account manager.
290 291 292 293 294
func fetchKeystore(am *accounts.Manager) (*keystore.KeyStore, error) {
	if ks := am.Backends(keystore.KeyStoreType); len(ks) > 0 {
		return ks[0].(*keystore.KeyStore), nil
	}
	return nil, errors.New("local keystore not used")
295 296
}

297 298 299
// ImportRawKey stores the given hex encoded ECDSA key into the key directory,
// encrypting it with the passphrase.
func (s *PrivateAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) {
300
	key, err := crypto.HexToECDSA(privkey)
301 302 303
	if err != nil {
		return common.Address{}, err
	}
304 305 306 307 308
	ks, err := fetchKeystore(s.am)
	if err != nil {
		return common.Address{}, err
	}
	acc, err := ks.ImportECDSA(key, password)
309 310 311 312 313 314
	return acc.Address, err
}

// UnlockAccount will unlock the account associated with the given address with
// the given password for duration seconds. If duration is nil it will use a
// default of 300 seconds. It returns an indication if the account was unlocked.
315 316 317 318 319 320 321 322
func (s *PrivateAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) {
	// When the API is exposed by external RPC(http, ws etc), unless the user
	// explicitly specifies to allow the insecure account unlocking, otherwise
	// it is disabled.
	if s.b.ExtRPCEnabled() && !s.b.AccountManager().Config().InsecureUnlockAllowed {
		return false, errors.New("account unlock with HTTP access is forbidden")
	}

323
	const max = uint64(time.Duration(math.MaxInt64) / time.Second)
324
	var d time.Duration
325
	if duration == nil {
326
		d = 300 * time.Second
327 328
	} else if *duration > max {
		return false, errors.New("unlock duration too large")
329 330
	} else {
		d = time.Duration(*duration) * time.Second
331
	}
332 333 334 335 336
	ks, err := fetchKeystore(s.am)
	if err != nil {
		return false, err
	}
	err = ks.TimedUnlock(accounts.Account{Address: addr}, password, d)
337 338 339
	if err != nil {
		log.Warn("Failed account unlock attempt", "address", addr, "err", err)
	}
340
	return err == nil, err
341 342 343 344
}

// LockAccount will lock the account associated with the given address when it's unlocked.
func (s *PrivateAccountAPI) LockAccount(addr common.Address) bool {
345 346 347 348
	if ks, err := fetchKeystore(s.am); err == nil {
		return ks.Lock(addr) == nil
	}
	return false
349 350
}

351
// signTransaction sets defaults and signs the given transaction
352 353
// NOTE: the caller needs to ensure that the nonceLock is held, if applicable,
// and release it after the transaction has been submitted to the tx pool
354
func (s *PrivateAccountAPI) signTransaction(ctx context.Context, args *SendTxArgs, passwd string) (*types.Transaction, error) {
355 356 357 358
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: args.From}
	wallet, err := s.am.Find(account)
	if err != nil {
359
		return nil, err
360 361 362
	}
	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
363
		return nil, err
364
	}
365
	// Assemble the transaction and sign with the wallet
366
	tx := args.toTransaction()
367

368
	return wallet.SignTxWithPassphrase(account, passwd, tx, s.b.ChainConfig().ChainID)
369 370 371
}

// SendTransaction will create a transaction from the given arguments and
372
// tries to sign it with the key associated with args.From. If the given passwd isn't
373 374 375 376 377 378 379 380
// able to decrypt the key it fails.
func (s *PrivateAccountAPI) SendTransaction(ctx context.Context, args SendTxArgs, passwd string) (common.Hash, error) {
	if args.Nonce == nil {
		// Hold the addresse's mutex around signing to prevent concurrent assignment of
		// the same nonce to multiple accounts.
		s.nonceLock.LockAddr(args.From)
		defer s.nonceLock.UnlockAddr(args.From)
	}
381
	signed, err := s.signTransaction(ctx, &args, passwd)
382
	if err != nil {
383
		log.Warn("Failed transaction send attempt", "from", args.From, "to", args.To, "value", args.Value.ToInt(), "err", err)
384 385
		return common.Hash{}, err
	}
386
	return SubmitTransaction(ctx, s.b, signed)
387 388
}

389
// SignTransaction will create a transaction from the given arguments and
390
// tries to sign it with the key associated with args.From. If the given passwd isn't
391 392 393 394 395 396 397 398 399 400 401 402 403 404
// able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast
// to other nodes
func (s *PrivateAccountAPI) SignTransaction(ctx context.Context, args SendTxArgs, passwd string) (*SignTransactionResult, error) {
	// No need to obtain the noncelock mutex, since we won't be sending this
	// tx into the transaction pool, but right back to the user
	if args.Gas == nil {
		return nil, fmt.Errorf("gas not specified")
	}
	if args.GasPrice == nil {
		return nil, fmt.Errorf("gasPrice not specified")
	}
	if args.Nonce == nil {
		return nil, fmt.Errorf("nonce not specified")
	}
405 406 407 408
	// Before actually sign the transaction, ensure the transaction fee is reasonable.
	if err := checkTxFee(args.GasPrice.ToInt(), uint64(*args.Gas), s.b.RPCTxFeeCap()); err != nil {
		return nil, err
	}
409
	signed, err := s.signTransaction(ctx, &args, passwd)
410
	if err != nil {
411
		log.Warn("Failed transaction sign attempt", "from", args.From, "to", args.To, "value", args.Value.ToInt(), "err", err)
412 413
		return nil, err
	}
414
	data, err := signed.MarshalBinary()
415 416 417 418 419 420
	if err != nil {
		return nil, err
	}
	return &SignTransactionResult{data, signed}, nil
}

421 422 423
// Sign calculates an Ethereum ECDSA signature for:
// keccack256("\x19Ethereum Signed Message:\n" + len(message) + message))
//
424 425 426
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
427 428 429
// The key used to calculate the signature is decrypted with the given password.
//
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign
430
func (s *PrivateAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) {
431 432 433 434 435 436 437 438
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Assemble sign the data with the wallet
439
	signature, err := wallet.SignTextWithPassphrase(account, passwd, data)
440
	if err != nil {
441
		log.Warn("Failed data sign attempt", "address", addr, "err", err)
442 443
		return nil, err
	}
444
	signature[crypto.RecoveryIDOffset] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
445
	return signature, nil
446 447 448 449 450 451 452 453
}

// EcRecover returns the address for the account that was used to create the signature.
// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
// the address of:
// hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message})
// addr = ecrecover(hash, signature)
//
454
// Note, the signature must conform to the secp256k1 curve R, S and V values, where
455
// the V value must be 27 or 28 for legacy reasons.
456
//
457
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
458
func (s *PrivateAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) {
459 460
	if len(sig) != crypto.SignatureLength {
		return common.Address{}, fmt.Errorf("signature must be %d bytes long", crypto.SignatureLength)
461
	}
462
	if sig[crypto.RecoveryIDOffset] != 27 && sig[crypto.RecoveryIDOffset] != 28 {
463
		return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
464
	}
465
	sig[crypto.RecoveryIDOffset] -= 27 // Transform yellow paper V from 27/28 to 0/1
466

467
	rpk, err := crypto.SigToPub(accounts.TextHash(data), sig)
468 469 470
	if err != nil {
		return common.Address{}, err
	}
471
	return crypto.PubkeyToAddress(*rpk), nil
472 473
}

474 475 476 477 478 479
// SignAndSendTransaction was renamed to SendTransaction. This method is deprecated
// and will be removed in the future. It primary goal is to give clients time to update.
func (s *PrivateAccountAPI) SignAndSendTransaction(ctx context.Context, args SendTxArgs, passwd string) (common.Hash, error) {
	return s.SendTransaction(ctx, args, passwd)
}

480
// InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key.
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
func (s *PrivateAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) {
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return "", err
	}

	entropy, err := bip39.NewEntropy(256)
	if err != nil {
		return "", err
	}

	mnemonic, err := bip39.NewMnemonic(entropy)
	if err != nil {
		return "", err
	}

	seed := bip39.NewSeed(mnemonic, "")

	switch wallet := wallet.(type) {
	case *scwallet.Wallet:
		return mnemonic, wallet.Initialize(seed)
	default:
503
		return "", fmt.Errorf("specified wallet does not support initialization")
504 505 506
	}
}

507
// Unpair deletes a pairing between wallet and geth.
508 509 510 511 512 513 514 515 516 517
func (s *PrivateAccountAPI) Unpair(ctx context.Context, url string, pin string) error {
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return err
	}

	switch wallet := wallet.(type) {
	case *scwallet.Wallet:
		return wallet.Unpair([]byte(pin))
	default:
518
		return fmt.Errorf("specified wallet does not support pairing")
519 520 521
	}
}

522 523 524
// PublicBlockChainAPI provides an API to access the Ethereum blockchain.
// It offers only methods that operate on public data that is freely available to anyone.
type PublicBlockChainAPI struct {
525
	b Backend
526 527
}

528
// NewPublicBlockChainAPI creates a new Ethereum blockchain API.
529
func NewPublicBlockChainAPI(b Backend) *PublicBlockChainAPI {
530
	return &PublicBlockChainAPI{b}
531 532
}

533 534 535 536 537 538 539
// ChainId is the EIP-155 replay-protection chain id for the current ethereum chain config.
func (api *PublicBlockChainAPI) ChainId() (*hexutil.Big, error) {
	// if current block is at or past the EIP-155 replay-protection fork block, return chainID from config
	if config := api.b.ChainConfig(); config.IsEIP155(api.b.CurrentBlock().Number()) {
		return (*hexutil.Big)(config.ChainID), nil
	}
	return nil, fmt.Errorf("chain not synced beyond EIP-155 replay-protection fork block")
540 541
}

542
// BlockNumber returns the block number of the chain head.
543
func (s *PublicBlockChainAPI) BlockNumber() hexutil.Uint64 {
544
	header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available
545
	return hexutil.Uint64(header.Number.Uint64())
546 547 548 549 550
}

// GetBalance returns the amount of wei for the given address in the state of the
// given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta
// block numbers are also allowed.
551 552
func (s *PublicBlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Big, error) {
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
553 554 555
	if state == nil || err != nil {
		return nil, err
	}
556
	return (*hexutil.Big)(state.GetBalance(address)), state.Error()
557 558
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
// Result structs for GetProof
type AccountResult struct {
	Address      common.Address  `json:"address"`
	AccountProof []string        `json:"accountProof"`
	Balance      *hexutil.Big    `json:"balance"`
	CodeHash     common.Hash     `json:"codeHash"`
	Nonce        hexutil.Uint64  `json:"nonce"`
	StorageHash  common.Hash     `json:"storageHash"`
	StorageProof []StorageResult `json:"storageProof"`
}
type StorageResult struct {
	Key   string       `json:"key"`
	Value *hexutil.Big `json:"value"`
	Proof []string     `json:"proof"`
}

// GetProof returns the Merkle-proof for a given account and optionally some storage keys.
576 577
func (s *PublicBlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNrOrHash rpc.BlockNumberOrHash) (*AccountResult, error) {
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
	if state == nil || err != nil {
		return nil, err
	}

	storageTrie := state.StorageTrie(address)
	storageHash := types.EmptyRootHash
	codeHash := state.GetCodeHash(address)
	storageProof := make([]StorageResult, len(storageKeys))

	// if we have a storageTrie, (which means the account exists), we can update the storagehash
	if storageTrie != nil {
		storageHash = storageTrie.Hash()
	} else {
		// no storageTrie means the account does not exist, so the codeHash is the hash of an empty bytearray.
		codeHash = crypto.Keccak256Hash(nil)
	}

	// create the proof for the storageKeys
	for i, key := range storageKeys {
		if storageTrie != nil {
			proof, storageError := state.GetStorageProof(address, common.HexToHash(key))
			if storageError != nil {
				return nil, storageError
			}
602
			storageProof[i] = StorageResult{key, (*hexutil.Big)(state.GetState(address, common.HexToHash(key)).Big()), toHexSlice(proof)}
603 604 605 606 607 608 609 610 611 612 613 614 615
		} else {
			storageProof[i] = StorageResult{key, &hexutil.Big{}, []string{}}
		}
	}

	// create the accountProof
	accountProof, proofErr := state.GetProof(address)
	if proofErr != nil {
		return nil, proofErr
	}

	return &AccountResult{
		Address:      address,
616
		AccountProof: toHexSlice(accountProof),
617 618 619 620 621 622 623 624
		Balance:      (*hexutil.Big)(state.GetBalance(address)),
		CodeHash:     codeHash,
		Nonce:        hexutil.Uint64(state.GetNonce(address)),
		StorageHash:  storageHash,
		StorageProof: storageProof,
	}, state.Error()
}

625 626 627 628 629 630
// GetHeaderByNumber returns the requested canonical block header.
// * When blockNr is -1 the chain head is returned.
// * When blockNr is -2 the pending chain head is returned.
func (s *PublicBlockChainAPI) GetHeaderByNumber(ctx context.Context, number rpc.BlockNumber) (map[string]interface{}, error) {
	header, err := s.b.HeaderByNumber(ctx, number)
	if header != nil && err == nil {
631
		response := s.rpcMarshalHeader(ctx, header)
632 633 634 635 636 637 638 639 640 641 642 643 644
		if number == rpc.PendingBlockNumber {
			// Pending header need to nil out a few fields
			for _, field := range []string{"hash", "nonce", "miner"} {
				response[field] = nil
			}
		}
		return response, err
	}
	return nil, err
}

// GetHeaderByHash returns the requested header by hash.
func (s *PublicBlockChainAPI) GetHeaderByHash(ctx context.Context, hash common.Hash) map[string]interface{} {
645
	header, _ := s.b.HeaderByHash(ctx, hash)
646
	if header != nil {
647
		return s.rpcMarshalHeader(ctx, header)
648 649 650 651 652 653 654 655 656 657 658 659
	}
	return nil
}

// GetBlockByNumber returns the requested canonical block.
// * When blockNr is -1 the chain head is returned.
// * When blockNr is -2 the pending chain head is returned.
// * When fullTx is true all transactions in the block are returned, otherwise
//   only the transaction hash is returned.
func (s *PublicBlockChainAPI) GetBlockByNumber(ctx context.Context, number rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) {
	block, err := s.b.BlockByNumber(ctx, number)
	if block != nil && err == nil {
660
		response, err := s.rpcMarshalBlock(ctx, block, true, fullTx)
661
		if err == nil && number == rpc.PendingBlockNumber {
662
			// Pending blocks need to nil out a few fields
663
			for _, field := range []string{"hash", "nonce", "miner"} {
664 665 666 667 668 669 670 671 672 673
				response[field] = nil
			}
		}
		return response, err
	}
	return nil, err
}

// GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full
// detail, otherwise only the transaction hash is returned.
674
func (s *PublicBlockChainAPI) GetBlockByHash(ctx context.Context, hash common.Hash, fullTx bool) (map[string]interface{}, error) {
675
	block, err := s.b.BlockByHash(ctx, hash)
676
	if block != nil {
677
		return s.rpcMarshalBlock(ctx, block, true, fullTx)
678 679 680 681 682 683
	}
	return nil, err
}

// GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index. When fullTx is true
// all transactions in the block are returned in full detail, otherwise only the transaction hash is returned.
684
func (s *PublicBlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) {
685 686 687
	block, err := s.b.BlockByNumber(ctx, blockNr)
	if block != nil {
		uncles := block.Uncles()
688
		if index >= hexutil.Uint(len(uncles)) {
689
			log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index)
690 691
			return nil, nil
		}
692
		block = types.NewBlockWithHeader(uncles[index])
693
		return s.rpcMarshalBlock(ctx, block, false, false)
694 695 696 697 698 699
	}
	return nil, err
}

// GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index. When fullTx is true
// all transactions in the block are returned in full detail, otherwise only the transaction hash is returned.
700
func (s *PublicBlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) {
701
	block, err := s.b.BlockByHash(ctx, blockHash)
702 703
	if block != nil {
		uncles := block.Uncles()
704
		if index >= hexutil.Uint(len(uncles)) {
705
			log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index)
706 707
			return nil, nil
		}
708
		block = types.NewBlockWithHeader(uncles[index])
709
		return s.rpcMarshalBlock(ctx, block, false, false)
710 711 712 713 714
	}
	return nil, err
}

// GetUncleCountByBlockNumber returns number of uncles in the block for the given block number
715
func (s *PublicBlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
716
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
717 718
		n := hexutil.Uint(len(block.Uncles()))
		return &n
719 720 721 722 723
	}
	return nil
}

// GetUncleCountByBlockHash returns number of uncles in the block for the given block hash
724
func (s *PublicBlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
725
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
726 727
		n := hexutil.Uint(len(block.Uncles()))
		return &n
728 729 730 731 732
	}
	return nil
}

// GetCode returns the code stored at the given address in the state for the given block number.
733 734
func (s *PublicBlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
735
	if state == nil || err != nil {
736
		return nil, err
737
	}
738 739
	code := state.GetCode(address)
	return code, state.Error()
740 741 742 743 744
}

// GetStorageAt returns the storage from the state at the given address, key and
// block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block
// numbers are also allowed.
745 746
func (s *PublicBlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, key string, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
747
	if state == nil || err != nil {
748
		return nil, err
749
	}
750 751
	res := state.GetState(address, common.HexToHash(key))
	return res[:], state.Error()
752 753 754 755
}

// CallArgs represents the arguments for a call.
type CallArgs struct {
756 757 758 759 760 761 762
	From       *common.Address   `json:"from"`
	To         *common.Address   `json:"to"`
	Gas        *hexutil.Uint64   `json:"gas"`
	GasPrice   *hexutil.Big      `json:"gasPrice"`
	Value      *hexutil.Big      `json:"value"`
	Data       *hexutil.Bytes    `json:"data"`
	AccessList *types.AccessList `json:"accessList"`
763 764
}

765
// ToMessage converts CallArgs to the Message type used by the core evm
766
func (args *CallArgs) ToMessage(globalGasCap uint64) types.Message {
767 768 769 770 771 772 773
	// Set sender address or use zero address if none specified.
	var addr common.Address
	if args.From != nil {
		addr = *args.From
	}

	// Set default gas & gas price if none were set
774 775 776 777
	gas := globalGasCap
	if gas == 0 {
		gas = uint64(math.MaxUint64 / 2)
	}
778 779 780
	if args.Gas != nil {
		gas = uint64(*args.Gas)
	}
781
	if globalGasCap != 0 && globalGasCap < gas {
782
		log.Warn("Caller gas above allowance, capping", "requested", gas, "cap", globalGasCap)
783
		gas = globalGasCap
784 785 786 787 788 789 790 791 792 793 794
	}
	gasPrice := new(big.Int)
	if args.GasPrice != nil {
		gasPrice = args.GasPrice.ToInt()
	}
	value := new(big.Int)
	if args.Value != nil {
		value = args.Value.ToInt()
	}
	var data []byte
	if args.Data != nil {
795
		data = *args.Data
796
	}
797 798 799 800
	var accessList types.AccessList
	if args.AccessList != nil {
		accessList = *args.AccessList
	}
801

802
	msg := types.NewMessage(addr, args.To, 0, value, gas, gasPrice, nil, nil, data, accessList, false)
803 804 805
	return msg
}

806 807
// OverrideAccount indicates the overriding fields of account during the execution
// of a message call.
808 809 810 811
// Note, state and stateDiff can't be specified at the same time. If state is
// set, message execution will only use the data in the given state. Otherwise
// if statDiff is set, all diff will be applied first and then execute the call
// message.
812
type OverrideAccount struct {
813 814 815 816 817 818 819
	Nonce     *hexutil.Uint64              `json:"nonce"`
	Code      *hexutil.Bytes               `json:"code"`
	Balance   **hexutil.Big                `json:"balance"`
	State     *map[common.Hash]common.Hash `json:"state"`
	StateDiff *map[common.Hash]common.Hash `json:"stateDiff"`
}

820
// StateOverride is the collection of overridden accounts.
821
type StateOverride map[common.Address]OverrideAccount
822

823 824 825 826
// Apply overrides the fields of specified accounts into the given state.
func (diff *StateOverride) Apply(state *state.StateDB) error {
	if diff == nil {
		return nil
827
	}
828
	for addr, account := range *diff {
829 830 831 832 833 834 835 836 837 838 839 840 841
		// Override account nonce.
		if account.Nonce != nil {
			state.SetNonce(addr, uint64(*account.Nonce))
		}
		// Override account(contract) code.
		if account.Code != nil {
			state.SetCode(addr, *account.Code)
		}
		// Override account balance.
		if account.Balance != nil {
			state.SetBalance(addr, (*big.Int)(*account.Balance))
		}
		if account.State != nil && account.StateDiff != nil {
842
			return fmt.Errorf("account %s has both 'state' and 'stateDiff'", addr.Hex())
843 844 845 846 847 848 849 850 851 852 853 854
		}
		// Replace entire state if caller requires.
		if account.State != nil {
			state.SetStorage(addr, *account.State)
		}
		// Apply state diff into specified accounts.
		if account.StateDiff != nil {
			for key, value := range *account.StateDiff {
				state.SetState(addr, key, value)
			}
		}
	}
855 856 857 858 859 860 861 862 863 864 865 866 867
	return nil
}

func DoCall(ctx context.Context, b Backend, args CallArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, vmCfg vm.Config, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) {
	defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now())

	state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
	if state == nil || err != nil {
		return nil, err
	}
	if err := overrides.Apply(state); err != nil {
		return nil, err
	}
868 869 870
	// Setup context so it may be cancelled the call has completed
	// or, in case of unmetered gas, setup a context with a timeout.
	var cancel context.CancelFunc
871 872
	if timeout > 0 {
		ctx, cancel = context.WithTimeout(ctx, timeout)
873 874
	} else {
		ctx, cancel = context.WithCancel(ctx)
875
	}
876 877
	// Make sure the context is cancelled when the call has completed
	// this makes sure resources are cleaned up.
878
	defer cancel()
879 880

	// Get a new instance of the EVM.
881
	msg := args.ToMessage(globalGasCap)
882
	evm, vmError, err := b.GetEVM(ctx, msg, state, header, nil)
883
	if err != nil {
884
		return nil, err
885 886 887 888
	}
	// Wait for the context to be done and cancel the evm. Even if the
	// EVM has finished, cancelling may be done (repeatedly)
	go func() {
889 890
		<-ctx.Done()
		evm.Cancel()
891 892
	}()

893
	// Execute the message.
894
	gp := new(core.GasPool).AddGas(math.MaxUint64)
895
	result, err := core.ApplyMessage(evm, msg, gp)
896
	if err := vmError(); err != nil {
897
		return nil, err
898
	}
899

900 901
	// If the timer caused an abort, return an appropriate error message
	if evm.Cancelled() {
902
		return nil, fmt.Errorf("execution aborted (timeout = %v)", timeout)
903
	}
904 905 906 907
	if err != nil {
		return result, fmt.Errorf("err: %w (supplied gas %d)", err, msg.Gas())
	}
	return result, nil
908 909
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
func newRevertError(result *core.ExecutionResult) *revertError {
	reason, errUnpack := abi.UnpackRevert(result.Revert())
	err := errors.New("execution reverted")
	if errUnpack == nil {
		err = fmt.Errorf("execution reverted: %v", reason)
	}
	return &revertError{
		error:  err,
		reason: hexutil.Encode(result.Revert()),
	}
}

// revertError is an API error that encompassas an EVM revertal with JSON error
// code and a binary data blob.
type revertError struct {
	error
	reason string // revert reason hex encoded
}

// ErrorCode returns the JSON error code for a revertal.
// See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal
func (e *revertError) ErrorCode() int {
	return 3
}

// ErrorData returns the hex encoded revert reason.
func (e *revertError) ErrorData() interface{} {
	return e.reason
}

940
// Call executes the given transaction on the state for the given block number.
941 942 943 944 945
//
// Additionally, the caller can specify a batch of contract for fields overriding.
//
// Note, this function doesn't make and changes in the state/blockchain and is
// useful to execute and retrieve values.
946 947
func (s *PublicBlockChainAPI) Call(ctx context.Context, args CallArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride) (hexutil.Bytes, error) {
	result, err := DoCall(ctx, s.b, args, blockNrOrHash, overrides, vm.Config{}, 5*time.Second, s.b.RPCGasCap())
948 949 950
	if err != nil {
		return nil, err
	}
951 952 953
	// If the result contains a revert reason, try to unpack and return it.
	if len(result.Revert()) > 0 {
		return nil, newRevertError(result)
954
	}
955
	return result.Return(), result.Err
956 957
}

958
func DoEstimateGas(ctx context.Context, b Backend, args CallArgs, blockNrOrHash rpc.BlockNumberOrHash, gasCap uint64) (hexutil.Uint64, error) {
959
	// Binary search the gas requirement, as it may be higher than the amount used
960
	var (
961 962 963
		lo  uint64 = params.TxGas - 1
		hi  uint64
		cap uint64
964
	)
965 966 967 968 969
	// Use zero address if sender unspecified.
	if args.From == nil {
		args.From = new(common.Address)
	}
	// Determine the highest gas limit can be used during the estimation.
970 971
	if args.Gas != nil && uint64(*args.Gas) >= params.TxGas {
		hi = uint64(*args.Gas)
972
	} else {
973
		// Retrieve the block to act as the gas ceiling
974
		block, err := b.BlockByNumberOrHash(ctx, blockNrOrHash)
975
		if err != nil {
976
			return 0, err
977
		}
978 979 980
		if block == nil {
			return 0, errors.New("block not found")
		}
981
		hi = block.GasLimit()
982
	}
983
	// Recap the highest gas limit with account's available balance.
984
	if args.GasPrice != nil && args.GasPrice.ToInt().BitLen() != 0 {
985 986 987 988 989 990 991 992 993 994 995 996 997
		state, _, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return 0, err
		}
		balance := state.GetBalance(*args.From) // from can't be nil
		available := new(big.Int).Set(balance)
		if args.Value != nil {
			if args.Value.ToInt().Cmp(available) >= 0 {
				return 0, errors.New("insufficient funds for transfer")
			}
			available.Sub(available, args.Value.ToInt())
		}
		allowance := new(big.Int).Div(available, args.GasPrice.ToInt())
998 999 1000

		// If the allowance is larger than maximum uint64, skip checking
		if allowance.IsUint64() && hi > allowance.Uint64() {
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
			transfer := args.Value
			if transfer == nil {
				transfer = new(hexutil.Big)
			}
			log.Warn("Gas estimation capped by limited funds", "original", hi, "balance", balance,
				"sent", transfer.ToInt(), "gasprice", args.GasPrice.ToInt(), "fundable", allowance)
			hi = allowance.Uint64()
		}
	}
	// Recap the highest gas allowance with specified gascap.
1011
	if gasCap != 0 && hi > gasCap {
1012
		log.Warn("Caller gas above allowance, capping", "requested", hi, "cap", gasCap)
1013
		hi = gasCap
1014
	}
1015
	cap = hi
1016

1017
	// Create a helper to check if a gas allowance results in an executable transaction
1018
	executable := func(gas uint64) (bool, *core.ExecutionResult, error) {
1019
		args.Gas = (*hexutil.Uint64)(&gas)
1020

1021 1022
		result, err := DoCall(ctx, b, args, blockNrOrHash, nil, vm.Config{}, 0, gasCap)
		if err != nil {
1023
			if errors.Is(err, core.ErrIntrinsicGas) {
1024 1025 1026
				return true, nil, nil // Special case, raise gas limit
			}
			return true, nil, err // Bail out
1027
		}
1028
		return result.Failed(), result, nil
1029 1030 1031 1032
	}
	// Execute the binary search and hone in on an executable gas limit
	for lo+1 < hi {
		mid := (hi + lo) / 2
1033 1034 1035 1036
		failed, _, err := executable(mid)

		// If the error is not nil(consensus error), it means the provided message
		// call or transaction will never be accepted no matter how much gas it is
1037
		// assigned. Return the error directly, don't struggle any more.
1038 1039 1040 1041
		if err != nil {
			return 0, err
		}
		if failed {
1042
			lo = mid
1043 1044 1045 1046 1047 1048
		} else {
			hi = mid
		}
	}
	// Reject the transaction as invalid if it still fails at the highest allowance
	if hi == cap {
1049 1050 1051 1052 1053 1054 1055
		failed, result, err := executable(hi)
		if err != nil {
			return 0, err
		}
		if failed {
			if result != nil && result.Err != vm.ErrOutOfGas {
				if len(result.Revert()) > 0 {
1056
					return 0, newRevertError(result)
1057
				}
1058
				return 0, result.Err
1059 1060
			}
			// Otherwise, the specified gas cap is too low
1061
			return 0, fmt.Errorf("gas required exceeds allowance (%d)", cap)
1062 1063
		}
	}
1064
	return hexutil.Uint64(hi), nil
1065 1066
}

1067 1068
// EstimateGas returns an estimate of the amount of gas needed to execute the
// given transaction against the current pending block.
1069 1070 1071 1072 1073 1074
func (s *PublicBlockChainAPI) EstimateGas(ctx context.Context, args CallArgs, blockNrOrHash *rpc.BlockNumberOrHash) (hexutil.Uint64, error) {
	bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber)
	if blockNrOrHash != nil {
		bNrOrHash = *blockNrOrHash
	}
	return DoEstimateGas(ctx, s.b, args, bNrOrHash, s.b.RPCGasCap())
1075 1076
}

1077
// ExecutionResult groups all structured logs emitted by the EVM
1078 1079
// while replaying a transaction in debug mode as well as transaction
// execution status, the amount of gas used and the return value
1080
type ExecutionResult struct {
1081
	Gas         uint64         `json:"gas"`
1082
	Failed      bool           `json:"failed"`
1083 1084 1085 1086 1087 1088 1089
	ReturnValue string         `json:"returnValue"`
	StructLogs  []StructLogRes `json:"structLogs"`
}

// StructLogRes stores a structured log emitted by the EVM while replaying a
// transaction in debug mode
type StructLogRes struct {
1090 1091 1092 1093 1094 1095 1096 1097 1098
	Pc      uint64             `json:"pc"`
	Op      string             `json:"op"`
	Gas     uint64             `json:"gas"`
	GasCost uint64             `json:"gasCost"`
	Depth   int                `json:"depth"`
	Error   error              `json:"error,omitempty"`
	Stack   *[]string          `json:"stack,omitempty"`
	Memory  *[]string          `json:"memory,omitempty"`
	Storage *map[string]string `json:"storage,omitempty"`
1099 1100
}

1101
// FormatLogs formats EVM returned structured logs for json output
1102 1103 1104 1105
func FormatLogs(logs []vm.StructLog) []StructLogRes {
	formatted := make([]StructLogRes, len(logs))
	for index, trace := range logs {
		formatted[index] = StructLogRes{
1106 1107 1108 1109 1110 1111 1112
			Pc:      trace.Pc,
			Op:      trace.Op.String(),
			Gas:     trace.Gas,
			GasCost: trace.GasCost,
			Depth:   trace.Depth,
			Error:   trace.Err,
		}
1113 1114 1115 1116 1117 1118
		if trace.Stack != nil {
			stack := make([]string, len(trace.Stack))
			for i, stackValue := range trace.Stack {
				stack[i] = fmt.Sprintf("%x", math.PaddedBigBytes(stackValue, 32))
			}
			formatted[index].Stack = &stack
1119
		}
1120 1121 1122 1123 1124 1125
		if trace.Memory != nil {
			memory := make([]string, 0, (len(trace.Memory)+31)/32)
			for i := 0; i+32 <= len(trace.Memory); i += 32 {
				memory = append(memory, fmt.Sprintf("%x", trace.Memory[i:i+32]))
			}
			formatted[index].Memory = &memory
1126
		}
1127 1128 1129 1130 1131 1132
		if trace.Storage != nil {
			storage := make(map[string]string)
			for i, storageValue := range trace.Storage {
				storage[fmt.Sprintf("%x", i)] = fmt.Sprintf("%x", storageValue)
			}
			formatted[index].Storage = &storage
1133 1134
		}
	}
1135
	return formatted
1136 1137
}

1138 1139 1140
// RPCMarshalHeader converts the given header to the RPC output .
func RPCMarshalHeader(head *types.Header) map[string]interface{} {
	return map[string]interface{}{
1141
		"number":           (*hexutil.Big)(head.Number),
1142
		"hash":             head.Hash(),
1143 1144 1145 1146 1147 1148 1149
		"parentHash":       head.ParentHash,
		"nonce":            head.Nonce,
		"mixHash":          head.MixDigest,
		"sha3Uncles":       head.UncleHash,
		"logsBloom":        head.Bloom,
		"stateRoot":        head.Root,
		"miner":            head.Coinbase,
1150
		"difficulty":       (*hexutil.Big)(head.Difficulty),
1151
		"extraData":        hexutil.Bytes(head.Extra),
1152
		"size":             hexutil.Uint64(head.Size()),
1153 1154
		"gasLimit":         hexutil.Uint64(head.GasLimit),
		"gasUsed":          hexutil.Uint64(head.GasUsed),
1155
		"timestamp":        hexutil.Uint64(head.Time),
1156
		"transactionsRoot": head.TxHash,
1157
		"receiptsRoot":     head.ReceiptHash,
1158
	}
1159 1160 1161 1162 1163 1164 1165
}

// RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are
// returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
// transaction hashes.
func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
	fields := RPCMarshalHeader(block.Header())
1166
	fields["size"] = hexutil.Uint64(block.Size())
1167 1168 1169 1170 1171 1172 1173

	if inclTx {
		formatTx := func(tx *types.Transaction) (interface{}, error) {
			return tx.Hash(), nil
		}
		if fullTx {
			formatTx = func(tx *types.Transaction) (interface{}, error) {
1174
				return newRPCTransactionFromBlockHash(block, tx.Hash()), nil
1175 1176
			}
		}
1177
		txs := block.Transactions()
1178 1179
		transactions := make([]interface{}, len(txs))
		var err error
1180
		for i, tx := range txs {
1181 1182 1183 1184 1185 1186
			if transactions[i], err = formatTx(tx); err != nil {
				return nil, err
			}
		}
		fields["transactions"] = transactions
	}
1187
	uncles := block.Uncles()
1188 1189 1190 1191 1192 1193 1194 1195 1196
	uncleHashes := make([]common.Hash, len(uncles))
	for i, uncle := range uncles {
		uncleHashes[i] = uncle.Hash()
	}
	fields["uncles"] = uncleHashes

	return fields, nil
}

1197 1198
// rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires
// a `PublicBlockchainAPI`.
1199
func (s *PublicBlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} {
1200
	fields := RPCMarshalHeader(header)
1201
	fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, header.Hash()))
1202 1203 1204 1205
	return fields
}

// rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires
1206
// a `PublicBlockchainAPI`.
1207
func (s *PublicBlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
1208 1209 1210 1211
	fields, err := RPCMarshalBlock(b, inclTx, fullTx)
	if err != nil {
		return nil, err
	}
1212
	if inclTx {
1213
		fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, b.Hash()))
1214
	}
1215 1216 1217
	return fields, err
}

1218 1219
// RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction
type RPCTransaction struct {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	BlockHash        *common.Hash      `json:"blockHash"`
	BlockNumber      *hexutil.Big      `json:"blockNumber"`
	From             common.Address    `json:"from"`
	Gas              hexutil.Uint64    `json:"gas"`
	GasPrice         *hexutil.Big      `json:"gasPrice"`
	Hash             common.Hash       `json:"hash"`
	Input            hexutil.Bytes     `json:"input"`
	Nonce            hexutil.Uint64    `json:"nonce"`
	To               *common.Address   `json:"to"`
	TransactionIndex *hexutil.Uint64   `json:"transactionIndex"`
	Value            *hexutil.Big      `json:"value"`
	Type             hexutil.Uint64    `json:"type"`
	Accesses         *types.AccessList `json:"accessList,omitempty"`
	ChainID          *hexutil.Big      `json:"chainId,omitempty"`
	V                *hexutil.Big      `json:"v"`
	R                *hexutil.Big      `json:"r"`
	S                *hexutil.Big      `json:"s"`
1237 1238
}

1239 1240 1241
// newRPCTransaction returns a transaction that will serialize to the RPC
// representation, with the given location metadata set (if available).
func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, index uint64) *RPCTransaction {
1242 1243 1244 1245 1246
	// Determine the signer. For replay-protected transactions, use the most permissive
	// signer, because we assume that signers are backwards-compatible with old
	// transactions. For non-protected transactions, the homestead signer signer is used
	// because the return value of ChainId is zero for those transactions.
	var signer types.Signer
1247
	if tx.Protected() {
1248 1249 1250
		signer = types.LatestSignerForChainID(tx.ChainId())
	} else {
		signer = types.HomesteadSigner{}
1251
	}
1252

1253
	from, _ := types.Sender(signer, tx)
1254
	v, r, s := tx.RawSignatureValues()
1255
	result := &RPCTransaction{
1256
		Type:     hexutil.Uint64(tx.Type()),
1257
		From:     from,
1258
		Gas:      hexutil.Uint64(tx.Gas()),
1259
		GasPrice: (*hexutil.Big)(tx.GasPrice()),
1260
		Hash:     tx.Hash(),
1261
		Input:    hexutil.Bytes(tx.Data()),
1262
		Nonce:    hexutil.Uint64(tx.Nonce()),
1263
		To:       tx.To(),
1264 1265 1266 1267
		Value:    (*hexutil.Big)(tx.Value()),
		V:        (*hexutil.Big)(v),
		R:        (*hexutil.Big)(r),
		S:        (*hexutil.Big)(s),
1268
	}
1269
	if blockHash != (common.Hash{}) {
1270
		result.BlockHash = &blockHash
1271
		result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber))
1272
		result.TransactionIndex = (*hexutil.Uint64)(&index)
1273
	}
1274
	if tx.Type() != types.LegacyTxType {
1275 1276 1277 1278
		al := tx.AccessList()
		result.Accesses = &al
		result.ChainID = (*hexutil.Big)(tx.ChainId())
	}
1279
	return result
1280 1281
}

1282 1283 1284
// newRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation
func newRPCPendingTransaction(tx *types.Transaction) *RPCTransaction {
	return newRPCTransaction(tx, common.Hash{}, 0, 0)
1285 1286
}

1287 1288 1289 1290 1291
// newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation.
func newRPCTransactionFromBlockIndex(b *types.Block, index uint64) *RPCTransaction {
	txs := b.Transactions()
	if index >= uint64(len(txs)) {
		return nil
1292
	}
1293 1294
	return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), index)
}
1295

1296 1297 1298 1299 1300 1301
// newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index.
func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes {
	txs := b.Transactions()
	if index >= uint64(len(txs)) {
		return nil
	}
1302
	blob, _ := txs[index].MarshalBinary()
1303
	return blob
1304 1305
}

1306 1307
// newRPCTransactionFromBlockHash returns a transaction that will serialize to the RPC representation.
func newRPCTransactionFromBlockHash(b *types.Block, hash common.Hash) *RPCTransaction {
1308
	for idx, tx := range b.Transactions() {
1309 1310
		if tx.Hash() == hash {
			return newRPCTransactionFromBlockIndex(b, uint64(idx))
1311 1312
		}
	}
1313
	return nil
1314 1315
}

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
// accessListResult returns an optional accesslist
// Its the result of the `debug_createAccessList` RPC call.
// It contains an error if the transaction itself failed.
type accessListResult struct {
	Accesslist *types.AccessList `json:"accessList"`
	Error      string            `json:"error,omitempty"`
	GasUsed    hexutil.Uint64    `json:"gasUsed"`
}

// CreateAccessList creates a EIP-2930 type AccessList for the given transaction.
// Reexec and BlockNrOrHash can be specified to create the accessList on top of a certain state.
func (s *PublicBlockChainAPI) CreateAccessList(ctx context.Context, args SendTxArgs, blockNrOrHash *rpc.BlockNumberOrHash) (*accessListResult, error) {
	bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber)
	if blockNrOrHash != nil {
		bNrOrHash = *blockNrOrHash
	}
	acl, gasUsed, vmerr, err := AccessList(ctx, s.b, bNrOrHash, args)
	if err != nil {
		return nil, err
	}
	result := &accessListResult{Accesslist: &acl, GasUsed: hexutil.Uint64(gasUsed)}
	if vmerr != nil {
		result.Error = vmerr.Error()
	}
	return result, nil
}

// AccessList creates an access list for the given transaction.
// If the accesslist creation fails an error is returned.
// If the transaction itself fails, an vmErr is returned.
func AccessList(ctx context.Context, b Backend, blockNrOrHash rpc.BlockNumberOrHash, args SendTxArgs) (acl types.AccessList, gasUsed uint64, vmErr error, err error) {
	// Retrieve the execution context
	db, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
	if db == nil || err != nil {
		return nil, 0, nil, err
	}
	// If the gas amount is not set, extract this as it will depend on access
	// lists and we'll need to reestimate every time
	nogas := args.Gas == nil

	// Ensure any missing fields are filled, extract the recipient and input data
	if err := args.setDefaults(ctx, b); err != nil {
		return nil, 0, nil, err
	}
	var to common.Address
	if args.To != nil {
		to = *args.To
	} else {
		to = crypto.CreateAddress(args.From, uint64(*args.Nonce))
	}
	var input []byte
	if args.Input != nil {
		input = *args.Input
	} else if args.Data != nil {
		input = *args.Data
	}
	// Retrieve the precompiles since they don't need to be added to the access list
	precompiles := vm.ActivePrecompiles(b.ChainConfig().Rules(header.Number))

	// Create an initial tracer
	prevTracer := vm.NewAccessListTracer(nil, args.From, to, precompiles)
	if args.AccessList != nil {
		prevTracer = vm.NewAccessListTracer(*args.AccessList, args.From, to, precompiles)
	}
	for {
		// Retrieve the current access list to expand
		accessList := prevTracer.AccessList()
		log.Trace("Creating access list", "input", accessList)

		// If no gas amount was specified, each unique access list needs it's own
		// gas calculation. This is quite expensive, but we need to be accurate
		// and it's convered by the sender only anyway.
		if nogas {
			args.Gas = nil
			if err := args.setDefaults(ctx, b); err != nil {
				return nil, 0, nil, err // shouldn't happen, just in case
			}
		}
		// Copy the original db so we don't modify it
		statedb := db.Copy()
1396
		msg := types.NewMessage(args.From, args.To, uint64(*args.Nonce), args.Value.ToInt(), uint64(*args.Gas), args.GasPrice.ToInt(), nil, nil, input, accessList, false)
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

		// Apply the transaction with the access list tracer
		tracer := vm.NewAccessListTracer(accessList, args.From, to, precompiles)
		config := vm.Config{Tracer: tracer, Debug: true}
		vmenv, _, err := b.GetEVM(ctx, msg, statedb, header, &config)
		if err != nil {
			return nil, 0, nil, err
		}
		res, err := core.ApplyMessage(vmenv, msg, new(core.GasPool).AddGas(msg.Gas()))
		if err != nil {
			return nil, 0, nil, fmt.Errorf("failed to apply transaction: %v err: %v", args.toTransaction().Hash(), err)
		}
		if tracer.Equal(prevTracer) {
			return accessList, res.UsedGas, res.Err, nil
		}
		prevTracer = tracer
	}
}

1416 1417
// PublicTransactionPoolAPI exposes methods for the RPC interface
type PublicTransactionPoolAPI struct {
1418 1419
	b         Backend
	nonceLock *AddrLocker
1420
	signer    types.Signer
1421 1422 1423
}

// NewPublicTransactionPoolAPI creates a new RPC service with methods specific for the transaction pool.
1424
func NewPublicTransactionPoolAPI(b Backend, nonceLock *AddrLocker) *PublicTransactionPoolAPI {
1425 1426 1427 1428
	// The signer used by the API should always be the 'latest' known one because we expect
	// signers to be backwards-compatible with old transactions.
	signer := types.LatestSigner(b.ChainConfig())
	return &PublicTransactionPoolAPI{b, nonceLock, signer}
1429 1430 1431
}

// GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number.
1432
func (s *PublicTransactionPoolAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
1433
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1434 1435
		n := hexutil.Uint(len(block.Transactions()))
		return &n
1436 1437 1438 1439 1440
	}
	return nil
}

// GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash.
1441
func (s *PublicTransactionPoolAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
1442
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1443 1444
		n := hexutil.Uint(len(block.Transactions()))
		return &n
1445 1446 1447 1448 1449
	}
	return nil
}

// GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index.
1450
func (s *PublicTransactionPoolAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction {
1451
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1452
		return newRPCTransactionFromBlockIndex(block, uint64(index))
1453
	}
1454
	return nil
1455 1456 1457
}

// GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index.
1458
func (s *PublicTransactionPoolAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction {
1459
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1460
		return newRPCTransactionFromBlockIndex(block, uint64(index))
1461
	}
1462
	return nil
1463 1464
}

1465
// GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index.
1466
func (s *PublicTransactionPoolAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes {
1467
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1468
		return newRPCRawTransactionFromBlockIndex(block, uint64(index))
1469
	}
1470
	return nil
1471 1472 1473
}

// GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index.
1474
func (s *PublicTransactionPoolAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes {
1475
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1476
		return newRPCRawTransactionFromBlockIndex(block, uint64(index))
1477
	}
1478
	return nil
1479 1480
}

1481
// GetTransactionCount returns the number of transactions the given address has sent for the given block number
1482
func (s *PublicTransactionPoolAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) {
1483
	// Ask transaction pool for the nonce which includes pending transactions
1484
	if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber {
1485 1486 1487 1488 1489 1490 1491
		nonce, err := s.b.GetPoolNonce(ctx, address)
		if err != nil {
			return nil, err
		}
		return (*hexutil.Uint64)(&nonce), nil
	}
	// Resolve block number and use its state to ask for the nonce
1492
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
1493 1494 1495
	if state == nil || err != nil {
		return nil, err
	}
1496 1497
	nonce := state.GetNonce(address)
	return (*hexutil.Uint64)(&nonce), state.Error()
1498 1499 1500
}

// GetTransactionByHash returns the transaction for the given hash
1501
func (s *PublicTransactionPoolAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) {
1502
	// Try to return an already finalized transaction
1503 1504 1505 1506 1507 1508
	tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
		return nil, err
	}
	if tx != nil {
		return newRPCTransaction(tx, blockHash, blockNumber, index), nil
1509
	}
1510 1511
	// No finalized transaction, try to retrieve it from the pool
	if tx := s.b.GetPoolTransaction(hash); tx != nil {
1512
		return newRPCPendingTransaction(tx), nil
1513
	}
1514

1515
	// Transaction unknown, return as such
1516
	return nil, nil
1517 1518
}

1519
// GetRawTransactionByHash returns the bytes of the transaction for the given hash.
1520
func (s *PublicTransactionPoolAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
1521
	// Retrieve a finalized transaction, or a pooled otherwise
1522 1523 1524 1525 1526
	tx, _, _, _, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
		return nil, err
	}
	if tx == nil {
1527 1528 1529 1530
		if tx = s.b.GetPoolTransaction(hash); tx == nil {
			// Transaction not found anywhere, abort
			return nil, nil
		}
1531
	}
1532
	// Serialize to RLP and return
1533
	return tx.MarshalBinary()
1534 1535
}

1536
// GetTransactionReceipt returns the transaction receipt for the given transaction hash.
1537
func (s *PublicTransactionPoolAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) {
1538 1539
	tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
1540
		return nil, nil
1541
	}
1542 1543 1544 1545 1546
	receipts, err := s.b.GetReceipts(ctx, blockHash)
	if err != nil {
		return nil, err
	}
	if len(receipts) <= int(index) {
1547
		return nil, nil
1548
	}
1549
	receipt := receipts[index]
1550

1551 1552 1553
	// Derive the sender.
	bigblock := new(big.Int).SetUint64(blockNumber)
	signer := types.MakeSigner(s.b.ChainConfig(), bigblock)
1554
	from, _ := types.Sender(signer, tx)
1555 1556

	fields := map[string]interface{}{
1557 1558
		"blockHash":         blockHash,
		"blockNumber":       hexutil.Uint64(blockNumber),
1559
		"transactionHash":   hash,
1560
		"transactionIndex":  hexutil.Uint64(index),
1561 1562
		"from":              from,
		"to":                tx.To(),
1563 1564
		"gasUsed":           hexutil.Uint64(receipt.GasUsed),
		"cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed),
1565 1566
		"contractAddress":   nil,
		"logs":              receipt.Logs,
1567
		"logsBloom":         receipt.Bloom,
1568
		"type":              hexutil.Uint(tx.Type()),
1569
	}
1570 1571 1572 1573 1574

	// Assign receipt status or post state.
	if len(receipt.PostState) > 0 {
		fields["root"] = hexutil.Bytes(receipt.PostState)
	} else {
1575
		fields["status"] = hexutil.Uint(receipt.Status)
1576
	}
1577
	if receipt.Logs == nil {
1578
		fields["logs"] = [][]*types.Log{}
1579 1580
	}
	// If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation
1581
	if receipt.ContractAddress != (common.Address{}) {
1582 1583 1584 1585 1586 1587 1588
		fields["contractAddress"] = receipt.ContractAddress
	}
	return fields, nil
}

// sign is a helper function that signs a transaction with the private key of the given address.
func (s *PublicTransactionPoolAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) {
1589 1590 1591 1592 1593 1594 1595 1596
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Request the wallet to sign the transaction
1597
	return wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
1598 1599 1600 1601 1602 1603
}

// SendTxArgs represents the arguments to sumbit a new transaction into the transaction pool.
type SendTxArgs struct {
	From     common.Address  `json:"from"`
	To       *common.Address `json:"to"`
1604
	Gas      *hexutil.Uint64 `json:"gas"`
1605 1606 1607
	GasPrice *hexutil.Big    `json:"gasPrice"`
	Value    *hexutil.Big    `json:"value"`
	Nonce    *hexutil.Uint64 `json:"nonce"`
1608 1609 1610 1611
	// We accept "data" and "input" for backwards-compatibility reasons. "input" is the
	// newer name and should be preferred by clients.
	Data  *hexutil.Bytes `json:"data"`
	Input *hexutil.Bytes `json:"input"`
1612 1613 1614 1615

	// For non-legacy transactions
	AccessList *types.AccessList `json:"accessList,omitempty"`
	ChainID    *hexutil.Big      `json:"chainId,omitempty"`
1616 1617
}

1618
// setDefaults fills in default values for unspecified tx fields.
1619
func (args *SendTxArgs) setDefaults(ctx context.Context, b Backend) error {
1620 1621 1622
	if args.GasPrice == nil {
		price, err := b.SuggestPrice(ctx)
		if err != nil {
1623
			return err
1624
		}
1625
		args.GasPrice = (*hexutil.Big)(price)
1626 1627
	}
	if args.Value == nil {
1628 1629 1630 1631 1632 1633 1634 1635 1636
		args.Value = new(hexutil.Big)
	}
	if args.Nonce == nil {
		nonce, err := b.GetPoolNonce(ctx, args.From)
		if err != nil {
			return err
		}
		args.Nonce = (*hexutil.Uint64)(&nonce)
	}
1637
	if args.Data != nil && args.Input != nil && !bytes.Equal(*args.Data, *args.Input) {
1638
		return errors.New(`both "data" and "input" are set and not equal. Please use "input" to pass transaction call data`)
1639
	}
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	if args.To == nil {
		// Contract creation
		var input []byte
		if args.Data != nil {
			input = *args.Data
		} else if args.Input != nil {
			input = *args.Input
		}
		if len(input) == 0 {
			return errors.New(`contract creation without any data provided`)
		}
	}
1652 1653 1654 1655 1656 1657 1658 1659 1660
	// Estimate the gas usage if necessary.
	if args.Gas == nil {
		// For backwards-compatibility reason, we try both input and data
		// but input is preferred.
		input := args.Input
		if input == nil {
			input = args.Data
		}
		callArgs := CallArgs{
1661 1662 1663 1664 1665 1666
			From:       &args.From, // From shouldn't be nil
			To:         args.To,
			GasPrice:   args.GasPrice,
			Value:      args.Value,
			Data:       input,
			AccessList: args.AccessList,
1667
		}
1668 1669
		pendingBlockNr := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber)
		estimated, err := DoEstimateGas(ctx, b, callArgs, pendingBlockNr, b.RPCGasCap())
1670 1671 1672 1673 1674 1675
		if err != nil {
			return err
		}
		args.Gas = &estimated
		log.Trace("Estimate gas usage automatically", "gas", args.Gas)
	}
1676 1677 1678 1679
	if args.ChainID == nil {
		id := (*hexutil.Big)(b.ChainConfig().ChainID)
		args.ChainID = id
	}
1680 1681 1682
	return nil
}

1683 1684
// toTransaction converts the arguments to a transaction.
// This assumes that setDefaults has been called.
1685
func (args *SendTxArgs) toTransaction() *types.Transaction {
1686
	var input []byte
1687
	if args.Input != nil {
1688
		input = *args.Input
1689 1690
	} else if args.Data != nil {
		input = *args.Data
1691
	}
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	var data types.TxData
	if args.AccessList == nil {
		data = &types.LegacyTx{
			To:       args.To,
			Nonce:    uint64(*args.Nonce),
			Gas:      uint64(*args.Gas),
			GasPrice: (*big.Int)(args.GasPrice),
			Value:    (*big.Int)(args.Value),
			Data:     input,
		}
	} else {
		data = &types.AccessListTx{
			To:         args.To,
			ChainID:    (*big.Int)(args.ChainID),
			Nonce:      uint64(*args.Nonce),
			Gas:        uint64(*args.Gas),
			GasPrice:   (*big.Int)(args.GasPrice),
			Value:      (*big.Int)(args.Value),
			Data:       input,
			AccessList: *args.AccessList,
		}
1713
	}
1714
	return types.NewTx(data)
1715 1716
}

1717 1718
// SubmitTransaction is a helper function that submits tx to txPool and logs a message.
func SubmitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) {
1719 1720
	// If the transaction fee cap is already specified, ensure the
	// fee of the given transaction is _reasonable_.
1721 1722
	if err := checkTxFee(tx.GasPrice(), tx.Gas(), b.RPCTxFeeCap()); err != nil {
		return common.Hash{}, err
1723
	}
1724 1725 1726 1727
	if !b.UnprotectedAllowed() && !tx.Protected() {
		// Ensure only eip155 signed transactions are submitted if EIP155Required is set.
		return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC")
	}
1728
	if err := b.SendTx(ctx, tx); err != nil {
1729 1730
		return common.Hash{}, err
	}
1731 1732 1733 1734 1735 1736 1737
	// Print a log with full tx details for manual investigations and interventions
	signer := types.MakeSigner(b.ChainConfig(), b.CurrentBlock().Number())
	from, err := types.Sender(signer, tx)
	if err != nil {
		return common.Hash{}, err
	}

1738 1739
	if tx.To() == nil {
		addr := crypto.CreateAddress(from, tx.Nonce())
1740
		log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "contract", addr.Hex(), "value", tx.Value())
1741
	} else {
1742
		log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "recipient", tx.To(), "value", tx.Value())
1743
	}
1744
	return tx.Hash(), nil
1745 1746 1747 1748 1749
}

// SendTransaction creates a transaction for the given argument, sign it and submit it to the
// transaction pool.
func (s *PublicTransactionPoolAPI) SendTransaction(ctx context.Context, args SendTxArgs) (common.Hash, error) {
1750 1751 1752 1753 1754 1755 1756
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: args.From}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return common.Hash{}, err
	}
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

	if args.Nonce == nil {
		// Hold the addresse's mutex around signing to prevent concurrent assignment of
		// the same nonce to multiple accounts.
		s.nonceLock.LockAddr(args.From)
		defer s.nonceLock.UnlockAddr(args.From)
	}

	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
		return common.Hash{}, err
	}
1769
	// Assemble the transaction and sign with the wallet
1770
	tx := args.toTransaction()
1771

1772
	signed, err := wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
1773 1774 1775
	if err != nil {
		return common.Hash{}, err
	}
1776
	return SubmitTransaction(ctx, s.b, signed)
1777 1778
}

1779 1780 1781 1782 1783 1784 1785 1786 1787
// FillTransaction fills the defaults (nonce, gas, gasPrice) on a given unsigned transaction,
// and returns it to the caller for further processing (signing + broadcast)
func (s *PublicTransactionPoolAPI) FillTransaction(ctx context.Context, args SendTxArgs) (*SignTransactionResult, error) {
	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
		return nil, err
	}
	// Assemble the transaction and obtain rlp
	tx := args.toTransaction()
1788
	data, err := tx.MarshalBinary()
1789 1790 1791 1792 1793 1794
	if err != nil {
		return nil, err
	}
	return &SignTransactionResult{data, tx}, nil
}

1795 1796
// SendRawTransaction will add the signed transaction to the transaction pool.
// The sender is responsible for signing the transaction and using the correct nonce.
1797
func (s *PublicTransactionPoolAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) {
1798
	tx := new(types.Transaction)
1799
	if err := tx.UnmarshalBinary(input); err != nil {
1800
		return common.Hash{}, err
1801
	}
1802
	return SubmitTransaction(ctx, s.b, tx)
1803 1804
}

1805 1806 1807
// Sign calculates an ECDSA signature for:
// keccack256("\x19Ethereum Signed Message:\n" + len(message) + message).
//
1808 1809 1810
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
1811 1812 1813
// The account associated with addr must be unlocked.
//
// https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
1814
func (s *PublicTransactionPoolAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) {
1815 1816 1817 1818 1819 1820 1821 1822
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Sign the requested hash with the wallet
1823
	signature, err := wallet.SignText(account, data)
1824
	if err == nil {
1825
		signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
1826 1827
	}
	return signature, err
1828 1829 1830 1831
}

// SignTransactionResult represents a RLP encoded signed transaction.
type SignTransactionResult struct {
1832 1833
	Raw hexutil.Bytes      `json:"raw"`
	Tx  *types.Transaction `json:"tx"`
1834 1835 1836 1837 1838
}

// SignTransaction will sign the given transaction with the from account.
// The node needs to have the private key of the account corresponding with
// the given from address and it needs to be unlocked.
1839
func (s *PublicTransactionPoolAPI) SignTransaction(ctx context.Context, args SendTxArgs) (*SignTransactionResult, error) {
1840 1841 1842 1843 1844 1845
	if args.Gas == nil {
		return nil, fmt.Errorf("gas not specified")
	}
	if args.GasPrice == nil {
		return nil, fmt.Errorf("gasPrice not specified")
	}
1846
	if args.Nonce == nil {
1847
		return nil, fmt.Errorf("nonce not specified")
1848
	}
1849 1850
	if err := args.setDefaults(ctx, s.b); err != nil {
		return nil, err
1851
	}
1852 1853 1854 1855
	// Before actually sign the transaction, ensure the transaction fee is reasonable.
	if err := checkTxFee(args.GasPrice.ToInt(), uint64(*args.Gas), s.b.RPCTxFeeCap()); err != nil {
		return nil, err
	}
1856
	tx, err := s.sign(args.From, args.toTransaction())
1857 1858 1859
	if err != nil {
		return nil, err
	}
1860
	data, err := tx.MarshalBinary()
1861 1862 1863
	if err != nil {
		return nil, err
	}
1864
	return &SignTransactionResult{data, tx}, nil
1865 1866
}

1867 1868
// PendingTransactions returns the transactions that are in the transaction pool
// and have a from address that is one of the accounts this node manages.
1869 1870 1871 1872 1873
func (s *PublicTransactionPoolAPI) PendingTransactions() ([]*RPCTransaction, error) {
	pending, err := s.b.GetPoolTransactions()
	if err != nil {
		return nil, err
	}
1874 1875 1876 1877 1878 1879
	accounts := make(map[common.Address]struct{})
	for _, wallet := range s.b.AccountManager().Wallets() {
		for _, account := range wallet.Accounts() {
			accounts[account.Address] = struct{}{}
		}
	}
1880 1881
	transactions := make([]*RPCTransaction, 0, len(pending))
	for _, tx := range pending {
1882
		from, _ := types.Sender(s.signer, tx)
1883
		if _, exists := accounts[from]; exists {
1884 1885 1886
			transactions = append(transactions, newRPCPendingTransaction(tx))
		}
	}
1887
	return transactions, nil
1888 1889
}

1890 1891
// Resend accepts an existing transaction and a new gas price and limit. It will remove
// the given transaction from the pool and reinsert it with the new gas price and limit.
1892
func (s *PublicTransactionPoolAPI) Resend(ctx context.Context, sendArgs SendTxArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) {
1893 1894 1895 1896 1897 1898 1899
	if sendArgs.Nonce == nil {
		return common.Hash{}, fmt.Errorf("missing transaction nonce in transaction spec")
	}
	if err := sendArgs.setDefaults(ctx, s.b); err != nil {
		return common.Hash{}, err
	}
	matchTx := sendArgs.toTransaction()
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913

	// Before replacing the old transaction, ensure the _new_ transaction fee is reasonable.
	var price = matchTx.GasPrice()
	if gasPrice != nil {
		price = gasPrice.ToInt()
	}
	var gas = matchTx.Gas()
	if gasLimit != nil {
		gas = uint64(*gasLimit)
	}
	if err := checkTxFee(price, gas, s.b.RPCTxFeeCap()); err != nil {
		return common.Hash{}, err
	}
	// Iterate the pending list for replacement
1914 1915 1916 1917
	pending, err := s.b.GetPoolTransactions()
	if err != nil {
		return common.Hash{}, err
	}
1918
	for _, p := range pending {
1919 1920 1921
		wantSigHash := s.signer.Hash(matchTx)
		pFrom, err := types.Sender(s.signer, p)
		if err == nil && pFrom == sendArgs.From && s.signer.Hash(p) == wantSigHash {
1922
			// Match. Re-sign and send the transaction.
1923
			if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 {
1924
				sendArgs.GasPrice = gasPrice
1925
			}
1926
			if gasLimit != nil && *gasLimit != 0 {
1927
				sendArgs.Gas = gasLimit
1928
			}
1929
			signedTx, err := s.sign(sendArgs.From, sendArgs.toTransaction())
1930 1931 1932 1933 1934 1935 1936 1937 1938
			if err != nil {
				return common.Hash{}, err
			}
			if err = s.b.SendTx(ctx, signedTx); err != nil {
				return common.Hash{}, err
			}
			return signedTx.Hash(), nil
		}
	}
1939
	return common.Hash{}, fmt.Errorf("transaction %#x not found", matchTx.Hash())
1940 1941
}

1942
// PublicDebugAPI is the collection of Ethereum APIs exposed over the public
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
// debugging endpoint.
type PublicDebugAPI struct {
	b Backend
}

// NewPublicDebugAPI creates a new API definition for the public debug methods
// of the Ethereum service.
func NewPublicDebugAPI(b Backend) *PublicDebugAPI {
	return &PublicDebugAPI{b: b}
}

// GetBlockRlp retrieves the RLP encoded for of a single block.
func (api *PublicDebugAPI) GetBlockRlp(ctx context.Context, number uint64) (string, error) {
	block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
	if block == nil {
		return "", fmt.Errorf("block #%d not found", number)
	}
	encoded, err := rlp.EncodeToBytes(block)
	if err != nil {
		return "", err
	}
	return fmt.Sprintf("%x", encoded), nil
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
// TestSignCliqueBlock fetches the given block number, and attempts to sign it as a clique header with the
// given address, returning the address of the recovered signature
//
// This is a temporary method to debug the externalsigner integration,
// TODO: Remove this method when the integration is mature
func (api *PublicDebugAPI) TestSignCliqueBlock(ctx context.Context, address common.Address, number uint64) (common.Address, error) {
	block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
	if block == nil {
		return common.Address{}, fmt.Errorf("block #%d not found", number)
	}
	header := block.Header()
	header.Extra = make([]byte, 32+65)
	encoded := clique.CliqueRLP(header)

	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: address}
	wallet, err := api.b.AccountManager().Find(account)
	if err != nil {
		return common.Address{}, err
	}

	signature, err := wallet.SignData(account, accounts.MimetypeClique, encoded)
	if err != nil {
		return common.Address{}, err
	}
	sealHash := clique.SealHash(header).Bytes()
	log.Info("test signing of clique block",
		"Sealhash", fmt.Sprintf("%x", sealHash),
		"signature", fmt.Sprintf("%x", signature))
	pubkey, err := crypto.Ecrecover(sealHash, signature)
	if err != nil {
		return common.Address{}, err
	}
	var signer common.Address
	copy(signer[:], crypto.Keccak256(pubkey[1:])[12:])

	return signer, nil
}

2006 2007 2008 2009 2010 2011
// PrintBlock retrieves a block and returns its pretty printed form.
func (api *PublicDebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) {
	block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
	if block == nil {
		return "", fmt.Errorf("block #%d not found", number)
	}
2012
	return spew.Sdump(block), nil
2013 2014 2015 2016 2017 2018 2019 2020
}

// SeedHash retrieves the seed hash of a block.
func (api *PublicDebugAPI) SeedHash(ctx context.Context, number uint64) (string, error) {
	block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
	if block == nil {
		return "", fmt.Errorf("block #%d not found", number)
	}
2021
	return fmt.Sprintf("0x%x", ethash.SeedHash(number)), nil
2022 2023
}

2024
// PrivateDebugAPI is the collection of Ethereum APIs exposed over the private
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
// debugging endpoint.
type PrivateDebugAPI struct {
	b Backend
}

// NewPrivateDebugAPI creates a new API definition for the private debug methods
// of the Ethereum service.
func NewPrivateDebugAPI(b Backend) *PrivateDebugAPI {
	return &PrivateDebugAPI{b: b}
}

2036
// ChaindbProperty returns leveldb properties of the key-value database.
2037 2038 2039 2040 2041 2042
func (api *PrivateDebugAPI) ChaindbProperty(property string) (string, error) {
	if property == "" {
		property = "leveldb.stats"
	} else if !strings.HasPrefix(property, "leveldb.") {
		property = "leveldb." + property
	}
2043
	return api.b.ChainDb().Stat(property)
2044 2045
}

2046 2047
// ChaindbCompact flattens the entire key-value database into a single level,
// removing all unused slots and merging all keys.
2048 2049
func (api *PrivateDebugAPI) ChaindbCompact() error {
	for b := byte(0); b < 255; b++ {
2050
		log.Info("Compacting chain database", "range", fmt.Sprintf("0x%0.2X-0x%0.2X", b, b+1))
2051
		if err := api.b.ChainDb().Compact([]byte{b}, []byte{b + 1}); err != nil {
2052
			log.Error("Database compaction failed", "err", err)
2053 2054 2055 2056 2057 2058
			return err
		}
	}
	return nil
}

2059
// SetHead rewinds the head of the blockchain to a previous block.
2060 2061
func (api *PrivateDebugAPI) SetHead(number hexutil.Uint64) {
	api.b.SetHead(uint64(number))
2062 2063 2064 2065
}

// PublicNetAPI offers network related RPC methods
type PublicNetAPI struct {
2066 2067
	net            *p2p.Server
	networkVersion uint64
2068 2069 2070
}

// NewPublicNetAPI creates a new net API instance.
2071 2072
func NewPublicNetAPI(net *p2p.Server, networkVersion uint64) *PublicNetAPI {
	return &PublicNetAPI{net, networkVersion}
2073 2074 2075 2076 2077 2078 2079 2080
}

// Listening returns an indication if the node is listening for network connections.
func (s *PublicNetAPI) Listening() bool {
	return true // always listening
}

// PeerCount returns the number of connected peers
2081 2082
func (s *PublicNetAPI) PeerCount() hexutil.Uint {
	return hexutil.Uint(s.net.PeerCount())
2083 2084
}

2085 2086 2087 2088 2089
// Version returns the current ethereum protocol version.
func (s *PublicNetAPI) Version() string {
	return fmt.Sprintf("%d", s.networkVersion)
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
// checkTxFee is an internal function used to check whether the fee of
// the given transaction is _reasonable_(under the cap).
func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error {
	// Short circuit if there is no cap for transaction fee at all.
	if cap == 0 {
		return nil
	}
	feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether)))
	feeFloat, _ := feeEth.Float64()
	if feeFloat > cap {
		return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap)
	}
	return nil
}
2104 2105 2106 2107 2108 2109 2110 2111 2112

// toHexSlice creates a slice of hex-strings based on []byte.
func toHexSlice(b [][]byte) []string {
	r := make([]string, len(b))
	for i := range b {
		r[i] = hexutil.Encode(b[i])
	}
	return r
}