api.go 76 KB
Newer Older
1
// Copyright 2015 The go-ethereum Authors
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package ethapi

import (
20
	"context"
21
	"encoding/hex"
22
	"errors"
23 24 25 26 27
	"fmt"
	"math/big"
	"strings"
	"time"

28
	"github.com/davecgh/go-spew/spew"
29
	"github.com/ethereum/go-ethereum/accounts"
30
	"github.com/ethereum/go-ethereum/accounts/abi"
31
	"github.com/ethereum/go-ethereum/accounts/keystore"
32
	"github.com/ethereum/go-ethereum/accounts/scwallet"
33
	"github.com/ethereum/go-ethereum/common"
34
	"github.com/ethereum/go-ethereum/common/hexutil"
35
	"github.com/ethereum/go-ethereum/common/math"
36
	"github.com/ethereum/go-ethereum/consensus"
37
	"github.com/ethereum/go-ethereum/consensus/misc"
38
	"github.com/ethereum/go-ethereum/core"
39
	"github.com/ethereum/go-ethereum/core/state"
40 41 42
	"github.com/ethereum/go-ethereum/core/types"
	"github.com/ethereum/go-ethereum/core/vm"
	"github.com/ethereum/go-ethereum/crypto"
43
	"github.com/ethereum/go-ethereum/eth/tracers/logger"
44
	"github.com/ethereum/go-ethereum/log"
45
	"github.com/ethereum/go-ethereum/p2p"
46
	"github.com/ethereum/go-ethereum/params"
47 48
	"github.com/ethereum/go-ethereum/rlp"
	"github.com/ethereum/go-ethereum/rpc"
49
	"github.com/tyler-smith/go-bip39"
50 51
)

52 53
// EthereumAPI provides an API to access Ethereum related information.
type EthereumAPI struct {
54
	b Backend
55 56
}

57 58 59
// NewEthereumAPI creates a new Ethereum protocol API.
func NewEthereumAPI(b Backend) *EthereumAPI {
	return &EthereumAPI{b}
60 61
}

62
// GasPrice returns a suggestion for a gas price for legacy transactions.
63
func (s *EthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) {
64 65 66 67 68 69 70 71 72 73
	tipcap, err := s.b.SuggestGasTipCap(ctx)
	if err != nil {
		return nil, err
	}
	if head := s.b.CurrentHeader(); head.BaseFee != nil {
		tipcap.Add(tipcap, head.BaseFee)
	}
	return (*hexutil.Big)(tipcap), err
}

74
// MaxPriorityFeePerGas returns a suggestion for a gas tip cap for dynamic fee transactions.
75
func (s *EthereumAPI) MaxPriorityFeePerGas(ctx context.Context) (*hexutil.Big, error) {
76 77 78 79 80
	tipcap, err := s.b.SuggestGasTipCap(ctx)
	if err != nil {
		return nil, err
	}
	return (*hexutil.Big)(tipcap), err
81 82
}

83
type feeHistoryResult struct {
84
	OldestBlock  *hexutil.Big     `json:"oldestBlock"`
85 86 87
	Reward       [][]*hexutil.Big `json:"reward,omitempty"`
	BaseFee      []*hexutil.Big   `json:"baseFeePerGas,omitempty"`
	GasUsedRatio []float64        `json:"gasUsedRatio"`
88 89
}

90
// FeeHistory returns the fee market history.
91
func (s *EthereumAPI) FeeHistory(ctx context.Context, blockCount math.HexOrDecimal64, lastBlock rpc.BlockNumber, rewardPercentiles []float64) (*feeHistoryResult, error) {
92
	oldest, reward, baseFee, gasUsed, err := s.b.FeeHistory(ctx, uint64(blockCount), lastBlock, rewardPercentiles)
93
	if err != nil {
94
		return nil, err
95
	}
96
	results := &feeHistoryResult{
97
		OldestBlock:  (*hexutil.Big)(oldest),
98
		GasUsedRatio: gasUsed,
99 100 101
	}
	if reward != nil {
		results.Reward = make([][]*hexutil.Big, len(reward))
102 103 104 105
		for i, w := range reward {
			results.Reward[i] = make([]*hexutil.Big, len(w))
			for j, v := range w {
				results.Reward[i][j] = (*hexutil.Big)(v)
106 107 108 109 110 111 112 113 114 115 116 117
			}
		}
	}
	if baseFee != nil {
		results.BaseFee = make([]*hexutil.Big, len(baseFee))
		for i, v := range baseFee {
			results.BaseFee[i] = (*hexutil.Big)(v)
		}
	}
	return results, nil
}

118
// Syncing returns false in case the node is currently not syncing with the network. It can be up-to-date or has not
119
// yet received the latest block headers from its pears. In case it is synchronizing:
120
// - startingBlock: block number this node started to synchronize from
121 122 123 124
// - currentBlock:  block number this node is currently importing
// - highestBlock:  block number of the highest block header this node has received from peers
// - pulledStates:  number of state entries processed until now
// - knownStates:   number of known state entries that still need to be pulled
125
func (s *EthereumAPI) Syncing() (interface{}, error) {
126
	progress := s.b.SyncProgress()
127 128

	// Return not syncing if the synchronisation already completed
129
	if progress.CurrentBlock >= progress.HighestBlock {
130 131 132 133
		return false, nil
	}
	// Otherwise gather the block sync stats
	return map[string]interface{}{
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
		"startingBlock":       hexutil.Uint64(progress.StartingBlock),
		"currentBlock":        hexutil.Uint64(progress.CurrentBlock),
		"highestBlock":        hexutil.Uint64(progress.HighestBlock),
		"syncedAccounts":      hexutil.Uint64(progress.SyncedAccounts),
		"syncedAccountBytes":  hexutil.Uint64(progress.SyncedAccountBytes),
		"syncedBytecodes":     hexutil.Uint64(progress.SyncedBytecodes),
		"syncedBytecodeBytes": hexutil.Uint64(progress.SyncedBytecodeBytes),
		"syncedStorage":       hexutil.Uint64(progress.SyncedStorage),
		"syncedStorageBytes":  hexutil.Uint64(progress.SyncedStorageBytes),
		"healedTrienodes":     hexutil.Uint64(progress.HealedTrienodes),
		"healedTrienodeBytes": hexutil.Uint64(progress.HealedTrienodeBytes),
		"healedBytecodes":     hexutil.Uint64(progress.HealedBytecodes),
		"healedBytecodeBytes": hexutil.Uint64(progress.HealedBytecodeBytes),
		"healingTrienodes":    hexutil.Uint64(progress.HealingTrienodes),
		"healingBytecode":     hexutil.Uint64(progress.HealingBytecode),
149 150 151
	}, nil
}

152
// TxPoolAPI offers and API for the transaction pool. It only operates on data that is non-confidential.
153
type TxPoolAPI struct {
154 155 156
	b Backend
}

157 158 159
// NewTxPoolAPI creates a new tx pool service that gives information about the transaction pool.
func NewTxPoolAPI(b Backend) *TxPoolAPI {
	return &TxPoolAPI{b}
160 161 162
}

// Content returns the transactions contained within the transaction pool.
163
func (s *TxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction {
164 165 166
	content := map[string]map[string]map[string]*RPCTransaction{
		"pending": make(map[string]map[string]*RPCTransaction),
		"queued":  make(map[string]map[string]*RPCTransaction),
167 168
	}
	pending, queue := s.b.TxPoolContent()
169
	curHeader := s.b.CurrentHeader()
170
	// Flatten the pending transactions
171 172
	for account, txs := range pending {
		dump := make(map[string]*RPCTransaction)
173
		for _, tx := range txs {
174
			dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
175 176 177 178
		}
		content["pending"][account.Hex()] = dump
	}
	// Flatten the queued transactions
179 180
	for account, txs := range queue {
		dump := make(map[string]*RPCTransaction)
181
		for _, tx := range txs {
182
			dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
183 184 185 186 187 188
		}
		content["queued"][account.Hex()] = dump
	}
	return content
}

189
// ContentFrom returns the transactions contained within the transaction pool.
190
func (s *TxPoolAPI) ContentFrom(addr common.Address) map[string]map[string]*RPCTransaction {
191 192 193 194 195 196 197
	content := make(map[string]map[string]*RPCTransaction, 2)
	pending, queue := s.b.TxPoolContentFrom(addr)
	curHeader := s.b.CurrentHeader()

	// Build the pending transactions
	dump := make(map[string]*RPCTransaction, len(pending))
	for _, tx := range pending {
198
		dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
199 200 201 202 203 204
	}
	content["pending"] = dump

	// Build the queued transactions
	dump = make(map[string]*RPCTransaction, len(queue))
	for _, tx := range queue {
205
		dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
206 207 208 209 210 211
	}
	content["queued"] = dump

	return content
}

212
// Status returns the number of pending and queued transaction in the pool.
213
func (s *TxPoolAPI) Status() map[string]hexutil.Uint {
214
	pending, queue := s.b.Stats()
215 216 217
	return map[string]hexutil.Uint{
		"pending": hexutil.Uint(pending),
		"queued":  hexutil.Uint(queue),
218 219 220 221 222
	}
}

// Inspect retrieves the content of the transaction pool and flattens it into an
// easily inspectable list.
223
func (s *TxPoolAPI) Inspect() map[string]map[string]map[string]string {
224 225 226
	content := map[string]map[string]map[string]string{
		"pending": make(map[string]map[string]string),
		"queued":  make(map[string]map[string]string),
227 228 229 230 231 232
	}
	pending, queue := s.b.TxPoolContent()

	// Define a formatter to flatten a transaction into a string
	var format = func(tx *types.Transaction) string {
		if to := tx.To(); to != nil {
233
			return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice())
234
		}
235
		return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice())
236 237
	}
	// Flatten the pending transactions
238 239
	for account, txs := range pending {
		dump := make(map[string]string)
240 241
		for _, tx := range txs {
			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
242 243 244 245
		}
		content["pending"][account.Hex()] = dump
	}
	// Flatten the queued transactions
246 247
	for account, txs := range queue {
		dump := make(map[string]string)
248 249
		for _, tx := range txs {
			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
250 251 252 253 254 255
		}
		content["queued"][account.Hex()] = dump
	}
	return content
}

256
// EthereumAccountAPI provides an API to access accounts managed by this node.
257
// It offers only methods that can retrieve accounts.
258
type EthereumAccountAPI struct {
259 260 261
	am *accounts.Manager
}

262 263 264
// NewEthereumAccountAPI creates a new EthereumAccountAPI.
func NewEthereumAccountAPI(am *accounts.Manager) *EthereumAccountAPI {
	return &EthereumAccountAPI{am: am}
265 266
}

267 268
// Accounts returns the collection of accounts this node manages.
func (s *EthereumAccountAPI) Accounts() []common.Address {
269
	return s.am.Accounts()
270 271
}

272
// PersonalAccountAPI provides an API to access accounts managed by this node.
273 274
// It offers methods to create, (un)lock en list accounts. Some methods accept
// passwords and are therefore considered private by default.
275
type PersonalAccountAPI struct {
276 277 278
	am        *accounts.Manager
	nonceLock *AddrLocker
	b         Backend
279 280
}

281 282 283
// NewPersonalAccountAPI create a new PersonalAccountAPI.
func NewPersonalAccountAPI(b Backend, nonceLock *AddrLocker) *PersonalAccountAPI {
	return &PersonalAccountAPI{
284 285 286
		am:        b.AccountManager(),
		nonceLock: nonceLock,
		b:         b,
287 288 289
	}
}

290
// ListAccounts will return a list of addresses for accounts this node manages.
291
func (s *PersonalAccountAPI) ListAccounts() []common.Address {
292
	return s.am.Accounts()
293 294
}

295 296 297 298 299
// rawWallet is a JSON representation of an accounts.Wallet interface, with its
// data contents extracted into plain fields.
type rawWallet struct {
	URL      string             `json:"url"`
	Status   string             `json:"status"`
300 301
	Failure  string             `json:"failure,omitempty"`
	Accounts []accounts.Account `json:"accounts,omitempty"`
302 303 304
}

// ListWallets will return a list of wallets this node manages.
305
func (s *PersonalAccountAPI) ListWallets() []rawWallet {
306
	wallets := make([]rawWallet, 0) // return [] instead of nil if empty
307
	for _, wallet := range s.am.Wallets() {
308 309 310
		status, failure := wallet.Status()

		raw := rawWallet{
311
			URL:      wallet.URL().String(),
312
			Status:   status,
313
			Accounts: wallet.Accounts(),
314 315 316 317 318
		}
		if failure != nil {
			raw.Failure = failure.Error()
		}
		wallets = append(wallets, raw)
319 320 321 322
	}
	return wallets
}

323 324 325 326
// OpenWallet initiates a hardware wallet opening procedure, establishing a USB
// connection and attempting to authenticate via the provided passphrase. Note,
// the method may return an extra challenge requiring a second open (e.g. the
// Trezor PIN matrix challenge).
327
func (s *PersonalAccountAPI) OpenWallet(url string, passphrase *string) error {
328 329 330 331 332 333 334 335 336 337 338
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return err
	}
	pass := ""
	if passphrase != nil {
		pass = *passphrase
	}
	return wallet.Open(pass)
}

339
// DeriveAccount requests an HD wallet to derive a new account, optionally pinning
340
// it for later reuse.
341
func (s *PersonalAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) {
342 343 344 345
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return accounts.Account{}, err
	}
346 347 348 349
	derivPath, err := accounts.ParseDerivationPath(path)
	if err != nil {
		return accounts.Account{}, err
	}
350 351 352
	if pin == nil {
		pin = new(bool)
	}
353
	return wallet.Derive(derivPath, *pin)
354 355
}

356
// NewAccount will create a new account and returns the address for the new account.
357
func (s *PersonalAccountAPI) NewAccount(password string) (common.AddressEIP55, error) {
358 359
	ks, err := fetchKeystore(s.am)
	if err != nil {
360
		return common.AddressEIP55{}, err
361 362
	}
	acc, err := ks.NewAccount(password)
363
	if err == nil {
364 365
		addrEIP55 := common.AddressEIP55(acc.Address)
		log.Info("Your new key was generated", "address", addrEIP55.String())
366 367
		log.Warn("Please backup your key file!", "path", acc.URL.Path)
		log.Warn("Please remember your password!")
368
		return addrEIP55, nil
369
	}
370
	return common.AddressEIP55{}, err
371 372
}

373
// fetchKeystore retrieves the encrypted keystore from the account manager.
374 375 376 377 378
func fetchKeystore(am *accounts.Manager) (*keystore.KeyStore, error) {
	if ks := am.Backends(keystore.KeyStoreType); len(ks) > 0 {
		return ks[0].(*keystore.KeyStore), nil
	}
	return nil, errors.New("local keystore not used")
379 380
}

381 382
// ImportRawKey stores the given hex encoded ECDSA key into the key directory,
// encrypting it with the passphrase.
383
func (s *PersonalAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) {
384
	key, err := crypto.HexToECDSA(privkey)
385 386 387
	if err != nil {
		return common.Address{}, err
	}
388 389 390 391 392
	ks, err := fetchKeystore(s.am)
	if err != nil {
		return common.Address{}, err
	}
	acc, err := ks.ImportECDSA(key, password)
393 394 395 396 397 398
	return acc.Address, err
}

// UnlockAccount will unlock the account associated with the given address with
// the given password for duration seconds. If duration is nil it will use a
// default of 300 seconds. It returns an indication if the account was unlocked.
399
func (s *PersonalAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) {
400 401 402 403 404 405 406
	// When the API is exposed by external RPC(http, ws etc), unless the user
	// explicitly specifies to allow the insecure account unlocking, otherwise
	// it is disabled.
	if s.b.ExtRPCEnabled() && !s.b.AccountManager().Config().InsecureUnlockAllowed {
		return false, errors.New("account unlock with HTTP access is forbidden")
	}

407
	const max = uint64(time.Duration(math.MaxInt64) / time.Second)
408
	var d time.Duration
409
	if duration == nil {
410
		d = 300 * time.Second
411 412
	} else if *duration > max {
		return false, errors.New("unlock duration too large")
413 414
	} else {
		d = time.Duration(*duration) * time.Second
415
	}
416 417 418 419 420
	ks, err := fetchKeystore(s.am)
	if err != nil {
		return false, err
	}
	err = ks.TimedUnlock(accounts.Account{Address: addr}, password, d)
421 422 423
	if err != nil {
		log.Warn("Failed account unlock attempt", "address", addr, "err", err)
	}
424
	return err == nil, err
425 426 427
}

// LockAccount will lock the account associated with the given address when it's unlocked.
428
func (s *PersonalAccountAPI) LockAccount(addr common.Address) bool {
429 430 431 432
	if ks, err := fetchKeystore(s.am); err == nil {
		return ks.Lock(addr) == nil
	}
	return false
433 434
}

435
// signTransaction sets defaults and signs the given transaction
436 437
// NOTE: the caller needs to ensure that the nonceLock is held, if applicable,
// and release it after the transaction has been submitted to the tx pool
438
func (s *PersonalAccountAPI) signTransaction(ctx context.Context, args *TransactionArgs, passwd string) (*types.Transaction, error) {
439
	// Look up the wallet containing the requested signer
440
	account := accounts.Account{Address: args.from()}
441 442
	wallet, err := s.am.Find(account)
	if err != nil {
443
		return nil, err
444 445 446
	}
	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
447
		return nil, err
448
	}
449
	// Assemble the transaction and sign with the wallet
450
	tx := args.toTransaction()
451

452
	return wallet.SignTxWithPassphrase(account, passwd, tx, s.b.ChainConfig().ChainID)
453 454 455
}

// SendTransaction will create a transaction from the given arguments and
456 457
// tries to sign it with the key associated with args.From. If the given
// passwd isn't able to decrypt the key it fails.
458
func (s *PersonalAccountAPI) SendTransaction(ctx context.Context, args TransactionArgs, passwd string) (common.Hash, error) {
459
	if args.Nonce == nil {
460
		// Hold the mutex around signing to prevent concurrent assignment of
461
		// the same nonce to multiple accounts.
462 463
		s.nonceLock.LockAddr(args.from())
		defer s.nonceLock.UnlockAddr(args.from())
464
	}
465
	signed, err := s.signTransaction(ctx, &args, passwd)
466
	if err != nil {
467
		log.Warn("Failed transaction send attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err)
468 469
		return common.Hash{}, err
	}
470
	return SubmitTransaction(ctx, s.b, signed)
471 472
}

473
// SignTransaction will create a transaction from the given arguments and
474
// tries to sign it with the key associated with args.From. If the given passwd isn't
475 476
// able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast
// to other nodes
477
func (s *PersonalAccountAPI) SignTransaction(ctx context.Context, args TransactionArgs, passwd string) (*SignTransactionResult, error) {
478 479
	// No need to obtain the noncelock mutex, since we won't be sending this
	// tx into the transaction pool, but right back to the user
480
	if args.From == nil {
481
		return nil, errors.New("sender not specified")
482
	}
483
	if args.Gas == nil {
484
		return nil, errors.New("gas not specified")
485
	}
486
	if args.GasPrice == nil && (args.MaxFeePerGas == nil || args.MaxPriorityFeePerGas == nil) {
487
		return nil, errors.New("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas")
488 489
	}
	if args.Nonce == nil {
490
		return nil, errors.New("nonce not specified")
491
	}
492
	// Before actually signing the transaction, ensure the transaction fee is reasonable.
493 494
	tx := args.toTransaction()
	if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil {
495 496
		return nil, err
	}
497
	signed, err := s.signTransaction(ctx, &args, passwd)
498
	if err != nil {
499
		log.Warn("Failed transaction sign attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err)
500 501
		return nil, err
	}
502
	data, err := signed.MarshalBinary()
503 504 505 506 507 508
	if err != nil {
		return nil, err
	}
	return &SignTransactionResult{data, signed}, nil
}

509
// Sign calculates an Ethereum ECDSA signature for:
510
// keccak256("\x19Ethereum Signed Message:\n" + len(message) + message))
511
//
512 513 514
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
515 516 517
// The key used to calculate the signature is decrypted with the given password.
//
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign
518
func (s *PersonalAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) {
519 520 521 522 523 524 525 526
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Assemble sign the data with the wallet
527
	signature, err := wallet.SignTextWithPassphrase(account, passwd, data)
528
	if err != nil {
529
		log.Warn("Failed data sign attempt", "address", addr, "err", err)
530 531
		return nil, err
	}
532
	signature[crypto.RecoveryIDOffset] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
533
	return signature, nil
534 535 536 537 538 539 540 541
}

// EcRecover returns the address for the account that was used to create the signature.
// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
// the address of:
// hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message})
// addr = ecrecover(hash, signature)
//
542
// Note, the signature must conform to the secp256k1 curve R, S and V values, where
543
// the V value must be 27 or 28 for legacy reasons.
544
//
545
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
546
func (s *PersonalAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) {
547 548
	if len(sig) != crypto.SignatureLength {
		return common.Address{}, fmt.Errorf("signature must be %d bytes long", crypto.SignatureLength)
549
	}
550
	if sig[crypto.RecoveryIDOffset] != 27 && sig[crypto.RecoveryIDOffset] != 28 {
551
		return common.Address{}, errors.New("invalid Ethereum signature (V is not 27 or 28)")
552
	}
553
	sig[crypto.RecoveryIDOffset] -= 27 // Transform yellow paper V from 27/28 to 0/1
554

555
	rpk, err := crypto.SigToPub(accounts.TextHash(data), sig)
556 557 558
	if err != nil {
		return common.Address{}, err
	}
559
	return crypto.PubkeyToAddress(*rpk), nil
560 561
}

562
// InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key.
563
func (s *PersonalAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) {
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return "", err
	}

	entropy, err := bip39.NewEntropy(256)
	if err != nil {
		return "", err
	}

	mnemonic, err := bip39.NewMnemonic(entropy)
	if err != nil {
		return "", err
	}

	seed := bip39.NewSeed(mnemonic, "")

	switch wallet := wallet.(type) {
	case *scwallet.Wallet:
		return mnemonic, wallet.Initialize(seed)
	default:
585
		return "", errors.New("specified wallet does not support initialization")
586 587 588
	}
}

589
// Unpair deletes a pairing between wallet and geth.
590
func (s *PersonalAccountAPI) Unpair(ctx context.Context, url string, pin string) error {
591 592 593 594 595 596 597 598 599
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return err
	}

	switch wallet := wallet.(type) {
	case *scwallet.Wallet:
		return wallet.Unpair([]byte(pin))
	default:
600
		return errors.New("specified wallet does not support pairing")
601 602 603
	}
}

604 605
// BlockChainAPI provides an API to access Ethereum blockchain data.
type BlockChainAPI struct {
606
	b Backend
607 608
}

609 610 611
// NewBlockChainAPI creates a new Ethereum blockchain API.
func NewBlockChainAPI(b Backend) *BlockChainAPI {
	return &BlockChainAPI{b}
612 613
}

614
// ChainId is the EIP-155 replay-protection chain id for the current Ethereum chain config.
615 616 617 618 619
//
// Note, this method does not conform to EIP-695 because the configured chain ID is always
// returned, regardless of the current head block. We used to return an error when the chain
// wasn't synced up to a block where EIP-155 is enabled, but this behavior caused issues
// in CL clients.
620 621
func (api *BlockChainAPI) ChainId() *hexutil.Big {
	return (*hexutil.Big)(api.b.ChainConfig().ChainID)
622 623
}

624
// BlockNumber returns the block number of the chain head.
625
func (s *BlockChainAPI) BlockNumber() hexutil.Uint64 {
626
	header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available
627
	return hexutil.Uint64(header.Number.Uint64())
628 629 630 631 632
}

// GetBalance returns the amount of wei for the given address in the state of the
// given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta
// block numbers are also allowed.
633
func (s *BlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Big, error) {
634
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
635 636 637
	if state == nil || err != nil {
		return nil, err
	}
638
	return (*hexutil.Big)(state.GetBalance(address)), state.Error()
639 640
}

641 642 643 644 645 646 647 648 649 650
// Result structs for GetProof
type AccountResult struct {
	Address      common.Address  `json:"address"`
	AccountProof []string        `json:"accountProof"`
	Balance      *hexutil.Big    `json:"balance"`
	CodeHash     common.Hash     `json:"codeHash"`
	Nonce        hexutil.Uint64  `json:"nonce"`
	StorageHash  common.Hash     `json:"storageHash"`
	StorageProof []StorageResult `json:"storageProof"`
}
651

652 653 654 655 656 657
type StorageResult struct {
	Key   string       `json:"key"`
	Value *hexutil.Big `json:"value"`
	Proof []string     `json:"proof"`
}

658 659 660 661 662 663 664 665 666 667 668 669 670
// proofList implements ethdb.KeyValueWriter and collects the proofs as
// hex-strings for delivery to rpc-caller.
type proofList []string

func (n *proofList) Put(key []byte, value []byte) error {
	*n = append(*n, hexutil.Encode(value))
	return nil
}

func (n *proofList) Delete(key []byte) error {
	panic("not supported")
}

671
// GetProof returns the Merkle-proof for a given account and optionally some storage keys.
672
func (s *BlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNrOrHash rpc.BlockNumberOrHash) (*AccountResult, error) {
673 674
	var (
		keys         = make([]common.Hash, len(storageKeys))
675
		keyLengths   = make([]int, len(storageKeys))
676 677 678 679 680
		storageProof = make([]StorageResult, len(storageKeys))
		storageTrie  state.Trie
		storageHash  = types.EmptyRootHash
		codeHash     = types.EmptyCodeHash
	)
681
	// Deserialize all keys. This prevents state access on invalid input.
682
	for i, hexKey := range storageKeys {
683 684 685
		var err error
		keys[i], keyLengths[i], err = decodeHash(hexKey)
		if err != nil {
686 687 688
			return nil, err
		}
	}
689

690
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
691 692 693
	if state == nil || err != nil {
		return nil, err
	}
694
	if storageTrie, err = state.StorageTrie(address); err != nil {
695 696
		return nil, err
	}
697 698

	// If we have a storageTrie, the account exists and we must update
699
	// the storage root hash and the code hash.
700 701
	if storageTrie != nil {
		storageHash = storageTrie.Hash()
702
		codeHash = state.GetCodeHash(address)
703
	}
704
	// Create the proofs for the storageKeys.
705
	for i, key := range keys {
706 707 708 709 710 711 712 713 714 715 716
		// Output key encoding is a bit special: if the input was a 32-byte hash, it is
		// returned as such. Otherwise, we apply the QUANTITY encoding mandated by the
		// JSON-RPC spec for getProof. This behavior exists to preserve backwards
		// compatibility with older client versions.
		var outputKey string
		if keyLengths[i] != 32 {
			outputKey = hexutil.EncodeBig(key.Big())
		} else {
			outputKey = hexutil.Encode(key[:])
		}

717
		if storageTrie == nil {
718
			storageProof[i] = StorageResult{outputKey, &hexutil.Big{}, []string{}}
719
			continue
720
		}
721
		var proof proofList
722
		if err := storageTrie.Prove(crypto.Keccak256(key.Bytes()), &proof); err != nil {
723
			return nil, err
724
		}
725 726
		value := (*hexutil.Big)(state.GetState(address, key).Big())
		storageProof[i] = StorageResult{outputKey, value, proof}
727 728
	}

729
	// Create the accountProof.
730 731 732 733 734 735 736
	accountProof, proofErr := state.GetProof(address)
	if proofErr != nil {
		return nil, proofErr
	}

	return &AccountResult{
		Address:      address,
737
		AccountProof: toHexSlice(accountProof),
738 739 740 741 742 743 744 745
		Balance:      (*hexutil.Big)(state.GetBalance(address)),
		CodeHash:     codeHash,
		Nonce:        hexutil.Uint64(state.GetNonce(address)),
		StorageHash:  storageHash,
		StorageProof: storageProof,
	}, state.Error()
}

746
// decodeHash parses a hex-encoded 32-byte hash. The input may optionally
747
// be prefixed by 0x and can have a byte length up to 32.
748
func decodeHash(s string) (h common.Hash, inputLength int, err error) {
749 750 751
	if strings.HasPrefix(s, "0x") || strings.HasPrefix(s, "0X") {
		s = s[2:]
	}
752 753 754
	if (len(s) & 1) > 0 {
		s = "0" + s
	}
755 756
	b, err := hex.DecodeString(s)
	if err != nil {
757
		return common.Hash{}, 0, errors.New("hex string invalid")
758 759
	}
	if len(b) > 32 {
760
		return common.Hash{}, len(b), errors.New("hex string too long, want at most 32 bytes")
761
	}
762
	return common.BytesToHash(b), len(b), nil
763 764
}

765
// GetHeaderByNumber returns the requested canonical block header.
766 767 768 769
//   - When blockNr is -1 the chain pending header is returned.
//   - When blockNr is -2 the chain latest header is returned.
//   - When blockNr is -3 the chain finalized header is returned.
//   - When blockNr is -4 the chain safe header is returned.
770
func (s *BlockChainAPI) GetHeaderByNumber(ctx context.Context, number rpc.BlockNumber) (map[string]interface{}, error) {
771 772
	header, err := s.b.HeaderByNumber(ctx, number)
	if header != nil && err == nil {
773
		response := s.rpcMarshalHeader(ctx, header)
774 775 776 777 778 779 780 781 782 783 784 785
		if number == rpc.PendingBlockNumber {
			// Pending header need to nil out a few fields
			for _, field := range []string{"hash", "nonce", "miner"} {
				response[field] = nil
			}
		}
		return response, err
	}
	return nil, err
}

// GetHeaderByHash returns the requested header by hash.
786
func (s *BlockChainAPI) GetHeaderByHash(ctx context.Context, hash common.Hash) map[string]interface{} {
787
	header, _ := s.b.HeaderByHash(ctx, hash)
788
	if header != nil {
789
		return s.rpcMarshalHeader(ctx, header)
790 791 792 793 794
	}
	return nil
}

// GetBlockByNumber returns the requested canonical block.
795 796 797 798
//   - When blockNr is -1 the chain pending block is returned.
//   - When blockNr is -2 the chain latest block is returned.
//   - When blockNr is -3 the chain finalized block is returned.
//   - When blockNr is -4 the chain safe block is returned.
799 800
//   - When fullTx is true all transactions in the block are returned, otherwise
//     only the transaction hash is returned.
801
func (s *BlockChainAPI) GetBlockByNumber(ctx context.Context, number rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) {
802 803
	block, err := s.b.BlockByNumber(ctx, number)
	if block != nil && err == nil {
804
		response, err := s.rpcMarshalBlock(ctx, block, true, fullTx)
805
		if err == nil && number == rpc.PendingBlockNumber {
806
			// Pending blocks need to nil out a few fields
807
			for _, field := range []string{"hash", "nonce", "miner"} {
808 809 810 811 812 813 814 815 816 817
				response[field] = nil
			}
		}
		return response, err
	}
	return nil, err
}

// GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full
// detail, otherwise only the transaction hash is returned.
818
func (s *BlockChainAPI) GetBlockByHash(ctx context.Context, hash common.Hash, fullTx bool) (map[string]interface{}, error) {
819
	block, err := s.b.BlockByHash(ctx, hash)
820
	if block != nil {
821
		return s.rpcMarshalBlock(ctx, block, true, fullTx)
822 823 824 825
	}
	return nil, err
}

826
// GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index.
827
func (s *BlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) {
828 829 830
	block, err := s.b.BlockByNumber(ctx, blockNr)
	if block != nil {
		uncles := block.Uncles()
831
		if index >= hexutil.Uint(len(uncles)) {
832
			log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index)
833 834
			return nil, nil
		}
835
		block = types.NewBlockWithHeader(uncles[index])
836
		return s.rpcMarshalBlock(ctx, block, false, false)
837 838 839 840
	}
	return nil, err
}

841
// GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index.
842
func (s *BlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) {
843
	block, err := s.b.BlockByHash(ctx, blockHash)
844 845
	if block != nil {
		uncles := block.Uncles()
846
		if index >= hexutil.Uint(len(uncles)) {
847
			log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index)
848 849
			return nil, nil
		}
850
		block = types.NewBlockWithHeader(uncles[index])
851
		return s.rpcMarshalBlock(ctx, block, false, false)
852 853 854 855 856
	}
	return nil, err
}

// GetUncleCountByBlockNumber returns number of uncles in the block for the given block number
857
func (s *BlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
858
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
859 860
		n := hexutil.Uint(len(block.Uncles()))
		return &n
861 862 863 864 865
	}
	return nil
}

// GetUncleCountByBlockHash returns number of uncles in the block for the given block hash
866
func (s *BlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
867
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
868 869
		n := hexutil.Uint(len(block.Uncles()))
		return &n
870 871 872 873 874
	}
	return nil
}

// GetCode returns the code stored at the given address in the state for the given block number.
875
func (s *BlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
876
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
877
	if state == nil || err != nil {
878
		return nil, err
879
	}
880 881
	code := state.GetCode(address)
	return code, state.Error()
882 883 884 885 886
}

// GetStorageAt returns the storage from the state at the given address, key and
// block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block
// numbers are also allowed.
887
func (s *BlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, hexKey string, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
888
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
889
	if state == nil || err != nil {
890
		return nil, err
891
	}
892
	key, _, err := decodeHash(hexKey)
893 894 895 896
	if err != nil {
		return nil, fmt.Errorf("unable to decode storage key: %s", err)
	}
	res := state.GetState(address, key)
897
	return res[:], state.Error()
898 899
}

900 901
// OverrideAccount indicates the overriding fields of account during the execution
// of a message call.
902 903 904 905
// Note, state and stateDiff can't be specified at the same time. If state is
// set, message execution will only use the data in the given state. Otherwise
// if statDiff is set, all diff will be applied first and then execute the call
// message.
906
type OverrideAccount struct {
907 908 909 910 911 912 913
	Nonce     *hexutil.Uint64              `json:"nonce"`
	Code      *hexutil.Bytes               `json:"code"`
	Balance   **hexutil.Big                `json:"balance"`
	State     *map[common.Hash]common.Hash `json:"state"`
	StateDiff *map[common.Hash]common.Hash `json:"stateDiff"`
}

914
// StateOverride is the collection of overridden accounts.
915
type StateOverride map[common.Address]OverrideAccount
916

917 918 919 920
// Apply overrides the fields of specified accounts into the given state.
func (diff *StateOverride) Apply(state *state.StateDB) error {
	if diff == nil {
		return nil
921
	}
922
	for addr, account := range *diff {
923 924 925 926 927 928 929 930 931 932 933 934 935
		// Override account nonce.
		if account.Nonce != nil {
			state.SetNonce(addr, uint64(*account.Nonce))
		}
		// Override account(contract) code.
		if account.Code != nil {
			state.SetCode(addr, *account.Code)
		}
		// Override account balance.
		if account.Balance != nil {
			state.SetBalance(addr, (*big.Int)(*account.Balance))
		}
		if account.State != nil && account.StateDiff != nil {
936
			return fmt.Errorf("account %s has both 'state' and 'stateDiff'", addr.Hex())
937 938 939 940 941 942 943 944 945 946 947 948
		}
		// Replace entire state if caller requires.
		if account.State != nil {
			state.SetStorage(addr, *account.State)
		}
		// Apply state diff into specified accounts.
		if account.StateDiff != nil {
			for key, value := range *account.StateDiff {
				state.SetState(addr, key, value)
			}
		}
	}
949 950 951 952
	// Now finalize the changes. Finalize is normally performed between transactions.
	// By using finalize, the overrides are semantically behaving as
	// if they were created in a transaction just before the tracing occur.
	state.Finalise(false)
953 954 955
	return nil
}

956 957 958 959
// BlockOverrides is a set of header fields to override.
type BlockOverrides struct {
	Number     *hexutil.Big
	Difficulty *hexutil.Big
960
	Time       *hexutil.Uint64
961 962 963
	GasLimit   *hexutil.Uint64
	Coinbase   *common.Address
	Random     *common.Hash
964
	BaseFee    *hexutil.Big
965 966 967 968 969 970 971 972 973 974 975 976 977 978
}

// Apply overrides the given header fields into the given block context.
func (diff *BlockOverrides) Apply(blockCtx *vm.BlockContext) {
	if diff == nil {
		return
	}
	if diff.Number != nil {
		blockCtx.BlockNumber = diff.Number.ToInt()
	}
	if diff.Difficulty != nil {
		blockCtx.Difficulty = diff.Difficulty.ToInt()
	}
	if diff.Time != nil {
979
		blockCtx.Time = uint64(*diff.Time)
980 981 982 983 984 985 986 987 988 989
	}
	if diff.GasLimit != nil {
		blockCtx.GasLimit = uint64(*diff.GasLimit)
	}
	if diff.Coinbase != nil {
		blockCtx.Coinbase = *diff.Coinbase
	}
	if diff.Random != nil {
		blockCtx.Random = diff.Random
	}
990 991 992
	if diff.BaseFee != nil {
		blockCtx.BaseFee = diff.BaseFee.ToInt()
	}
993 994
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
// ChainContextBackend provides methods required to implement ChainContext.
type ChainContextBackend interface {
	Engine() consensus.Engine
	HeaderByNumber(context.Context, rpc.BlockNumber) (*types.Header, error)
}

// ChainContext is an implementation of core.ChainContext. It's main use-case
// is instantiating a vm.BlockContext without having access to the BlockChain object.
type ChainContext struct {
	b   ChainContextBackend
	ctx context.Context
}

// NewChainContext creates a new ChainContext object.
func NewChainContext(ctx context.Context, backend ChainContextBackend) *ChainContext {
	return &ChainContext{ctx: ctx, b: backend}
}

func (context *ChainContext) Engine() consensus.Engine {
	return context.b.Engine()
}

func (context *ChainContext) GetHeader(hash common.Hash, number uint64) *types.Header {
	// This method is called to get the hash for a block number when executing the BLOCKHASH
	// opcode. Hence no need to search for non-canonical blocks.
	header, err := context.b.HeaderByNumber(context.ctx, rpc.BlockNumber(number))
	if err != nil || header.Hash() != hash {
		return nil
	}
	return header
}

1027
func doCall(ctx context.Context, b Backend, args TransactionArgs, state *state.StateDB, header *types.Header, overrides *StateOverride, blockOverrides *BlockOverrides, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) {
1028 1029 1030
	if err := overrides.Apply(state); err != nil {
		return nil, err
	}
1031 1032 1033
	// Setup context so it may be cancelled the call has completed
	// or, in case of unmetered gas, setup a context with a timeout.
	var cancel context.CancelFunc
1034 1035
	if timeout > 0 {
		ctx, cancel = context.WithTimeout(ctx, timeout)
1036 1037
	} else {
		ctx, cancel = context.WithCancel(ctx)
1038
	}
1039 1040
	// Make sure the context is cancelled when the call has completed
	// this makes sure resources are cleaned up.
1041
	defer cancel()
1042 1043

	// Get a new instance of the EVM.
1044 1045 1046 1047
	msg, err := args.ToMessage(globalGasCap, header.BaseFee)
	if err != nil {
		return nil, err
	}
1048 1049 1050 1051
	blockCtx := core.NewEVMBlockContext(header, NewChainContext(ctx, b), nil)
	if blockOverrides != nil {
		blockOverrides.Apply(&blockCtx)
	}
1052 1053
	evm, vmError := b.GetEVM(ctx, msg, state, header, &vm.Config{NoBaseFee: true}, &blockCtx)

1054 1055 1056
	// Wait for the context to be done and cancel the evm. Even if the
	// EVM has finished, cancelling may be done (repeatedly)
	go func() {
1057 1058
		<-ctx.Done()
		evm.Cancel()
1059 1060
	}()

1061
	// Execute the message.
1062
	gp := new(core.GasPool).AddGas(math.MaxUint64)
1063
	result, err := core.ApplyMessage(evm, msg, gp)
1064
	if err := vmError(); err != nil {
1065
		return nil, err
1066
	}
1067

1068 1069
	// If the timer caused an abort, return an appropriate error message
	if evm.Cancelled() {
1070
		return nil, fmt.Errorf("execution aborted (timeout = %v)", timeout)
1071
	}
1072
	if err != nil {
1073
		return result, fmt.Errorf("err: %w (supplied gas %d)", err, msg.GasLimit)
1074 1075
	}
	return result, nil
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
func DoCall(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) {
	defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now())

	state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
	if state == nil || err != nil {
		return nil, err
	}

	return doCall(ctx, b, args, state, header, overrides, blockOverrides, timeout, globalGasCap)
}

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
func newRevertError(result *core.ExecutionResult) *revertError {
	reason, errUnpack := abi.UnpackRevert(result.Revert())
	err := errors.New("execution reverted")
	if errUnpack == nil {
		err = fmt.Errorf("execution reverted: %v", reason)
	}
	return &revertError{
		error:  err,
		reason: hexutil.Encode(result.Revert()),
	}
}

1101
// revertError is an API error that encompasses an EVM revertal with JSON error
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
// code and a binary data blob.
type revertError struct {
	error
	reason string // revert reason hex encoded
}

// ErrorCode returns the JSON error code for a revertal.
// See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal
func (e *revertError) ErrorCode() int {
	return 3
}

// ErrorData returns the hex encoded revert reason.
func (e *revertError) ErrorData() interface{} {
	return e.reason
}

1119
// Call executes the given transaction on the state for the given block number.
1120 1121 1122 1123 1124
//
// Additionally, the caller can specify a batch of contract for fields overriding.
//
// Note, this function doesn't make and changes in the state/blockchain and is
// useful to execute and retrieve values.
1125 1126
func (s *BlockChainAPI) Call(ctx context.Context, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides) (hexutil.Bytes, error) {
	result, err := DoCall(ctx, s.b, args, blockNrOrHash, overrides, blockOverrides, s.b.RPCEVMTimeout(), s.b.RPCGasCap())
1127 1128 1129
	if err != nil {
		return nil, err
	}
1130 1131 1132
	// If the result contains a revert reason, try to unpack and return it.
	if len(result.Revert()) > 0 {
		return nil, newRevertError(result)
1133
	}
1134
	return result.Return(), result.Err
1135 1136
}

1137
func DoEstimateGas(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, gasCap uint64) (hexutil.Uint64, error) {
1138
	// Binary search the gas requirement, as it may be higher than the amount used
1139
	var (
1140 1141 1142
		lo  uint64 = params.TxGas - 1
		hi  uint64
		cap uint64
1143
	)
1144 1145 1146 1147 1148
	// Use zero address if sender unspecified.
	if args.From == nil {
		args.From = new(common.Address)
	}
	// Determine the highest gas limit can be used during the estimation.
1149 1150
	if args.Gas != nil && uint64(*args.Gas) >= params.TxGas {
		hi = uint64(*args.Gas)
1151
	} else {
1152
		// Retrieve the block to act as the gas ceiling
1153
		block, err := b.BlockByNumberOrHash(ctx, blockNrOrHash)
1154
		if err != nil {
1155
			return 0, err
1156
		}
1157 1158 1159
		if block == nil {
			return 0, errors.New("block not found")
		}
1160
		hi = block.GasLimit()
1161
	}
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	// Normalize the max fee per gas the call is willing to spend.
	var feeCap *big.Int
	if args.GasPrice != nil && (args.MaxFeePerGas != nil || args.MaxPriorityFeePerGas != nil) {
		return 0, errors.New("both gasPrice and (maxFeePerGas or maxPriorityFeePerGas) specified")
	} else if args.GasPrice != nil {
		feeCap = args.GasPrice.ToInt()
	} else if args.MaxFeePerGas != nil {
		feeCap = args.MaxFeePerGas.ToInt()
	} else {
		feeCap = common.Big0
	}
1173
	// Recap the highest gas limit with account's available balance.
1174
	if feeCap.BitLen() != 0 {
1175 1176 1177 1178 1179 1180 1181 1182
		state, _, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return 0, err
		}
		balance := state.GetBalance(*args.From) // from can't be nil
		available := new(big.Int).Set(balance)
		if args.Value != nil {
			if args.Value.ToInt().Cmp(available) >= 0 {
1183
				return 0, core.ErrInsufficientFundsForTransfer
1184 1185 1186
			}
			available.Sub(available, args.Value.ToInt())
		}
1187
		allowance := new(big.Int).Div(available, feeCap)
1188 1189 1190

		// If the allowance is larger than maximum uint64, skip checking
		if allowance.IsUint64() && hi > allowance.Uint64() {
1191 1192 1193 1194 1195
			transfer := args.Value
			if transfer == nil {
				transfer = new(hexutil.Big)
			}
			log.Warn("Gas estimation capped by limited funds", "original", hi, "balance", balance,
1196
				"sent", transfer.ToInt(), "maxFeePerGas", feeCap, "fundable", allowance)
1197 1198 1199 1200
			hi = allowance.Uint64()
		}
	}
	// Recap the highest gas allowance with specified gascap.
1201
	if gasCap != 0 && hi > gasCap {
1202
		log.Warn("Caller gas above allowance, capping", "requested", hi, "cap", gasCap)
1203
		hi = gasCap
1204
	}
1205
	cap = hi
1206

1207
	// Create a helper to check if a gas allowance results in an executable transaction
1208
	executable := func(gas uint64, state *state.StateDB, header *types.Header) (bool, *core.ExecutionResult, error) {
1209
		args.Gas = (*hexutil.Uint64)(&gas)
1210

1211
		result, err := doCall(ctx, b, args, state, header, nil, nil, 0, gasCap)
1212
		if err != nil {
1213
			if errors.Is(err, core.ErrIntrinsicGas) {
1214 1215 1216
				return true, nil, nil // Special case, raise gas limit
			}
			return true, nil, err // Bail out
1217
		}
1218
		return result.Failed(), result, nil
1219
	}
1220 1221 1222 1223
	state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
	if state == nil || err != nil {
		return 0, err
	}
1224 1225
	// Execute the binary search and hone in on an executable gas limit
	for lo+1 < hi {
1226
		s := state.Copy()
1227
		mid := (hi + lo) / 2
1228
		failed, _, err := executable(mid, s, header)
1229 1230 1231

		// If the error is not nil(consensus error), it means the provided message
		// call or transaction will never be accepted no matter how much gas it is
1232
		// assigned. Return the error directly, don't struggle any more.
1233 1234 1235 1236
		if err != nil {
			return 0, err
		}
		if failed {
1237
			lo = mid
1238 1239 1240 1241 1242 1243
		} else {
			hi = mid
		}
	}
	// Reject the transaction as invalid if it still fails at the highest allowance
	if hi == cap {
1244
		failed, result, err := executable(hi, state, header)
1245 1246 1247 1248 1249 1250
		if err != nil {
			return 0, err
		}
		if failed {
			if result != nil && result.Err != vm.ErrOutOfGas {
				if len(result.Revert()) > 0 {
1251
					return 0, newRevertError(result)
1252
				}
1253
				return 0, result.Err
1254 1255
			}
			// Otherwise, the specified gas cap is too low
1256
			return 0, fmt.Errorf("gas required exceeds allowance (%d)", cap)
1257 1258
		}
	}
1259
	return hexutil.Uint64(hi), nil
1260 1261
}

1262 1263
// EstimateGas returns an estimate of the amount of gas needed to execute the
// given transaction against the current pending block.
1264
func (s *BlockChainAPI) EstimateGas(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (hexutil.Uint64, error) {
1265
	bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.LatestBlockNumber)
1266 1267 1268 1269
	if blockNrOrHash != nil {
		bNrOrHash = *blockNrOrHash
	}
	return DoEstimateGas(ctx, s.b, args, bNrOrHash, s.b.RPCGasCap())
1270 1271
}

1272
// RPCMarshalHeader converts the given header to the RPC output .
1273
func RPCMarshalHeader(head *types.Header) map[string]interface{} {
1274
	result := map[string]interface{}{
1275
		"number":           (*hexutil.Big)(head.Number),
1276
		"hash":             head.Hash(),
1277 1278 1279 1280 1281 1282
		"parentHash":       head.ParentHash,
		"nonce":            head.Nonce,
		"mixHash":          head.MixDigest,
		"sha3Uncles":       head.UncleHash,
		"logsBloom":        head.Bloom,
		"stateRoot":        head.Root,
1283
		"miner":            head.Coinbase,
1284
		"difficulty":       (*hexutil.Big)(head.Difficulty),
1285
		"extraData":        hexutil.Bytes(head.Extra),
1286 1287
		"gasLimit":         hexutil.Uint64(head.GasLimit),
		"gasUsed":          hexutil.Uint64(head.GasUsed),
1288
		"timestamp":        hexutil.Uint64(head.Time),
1289
		"transactionsRoot": head.TxHash,
1290
		"receiptsRoot":     head.ReceiptHash,
1291
	}
1292 1293 1294 1295 1296

	if head.BaseFee != nil {
		result["baseFeePerGas"] = (*hexutil.Big)(head.BaseFee)
	}

1297 1298 1299 1300
	if head.WithdrawalsHash != nil {
		result["withdrawalsRoot"] = head.WithdrawalsHash
	}

1301
	return result
1302 1303 1304 1305 1306
}

// RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are
// returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
// transaction hashes.
1307
func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool, config *params.ChainConfig) map[string]interface{} {
1308
	fields := RPCMarshalHeader(block.Header())
1309
	fields["size"] = hexutil.Uint64(block.Size())
1310 1311

	if inclTx {
1312 1313
		formatTx := func(idx int, tx *types.Transaction) interface{} {
			return tx.Hash()
1314 1315
		}
		if fullTx {
1316 1317
			formatTx = func(idx int, tx *types.Transaction) interface{} {
				return newRPCTransactionFromBlockIndex(block, uint64(idx), config)
1318 1319
			}
		}
1320
		txs := block.Transactions()
1321
		transactions := make([]interface{}, len(txs))
1322
		for i, tx := range txs {
1323
			transactions[i] = formatTx(i, tx)
1324 1325 1326
		}
		fields["transactions"] = transactions
	}
1327
	uncles := block.Uncles()
1328 1329 1330 1331 1332
	uncleHashes := make([]common.Hash, len(uncles))
	for i, uncle := range uncles {
		uncleHashes[i] = uncle.Hash()
	}
	fields["uncles"] = uncleHashes
1333 1334 1335
	if block.Header().WithdrawalsHash != nil {
		fields["withdrawals"] = block.Withdrawals()
	}
1336
	return fields
1337 1338
}

1339
// rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires
1340 1341
// a `BlockchainAPI`.
func (s *BlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} {
1342
	fields := RPCMarshalHeader(header)
1343
	fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, header.Hash()))
1344 1345 1346 1347
	return fields
}

// rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires
1348 1349
// a `BlockchainAPI`.
func (s *BlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
1350
	fields := RPCMarshalBlock(b, inclTx, fullTx, s.b.ChainConfig())
1351
	if inclTx {
1352
		fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, b.Hash()))
1353
	}
1354
	return fields, nil
1355 1356
}

1357 1358
// RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction
type RPCTransaction struct {
1359 1360 1361 1362 1363
	BlockHash        *common.Hash      `json:"blockHash"`
	BlockNumber      *hexutil.Big      `json:"blockNumber"`
	From             common.Address    `json:"from"`
	Gas              hexutil.Uint64    `json:"gas"`
	GasPrice         *hexutil.Big      `json:"gasPrice"`
1364 1365
	GasFeeCap        *hexutil.Big      `json:"maxFeePerGas,omitempty"`
	GasTipCap        *hexutil.Big      `json:"maxPriorityFeePerGas,omitempty"`
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	Hash             common.Hash       `json:"hash"`
	Input            hexutil.Bytes     `json:"input"`
	Nonce            hexutil.Uint64    `json:"nonce"`
	To               *common.Address   `json:"to"`
	TransactionIndex *hexutil.Uint64   `json:"transactionIndex"`
	Value            *hexutil.Big      `json:"value"`
	Type             hexutil.Uint64    `json:"type"`
	Accesses         *types.AccessList `json:"accessList,omitempty"`
	ChainID          *hexutil.Big      `json:"chainId,omitempty"`
	V                *hexutil.Big      `json:"v"`
	R                *hexutil.Big      `json:"r"`
	S                *hexutil.Big      `json:"s"`
1378 1379
}

1380 1381
// newRPCTransaction returns a transaction that will serialize to the RPC
// representation, with the given location metadata set (if available).
1382 1383
func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, blockTime uint64, index uint64, baseFee *big.Int, config *params.ChainConfig) *RPCTransaction {
	signer := types.MakeSigner(config, new(big.Int).SetUint64(blockNumber), blockTime)
1384
	from, _ := types.Sender(signer, tx)
1385
	v, r, s := tx.RawSignatureValues()
1386
	result := &RPCTransaction{
1387
		Type:     hexutil.Uint64(tx.Type()),
1388
		From:     from,
1389
		Gas:      hexutil.Uint64(tx.Gas()),
1390
		GasPrice: (*hexutil.Big)(tx.GasPrice()),
1391
		Hash:     tx.Hash(),
1392
		Input:    hexutil.Bytes(tx.Data()),
1393
		Nonce:    hexutil.Uint64(tx.Nonce()),
1394
		To:       tx.To(),
1395 1396 1397 1398
		Value:    (*hexutil.Big)(tx.Value()),
		V:        (*hexutil.Big)(v),
		R:        (*hexutil.Big)(r),
		S:        (*hexutil.Big)(s),
1399
	}
1400
	if blockHash != (common.Hash{}) {
1401
		result.BlockHash = &blockHash
1402
		result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber))
1403
		result.TransactionIndex = (*hexutil.Uint64)(&index)
1404
	}
1405
	switch tx.Type() {
1406 1407
	case types.LegacyTxType:
		// if a legacy transaction has an EIP-155 chain id, include it explicitly
1408
		if id := tx.ChainId(); id.Sign() != 0 {
1409 1410
			result.ChainID = (*hexutil.Big)(id)
		}
1411 1412 1413 1414 1415
	case types.AccessListTxType:
		al := tx.AccessList()
		result.Accesses = &al
		result.ChainID = (*hexutil.Big)(tx.ChainId())
	case types.DynamicFeeTxType:
1416 1417 1418
		al := tx.AccessList()
		result.Accesses = &al
		result.ChainID = (*hexutil.Big)(tx.ChainId())
1419 1420
		result.GasFeeCap = (*hexutil.Big)(tx.GasFeeCap())
		result.GasTipCap = (*hexutil.Big)(tx.GasTipCap())
1421 1422
		// if the transaction has been mined, compute the effective gas price
		if baseFee != nil && blockHash != (common.Hash{}) {
1423 1424
			// price = min(tip, gasFeeCap - baseFee) + baseFee
			price := math.BigMin(new(big.Int).Add(tx.GasTipCap(), baseFee), tx.GasFeeCap())
1425 1426
			result.GasPrice = (*hexutil.Big)(price)
		} else {
1427
			result.GasPrice = (*hexutil.Big)(tx.GasFeeCap())
1428
		}
1429
	}
1430
	return result
1431 1432
}

1433 1434
// NewRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation
func NewRPCPendingTransaction(tx *types.Transaction, current *types.Header, config *params.ChainConfig) *RPCTransaction {
1435 1436 1437 1438 1439
	var (
		baseFee     *big.Int
		blockNumber = uint64(0)
		blockTime   = uint64(0)
	)
1440 1441
	if current != nil {
		baseFee = misc.CalcBaseFee(config, current)
1442
		blockNumber = current.Number.Uint64()
1443
		blockTime = current.Time
1444
	}
1445
	return newRPCTransaction(tx, common.Hash{}, blockNumber, blockTime, 0, baseFee, config)
1446 1447
}

1448
// newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation.
1449
func newRPCTransactionFromBlockIndex(b *types.Block, index uint64, config *params.ChainConfig) *RPCTransaction {
1450 1451 1452
	txs := b.Transactions()
	if index >= uint64(len(txs)) {
		return nil
1453
	}
1454
	return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), b.Time(), index, b.BaseFee(), config)
1455
}
1456

1457 1458 1459 1460 1461 1462
// newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index.
func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes {
	txs := b.Transactions()
	if index >= uint64(len(txs)) {
		return nil
	}
1463
	blob, _ := txs[index].MarshalBinary()
1464
	return blob
1465 1466
}

1467
// accessListResult returns an optional accesslist
1468
// It's the result of the `debug_createAccessList` RPC call.
1469 1470 1471 1472 1473 1474 1475
// It contains an error if the transaction itself failed.
type accessListResult struct {
	Accesslist *types.AccessList `json:"accessList"`
	Error      string            `json:"error,omitempty"`
	GasUsed    hexutil.Uint64    `json:"gasUsed"`
}

1476
// CreateAccessList creates an EIP-2930 type AccessList for the given transaction.
1477
// Reexec and BlockNrOrHash can be specified to create the accessList on top of a certain state.
1478
func (s *BlockChainAPI) CreateAccessList(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (*accessListResult, error) {
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber)
	if blockNrOrHash != nil {
		bNrOrHash = *blockNrOrHash
	}
	acl, gasUsed, vmerr, err := AccessList(ctx, s.b, bNrOrHash, args)
	if err != nil {
		return nil, err
	}
	result := &accessListResult{Accesslist: &acl, GasUsed: hexutil.Uint64(gasUsed)}
	if vmerr != nil {
		result.Error = vmerr.Error()
	}
	return result, nil
}

// AccessList creates an access list for the given transaction.
// If the accesslist creation fails an error is returned.
// If the transaction itself fails, an vmErr is returned.
1497
func AccessList(ctx context.Context, b Backend, blockNrOrHash rpc.BlockNumberOrHash, args TransactionArgs) (acl types.AccessList, gasUsed uint64, vmErr error, err error) {
1498 1499 1500 1501 1502
	// Retrieve the execution context
	db, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
	if db == nil || err != nil {
		return nil, 0, nil, err
	}
1503 1504 1505 1506 1507
	// If the gas amount is not set, default to RPC gas cap.
	if args.Gas == nil {
		tmp := hexutil.Uint64(b.RPCGasCap())
		args.Gas = &tmp
	}
1508 1509 1510 1511 1512 1513 1514 1515 1516

	// Ensure any missing fields are filled, extract the recipient and input data
	if err := args.setDefaults(ctx, b); err != nil {
		return nil, 0, nil, err
	}
	var to common.Address
	if args.To != nil {
		to = *args.To
	} else {
1517
		to = crypto.CreateAddress(args.from(), uint64(*args.Nonce))
1518
	}
1519
	isPostMerge := header.Difficulty.Cmp(common.Big0) == 0
1520
	// Retrieve the precompiles since they don't need to be added to the access list
1521
	precompiles := vm.ActivePrecompiles(b.ChainConfig().Rules(header.Number, isPostMerge, header.Time))
1522 1523

	// Create an initial tracer
1524
	prevTracer := logger.NewAccessListTracer(nil, args.from(), to, precompiles)
1525
	if args.AccessList != nil {
1526
		prevTracer = logger.NewAccessListTracer(*args.AccessList, args.from(), to, precompiles)
1527 1528 1529 1530 1531 1532 1533 1534
	}
	for {
		// Retrieve the current access list to expand
		accessList := prevTracer.AccessList()
		log.Trace("Creating access list", "input", accessList)

		// Copy the original db so we don't modify it
		statedb := db.Copy()
1535 1536 1537 1538 1539 1540
		// Set the accesslist to the last al
		args.AccessList = &accessList
		msg, err := args.ToMessage(b.RPCGasCap(), header.BaseFee)
		if err != nil {
			return nil, 0, nil, err
		}
1541 1542

		// Apply the transaction with the access list tracer
1543
		tracer := logger.NewAccessListTracer(accessList, args.from(), to, precompiles)
1544
		config := vm.Config{Tracer: tracer, NoBaseFee: true}
1545
		vmenv, _ := b.GetEVM(ctx, msg, statedb, header, &config, nil)
1546
		res, err := core.ApplyMessage(vmenv, msg, new(core.GasPool).AddGas(msg.GasLimit))
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		if err != nil {
			return nil, 0, nil, fmt.Errorf("failed to apply transaction: %v err: %v", args.toTransaction().Hash(), err)
		}
		if tracer.Equal(prevTracer) {
			return accessList, res.UsedGas, res.Err, nil
		}
		prevTracer = tracer
	}
}

1557 1558
// TransactionAPI exposes methods for reading and creating transaction data.
type TransactionAPI struct {
1559 1560
	b         Backend
	nonceLock *AddrLocker
1561
	signer    types.Signer
1562 1563
}

1564 1565
// NewTransactionAPI creates a new RPC service with methods for interacting with transactions.
func NewTransactionAPI(b Backend, nonceLock *AddrLocker) *TransactionAPI {
1566 1567 1568
	// The signer used by the API should always be the 'latest' known one because we expect
	// signers to be backwards-compatible with old transactions.
	signer := types.LatestSigner(b.ChainConfig())
1569
	return &TransactionAPI{b, nonceLock, signer}
1570 1571 1572
}

// GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number.
1573
func (s *TransactionAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
1574
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1575 1576
		n := hexutil.Uint(len(block.Transactions()))
		return &n
1577 1578 1579 1580 1581
	}
	return nil
}

// GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash.
1582
func (s *TransactionAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
1583
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1584 1585
		n := hexutil.Uint(len(block.Transactions()))
		return &n
1586 1587 1588 1589 1590
	}
	return nil
}

// GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index.
1591
func (s *TransactionAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction {
1592
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1593
		return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig())
1594
	}
1595
	return nil
1596 1597 1598
}

// GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index.
1599
func (s *TransactionAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction {
1600
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1601
		return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig())
1602
	}
1603
	return nil
1604 1605
}

1606
// GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index.
1607
func (s *TransactionAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes {
1608
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1609
		return newRPCRawTransactionFromBlockIndex(block, uint64(index))
1610
	}
1611
	return nil
1612 1613 1614
}

// GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index.
1615
func (s *TransactionAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes {
1616
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1617
		return newRPCRawTransactionFromBlockIndex(block, uint64(index))
1618
	}
1619
	return nil
1620 1621
}

1622
// GetTransactionCount returns the number of transactions the given address has sent for the given block number
1623
func (s *TransactionAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) {
1624
	// Ask transaction pool for the nonce which includes pending transactions
1625
	if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber {
1626 1627 1628 1629 1630 1631 1632
		nonce, err := s.b.GetPoolNonce(ctx, address)
		if err != nil {
			return nil, err
		}
		return (*hexutil.Uint64)(&nonce), nil
	}
	// Resolve block number and use its state to ask for the nonce
1633
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
1634 1635 1636
	if state == nil || err != nil {
		return nil, err
	}
1637 1638
	nonce := state.GetNonce(address)
	return (*hexutil.Uint64)(&nonce), state.Error()
1639 1640 1641
}

// GetTransactionByHash returns the transaction for the given hash
1642
func (s *TransactionAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) {
1643
	// Try to return an already finalized transaction
1644 1645 1646 1647 1648
	tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
		return nil, err
	}
	if tx != nil {
1649 1650 1651 1652
		header, err := s.b.HeaderByHash(ctx, blockHash)
		if err != nil {
			return nil, err
		}
1653
		return newRPCTransaction(tx, blockHash, blockNumber, header.Time, index, header.BaseFee, s.b.ChainConfig()), nil
1654
	}
1655 1656
	// No finalized transaction, try to retrieve it from the pool
	if tx := s.b.GetPoolTransaction(hash); tx != nil {
1657
		return NewRPCPendingTransaction(tx, s.b.CurrentHeader(), s.b.ChainConfig()), nil
1658
	}
1659

1660
	// Transaction unknown, return as such
1661
	return nil, nil
1662 1663
}

1664
// GetRawTransactionByHash returns the bytes of the transaction for the given hash.
1665
func (s *TransactionAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
1666
	// Retrieve a finalized transaction, or a pooled otherwise
1667 1668 1669 1670 1671
	tx, _, _, _, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
		return nil, err
	}
	if tx == nil {
1672 1673 1674 1675
		if tx = s.b.GetPoolTransaction(hash); tx == nil {
			// Transaction not found anywhere, abort
			return nil, nil
		}
1676
	}
1677
	// Serialize to RLP and return
1678
	return tx.MarshalBinary()
1679 1680
}

1681
// GetTransactionReceipt returns the transaction receipt for the given transaction hash.
1682
func (s *TransactionAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) {
1683 1684
	tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
1685 1686
		// When the transaction doesn't exist, the RPC method should return JSON null
		// as per specification.
1687
		return nil, nil
1688
	}
1689 1690 1691 1692
	header, err := s.b.HeaderByHash(ctx, blockHash)
	if err != nil {
		return nil, err
	}
1693 1694 1695 1696
	receipts, err := s.b.GetReceipts(ctx, blockHash)
	if err != nil {
		return nil, err
	}
1697
	if uint64(len(receipts)) <= index {
1698
		return nil, nil
1699
	}
1700
	receipt := receipts[index]
1701

1702
	// Derive the sender.
1703
	signer := types.MakeSigner(s.b.ChainConfig(), header.Number, header.Time)
1704
	from, _ := types.Sender(signer, tx)
1705 1706

	fields := map[string]interface{}{
1707 1708
		"blockHash":         blockHash,
		"blockNumber":       hexutil.Uint64(blockNumber),
1709
		"transactionHash":   hash,
1710
		"transactionIndex":  hexutil.Uint64(index),
1711 1712
		"from":              from,
		"to":                tx.To(),
1713 1714
		"gasUsed":           hexutil.Uint64(receipt.GasUsed),
		"cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed),
1715 1716
		"contractAddress":   nil,
		"logs":              receipt.Logs,
1717
		"logsBloom":         receipt.Bloom,
1718
		"type":              hexutil.Uint(tx.Type()),
1719
		"effectiveGasPrice": (*hexutil.Big)(receipt.EffectiveGasPrice),
1720
	}
1721

1722 1723 1724 1725
	// Assign receipt status or post state.
	if len(receipt.PostState) > 0 {
		fields["root"] = hexutil.Bytes(receipt.PostState)
	} else {
1726
		fields["status"] = hexutil.Uint(receipt.Status)
1727
	}
1728
	if receipt.Logs == nil {
1729
		fields["logs"] = []*types.Log{}
1730
	}
1731

1732
	// If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation
1733
	if receipt.ContractAddress != (common.Address{}) {
1734 1735 1736 1737 1738 1739
		fields["contractAddress"] = receipt.ContractAddress
	}
	return fields, nil
}

// sign is a helper function that signs a transaction with the private key of the given address.
1740
func (s *TransactionAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) {
1741 1742 1743 1744 1745 1746 1747 1748
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Request the wallet to sign the transaction
1749
	return wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
1750 1751
}

1752 1753
// SubmitTransaction is a helper function that submits tx to txPool and logs a message.
func SubmitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) {
1754 1755
	// If the transaction fee cap is already specified, ensure the
	// fee of the given transaction is _reasonable_.
1756 1757
	if err := checkTxFee(tx.GasPrice(), tx.Gas(), b.RPCTxFeeCap()); err != nil {
		return common.Hash{}, err
1758
	}
1759 1760 1761 1762
	if !b.UnprotectedAllowed() && !tx.Protected() {
		// Ensure only eip155 signed transactions are submitted if EIP155Required is set.
		return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC")
	}
1763
	if err := b.SendTx(ctx, tx); err != nil {
1764 1765
		return common.Hash{}, err
	}
1766
	// Print a log with full tx details for manual investigations and interventions
1767 1768
	head := b.CurrentBlock()
	signer := types.MakeSigner(b.ChainConfig(), head.Number, head.Time)
1769 1770 1771 1772 1773
	from, err := types.Sender(signer, tx)
	if err != nil {
		return common.Hash{}, err
	}

1774 1775
	if tx.To() == nil {
		addr := crypto.CreateAddress(from, tx.Nonce())
1776
		log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "contract", addr.Hex(), "value", tx.Value())
1777
	} else {
1778
		log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "recipient", tx.To(), "value", tx.Value())
1779
	}
1780
	return tx.Hash(), nil
1781 1782 1783 1784
}

// SendTransaction creates a transaction for the given argument, sign it and submit it to the
// transaction pool.
1785
func (s *TransactionAPI) SendTransaction(ctx context.Context, args TransactionArgs) (common.Hash, error) {
1786
	// Look up the wallet containing the requested signer
1787
	account := accounts.Account{Address: args.from()}
1788 1789 1790 1791 1792

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return common.Hash{}, err
	}
1793 1794

	if args.Nonce == nil {
1795
		// Hold the mutex around signing to prevent concurrent assignment of
1796
		// the same nonce to multiple accounts.
1797 1798
		s.nonceLock.LockAddr(args.from())
		defer s.nonceLock.UnlockAddr(args.from())
1799 1800 1801 1802 1803 1804
	}

	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
		return common.Hash{}, err
	}
1805
	// Assemble the transaction and sign with the wallet
1806
	tx := args.toTransaction()
1807

1808
	signed, err := wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
1809 1810 1811
	if err != nil {
		return common.Hash{}, err
	}
1812
	return SubmitTransaction(ctx, s.b, signed)
1813 1814
}

1815 1816 1817
// FillTransaction fills the defaults (nonce, gas, gasPrice or 1559 fields)
// on a given unsigned transaction, and returns it to the caller for further
// processing (signing + broadcast).
1818
func (s *TransactionAPI) FillTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) {
1819 1820 1821 1822 1823 1824
	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
		return nil, err
	}
	// Assemble the transaction and obtain rlp
	tx := args.toTransaction()
1825
	data, err := tx.MarshalBinary()
1826 1827 1828 1829 1830 1831
	if err != nil {
		return nil, err
	}
	return &SignTransactionResult{data, tx}, nil
}

1832 1833
// SendRawTransaction will add the signed transaction to the transaction pool.
// The sender is responsible for signing the transaction and using the correct nonce.
1834
func (s *TransactionAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) {
1835
	tx := new(types.Transaction)
1836
	if err := tx.UnmarshalBinary(input); err != nil {
1837
		return common.Hash{}, err
1838
	}
1839
	return SubmitTransaction(ctx, s.b, tx)
1840 1841
}

1842
// Sign calculates an ECDSA signature for:
1843
// keccak256("\x19Ethereum Signed Message:\n" + len(message) + message).
1844
//
1845 1846 1847
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
1848 1849 1850
// The account associated with addr must be unlocked.
//
// https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
1851
func (s *TransactionAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) {
1852 1853 1854 1855 1856 1857 1858 1859
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Sign the requested hash with the wallet
1860
	signature, err := wallet.SignText(account, data)
1861
	if err == nil {
1862
		signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
1863 1864
	}
	return signature, err
1865 1866 1867 1868
}

// SignTransactionResult represents a RLP encoded signed transaction.
type SignTransactionResult struct {
1869 1870
	Raw hexutil.Bytes      `json:"raw"`
	Tx  *types.Transaction `json:"tx"`
1871 1872 1873 1874 1875
}

// SignTransaction will sign the given transaction with the from account.
// The node needs to have the private key of the account corresponding with
// the given from address and it needs to be unlocked.
1876
func (s *TransactionAPI) SignTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) {
1877
	if args.Gas == nil {
1878
		return nil, errors.New("gas not specified")
1879
	}
1880
	if args.GasPrice == nil && (args.MaxPriorityFeePerGas == nil || args.MaxFeePerGas == nil) {
1881
		return nil, errors.New("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas")
1882
	}
1883
	if args.Nonce == nil {
1884
		return nil, errors.New("nonce not specified")
1885
	}
1886 1887
	if err := args.setDefaults(ctx, s.b); err != nil {
		return nil, err
1888
	}
1889
	// Before actually sign the transaction, ensure the transaction fee is reasonable.
1890 1891
	tx := args.toTransaction()
	if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil {
1892 1893
		return nil, err
	}
1894
	signed, err := s.sign(args.from(), tx)
1895 1896 1897
	if err != nil {
		return nil, err
	}
1898
	data, err := signed.MarshalBinary()
1899 1900 1901
	if err != nil {
		return nil, err
	}
1902
	return &SignTransactionResult{data, signed}, nil
1903 1904
}

1905 1906
// PendingTransactions returns the transactions that are in the transaction pool
// and have a from address that is one of the accounts this node manages.
1907
func (s *TransactionAPI) PendingTransactions() ([]*RPCTransaction, error) {
1908 1909 1910 1911
	pending, err := s.b.GetPoolTransactions()
	if err != nil {
		return nil, err
	}
1912 1913 1914 1915 1916 1917
	accounts := make(map[common.Address]struct{})
	for _, wallet := range s.b.AccountManager().Wallets() {
		for _, account := range wallet.Accounts() {
			accounts[account.Address] = struct{}{}
		}
	}
1918
	curHeader := s.b.CurrentHeader()
1919 1920
	transactions := make([]*RPCTransaction, 0, len(pending))
	for _, tx := range pending {
1921
		from, _ := types.Sender(s.signer, tx)
1922
		if _, exists := accounts[from]; exists {
1923
			transactions = append(transactions, NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()))
1924 1925
		}
	}
1926
	return transactions, nil
1927 1928
}

1929 1930
// Resend accepts an existing transaction and a new gas price and limit. It will remove
// the given transaction from the pool and reinsert it with the new gas price and limit.
1931
func (s *TransactionAPI) Resend(ctx context.Context, sendArgs TransactionArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) {
1932
	if sendArgs.Nonce == nil {
1933
		return common.Hash{}, errors.New("missing transaction nonce in transaction spec")
1934 1935 1936 1937 1938
	}
	if err := sendArgs.setDefaults(ctx, s.b); err != nil {
		return common.Hash{}, err
	}
	matchTx := sendArgs.toTransaction()
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

	// Before replacing the old transaction, ensure the _new_ transaction fee is reasonable.
	var price = matchTx.GasPrice()
	if gasPrice != nil {
		price = gasPrice.ToInt()
	}
	var gas = matchTx.Gas()
	if gasLimit != nil {
		gas = uint64(*gasLimit)
	}
	if err := checkTxFee(price, gas, s.b.RPCTxFeeCap()); err != nil {
		return common.Hash{}, err
	}
	// Iterate the pending list for replacement
1953 1954 1955 1956
	pending, err := s.b.GetPoolTransactions()
	if err != nil {
		return common.Hash{}, err
	}
1957
	for _, p := range pending {
1958 1959
		wantSigHash := s.signer.Hash(matchTx)
		pFrom, err := types.Sender(s.signer, p)
1960
		if err == nil && pFrom == sendArgs.from() && s.signer.Hash(p) == wantSigHash {
1961
			// Match. Re-sign and send the transaction.
1962
			if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 {
1963
				sendArgs.GasPrice = gasPrice
1964
			}
1965
			if gasLimit != nil && *gasLimit != 0 {
1966
				sendArgs.Gas = gasLimit
1967
			}
1968
			signedTx, err := s.sign(sendArgs.from(), sendArgs.toTransaction())
1969 1970 1971 1972 1973 1974 1975 1976 1977
			if err != nil {
				return common.Hash{}, err
			}
			if err = s.b.SendTx(ctx, signedTx); err != nil {
				return common.Hash{}, err
			}
			return signedTx.Hash(), nil
		}
	}
1978
	return common.Hash{}, fmt.Errorf("transaction %#x not found", matchTx.Hash())
1979 1980
}

1981 1982 1983
// DebugAPI is the collection of Ethereum APIs exposed over the debugging
// namespace.
type DebugAPI struct {
1984 1985 1986
	b Backend
}

1987 1988 1989
// NewDebugAPI creates a new instance of DebugAPI.
func NewDebugAPI(b Backend) *DebugAPI {
	return &DebugAPI{b: b}
1990 1991
}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
// GetRawHeader retrieves the RLP encoding for a single header.
func (api *DebugAPI) GetRawHeader(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
	var hash common.Hash
	if h, ok := blockNrOrHash.Hash(); ok {
		hash = h
	} else {
		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return nil, err
		}
		hash = block.Hash()
	}
	header, _ := api.b.HeaderByHash(ctx, hash)
2005
	if header == nil {
2006
		return nil, fmt.Errorf("header #%d not found", hash)
2007
	}
2008
	return rlp.EncodeToBytes(header)
2009 2010
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
// GetRawBlock retrieves the RLP encoded for a single block.
func (api *DebugAPI) GetRawBlock(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
	var hash common.Hash
	if h, ok := blockNrOrHash.Hash(); ok {
		hash = h
	} else {
		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return nil, err
		}
		hash = block.Hash()
	}
	block, _ := api.b.BlockByHash(ctx, hash)
2024
	if block == nil {
2025
		return nil, fmt.Errorf("block #%d not found", hash)
2026
	}
2027
	return rlp.EncodeToBytes(block)
2028 2029
}

2030
// GetRawReceipts retrieves the binary-encoded receipts of a single block.
2031
func (api *DebugAPI) GetRawReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]hexutil.Bytes, error) {
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	var hash common.Hash
	if h, ok := blockNrOrHash.Hash(); ok {
		hash = h
	} else {
		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return nil, err
		}
		hash = block.Hash()
	}
	receipts, err := api.b.GetReceipts(ctx, hash)
	if err != nil {
		return nil, err
	}
	result := make([]hexutil.Bytes, len(receipts))
	for i, receipt := range receipts {
		b, err := receipt.MarshalBinary()
		if err != nil {
			return nil, err
		}
		result[i] = b
	}
	return result, nil
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
// GetRawTransaction returns the bytes of the transaction for the given hash.
func (s *DebugAPI) GetRawTransaction(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
	// Retrieve a finalized transaction, or a pooled otherwise
	tx, _, _, _, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
		return nil, err
	}
	if tx == nil {
		if tx = s.b.GetPoolTransaction(hash); tx == nil {
			// Transaction not found anywhere, abort
			return nil, nil
		}
	}
	return tx.MarshalBinary()
}

2073
// PrintBlock retrieves a block and returns its pretty printed form.
2074
func (api *DebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) {
2075 2076 2077 2078
	block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
	if block == nil {
		return "", fmt.Errorf("block #%d not found", number)
	}
2079
	return spew.Sdump(block), nil
2080 2081
}

2082
// ChaindbProperty returns leveldb properties of the key-value database.
2083
func (api *DebugAPI) ChaindbProperty(property string) (string, error) {
2084 2085 2086 2087 2088
	if property == "" {
		property = "leveldb.stats"
	} else if !strings.HasPrefix(property, "leveldb.") {
		property = "leveldb." + property
	}
2089
	return api.b.ChainDb().Stat(property)
2090 2091
}

2092 2093
// ChaindbCompact flattens the entire key-value database into a single level,
// removing all unused slots and merging all keys.
2094
func (api *DebugAPI) ChaindbCompact() error {
2095
	for b := byte(0); b < 255; b++ {
2096
		log.Info("Compacting chain database", "range", fmt.Sprintf("0x%0.2X-0x%0.2X", b, b+1))
2097
		if err := api.b.ChainDb().Compact([]byte{b}, []byte{b + 1}); err != nil {
2098
			log.Error("Database compaction failed", "err", err)
2099 2100 2101 2102 2103 2104
			return err
		}
	}
	return nil
}

2105
// SetHead rewinds the head of the blockchain to a previous block.
2106
func (api *DebugAPI) SetHead(number hexutil.Uint64) {
2107
	api.b.SetHead(uint64(number))
2108 2109
}

2110 2111
// NetAPI offers network related RPC methods
type NetAPI struct {
2112 2113
	net            *p2p.Server
	networkVersion uint64
2114 2115
}

2116 2117 2118
// NewNetAPI creates a new net API instance.
func NewNetAPI(net *p2p.Server, networkVersion uint64) *NetAPI {
	return &NetAPI{net, networkVersion}
2119 2120 2121
}

// Listening returns an indication if the node is listening for network connections.
2122
func (s *NetAPI) Listening() bool {
2123 2124 2125 2126
	return true // always listening
}

// PeerCount returns the number of connected peers
2127
func (s *NetAPI) PeerCount() hexutil.Uint {
2128
	return hexutil.Uint(s.net.PeerCount())
2129 2130
}

2131
// Version returns the current ethereum protocol version.
2132
func (s *NetAPI) Version() string {
2133 2134 2135
	return fmt.Sprintf("%d", s.networkVersion)
}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
// checkTxFee is an internal function used to check whether the fee of
// the given transaction is _reasonable_(under the cap).
func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error {
	// Short circuit if there is no cap for transaction fee at all.
	if cap == 0 {
		return nil
	}
	feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether)))
	feeFloat, _ := feeEth.Float64()
	if feeFloat > cap {
		return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap)
	}
	return nil
}
2150 2151 2152 2153 2154 2155 2156 2157 2158

// toHexSlice creates a slice of hex-strings based on []byte.
func toHexSlice(b [][]byte) []string {
	r := make([]string, len(b))
	for i := range b {
		r[i] = hexutil.Encode(b[i])
	}
	return r
}