contracts.go 16 KB
Newer Older
1
// Copyright 2014 The go-ethereum Authors
2
// This file is part of the go-ethereum library.
3
//
4
// The go-ethereum library is free software: you can redistribute it and/or modify
5 6 7 8
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
9
// The go-ethereum library is distributed in the hope that it will be useful,
10
// but WITHOUT ANY WARRANTY; without even the implied warranty of
11
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 13 14
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
15
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
16

obscuren's avatar
obscuren committed
17
package vm
obscuren's avatar
obscuren committed
18 19

import (
20
	"crypto/sha256"
21
	"encoding/binary"
22
	"errors"
23
	"math/big"
24

obscuren's avatar
obscuren committed
25
	"github.com/ethereum/go-ethereum/common"
26
	"github.com/ethereum/go-ethereum/common/math"
27
	"github.com/ethereum/go-ethereum/crypto"
28
	"github.com/ethereum/go-ethereum/crypto/blake2b"
29
	"github.com/ethereum/go-ethereum/crypto/bn256"
30
	"github.com/ethereum/go-ethereum/params"
31
	"golang.org/x/crypto/ripemd160"
obscuren's avatar
obscuren committed
32 33
)

34
// PrecompiledContract is the basic interface for native Go contracts. The implementation
35 36 37
// requires a deterministic gas count based on the input size of the Run method of the
// contract.
type PrecompiledContract interface {
38 39
	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
obscuren's avatar
obscuren committed
40 41
}

42 43 44
// PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
// contracts used in the Frontier and Homestead releases.
var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
45
	common.BytesToAddress([]byte{1}): &ecrecover{},
46 47
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
48
	common.BytesToAddress([]byte{4}): &dataCopy{},
obscuren's avatar
obscuren committed
49 50
}

51 52 53
// PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
// contracts used in the Byzantium release.
var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
54 55 56 57
	common.BytesToAddress([]byte{1}): &ecrecover{},
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
	common.BytesToAddress([]byte{4}): &dataCopy{},
58
	common.BytesToAddress([]byte{5}): &bigModExp{},
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
	common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
	common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
	common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
}

// PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
// contracts used in the Istanbul release.
var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
	common.BytesToAddress([]byte{1}): &ecrecover{},
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
	common.BytesToAddress([]byte{4}): &dataCopy{},
	common.BytesToAddress([]byte{5}): &bigModExp{},
	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
75
	common.BytesToAddress([]byte{9}): &blake2F{},
76 77
}

78
// RunPrecompiledContract runs and evaluates the output of a precompiled contract.
79
func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
80
	gas := p.RequiredGas(input)
81
	if contract.UseGas(gas) {
82
		return p.Run(input)
obscuren's avatar
obscuren committed
83
	}
84
	return nil, ErrOutOfGas
obscuren's avatar
obscuren committed
85 86
}

87
// ECRECOVER implemented as a native contract.
88
type ecrecover struct{}
obscuren's avatar
obscuren committed
89

90
func (c *ecrecover) RequiredGas(input []byte) uint64 {
91
	return params.EcrecoverGas
obscuren's avatar
obscuren committed
92 93
}

94
func (c *ecrecover) Run(input []byte) ([]byte, error) {
95
	const ecRecoverInputLength = 128
obscuren's avatar
obscuren committed
96

97 98
	input = common.RightPadBytes(input, ecRecoverInputLength)
	// "input" is (hash, v, r, s), each 32 bytes
99
	// but for ecrecover we want (r, s, v)
obscuren's avatar
obscuren committed
100

101 102 103
	r := new(big.Int).SetBytes(input[64:96])
	s := new(big.Int).SetBytes(input[96:128])
	v := input[63] - 27
104

105 106
	// tighter sig s values input homestead only apply to tx sigs
	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
107
		return nil, nil
108
	}
109
	// v needs to be at the end for libsecp256k1
110
	pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v))
obscuren's avatar
obscuren committed
111
	// make sure the public key is a valid one
112
	if err != nil {
113
		return nil, nil
114
	}
obscuren's avatar
obscuren committed
115

116
	// the first byte of pubkey is bitcoin heritage
117
	return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
obscuren's avatar
obscuren committed
118
}
119

120
// SHA256 implemented as a native contract.
121
type sha256hash struct{}
122

123 124 125 126
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
127
func (c *sha256hash) RequiredGas(input []byte) uint64 {
128
	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
129
}
130 131
func (c *sha256hash) Run(input []byte) ([]byte, error) {
	h := sha256.Sum256(input)
132
	return h[:], nil
133 134
}

135
// RIPEMD160 implemented as a native contract.
136
type ripemd160hash struct{}
137

138 139 140 141
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
142
func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
143
	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
144
}
145
func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
146
	ripemd := ripemd160.New()
147
	ripemd.Write(input)
148
	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
149 150
}

151
// data copy implemented as a native contract.
152 153
type dataCopy struct{}

154 155 156 157
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
158
func (c *dataCopy) RequiredGas(input []byte) uint64 {
159
	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
160
}
161 162
func (c *dataCopy) Run(in []byte) ([]byte, error) {
	return in, nil
163
}
164

165 166
// bigModExp implements a native big integer exponential modular operation.
type bigModExp struct{}
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181
var (
	big1      = big.NewInt(1)
	big4      = big.NewInt(4)
	big8      = big.NewInt(8)
	big16     = big.NewInt(16)
	big32     = big.NewInt(32)
	big64     = big.NewInt(64)
	big96     = big.NewInt(96)
	big480    = big.NewInt(480)
	big1024   = big.NewInt(1024)
	big3072   = big.NewInt(3072)
	big199680 = big.NewInt(199680)
)

182
// RequiredGas returns the gas required to execute the pre-compiled contract.
183
func (c *bigModExp) RequiredGas(input []byte) uint64 {
184
	var (
185 186 187
		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
188
	)
189 190 191 192 193
	if len(input) > 96 {
		input = input[96:]
	} else {
		input = input[:0]
	}
194 195 196 197 198
	// Retrieve the head 32 bytes of exp for the adjusted exponent length
	var expHead *big.Int
	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
		expHead = new(big.Int)
	} else {
199 200
		if expLen.Cmp(big32) > 0 {
			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
201
		} else {
202
			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
203
		}
204
	}
205 206 207 208 209 210
	// Calculate the adjusted exponent length
	var msb int
	if bitlen := expHead.BitLen(); bitlen > 0 {
		msb = bitlen - 1
	}
	adjExpLen := new(big.Int)
211 212 213
	if expLen.Cmp(big32) > 0 {
		adjExpLen.Sub(expLen, big32)
		adjExpLen.Mul(big8, adjExpLen)
214 215 216 217 218 219
	}
	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))

	// Calculate the gas cost of the operation
	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
	switch {
220
	case gas.Cmp(big64) <= 0:
221
		gas.Mul(gas, gas)
222
	case gas.Cmp(big1024) <= 0:
223
		gas = new(big.Int).Add(
224 225
			new(big.Int).Div(new(big.Int).Mul(gas, gas), big4),
			new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072),
226 227 228
		)
	default:
		gas = new(big.Int).Add(
229 230
			new(big.Int).Div(new(big.Int).Mul(gas, gas), big16),
			new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680),
231 232
		)
	}
233
	gas.Mul(gas, math.BigMax(adjExpLen, big1))
234 235 236 237 238 239 240 241 242
	gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))

	if gas.BitLen() > 64 {
		return math.MaxUint64
	}
	return gas.Uint64()
}

func (c *bigModExp) Run(input []byte) ([]byte, error) {
243
	var (
244 245 246
		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
247
	)
248 249 250 251 252 253 254 255 256 257
	if len(input) > 96 {
		input = input[96:]
	} else {
		input = input[:0]
	}
	// Handle a special case when both the base and mod length is zero
	if baseLen == 0 && modLen == 0 {
		return []byte{}, nil
	}
	// Retrieve the operands and execute the exponentiation
258
	var (
259 260 261
		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
262 263 264 265
	)
	if mod.BitLen() == 0 {
		// Modulo 0 is undefined, return zero
		return common.LeftPadBytes([]byte{}, int(modLen)), nil
266
	}
267
	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
268 269
}

270 271 272
// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newCurvePoint(blob []byte) (*bn256.G1, error) {
273 274 275
	p := new(bn256.G1)
	if _, err := p.Unmarshal(blob); err != nil {
		return nil, err
276
	}
277 278
	return p, nil
}
279

280 281 282
// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newTwistPoint(blob []byte) (*bn256.G2, error) {
283 284 285
	p := new(bn256.G2)
	if _, err := p.Unmarshal(blob); err != nil {
		return nil, err
286
	}
287
	return p, nil
288 289
}

290 291 292
// runBn256Add implements the Bn256Add precompile, referenced by both
// Byzantium and Istanbul operations.
func runBn256Add(input []byte) ([]byte, error) {
293
	x, err := newCurvePoint(getData(input, 0, 64))
294 295
	if err != nil {
		return nil, err
296
	}
297
	y, err := newCurvePoint(getData(input, 64, 64))
298 299
	if err != nil {
		return nil, err
300
	}
301 302 303
	res := new(bn256.G1)
	res.Add(x, y)
	return res.Marshal(), nil
304 305
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
// bn256Add implements a native elliptic curve point addition conforming to
// Istanbul consensus rules.
type bn256AddIstanbul struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
	return params.Bn256AddGasIstanbul
}

func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
	return runBn256Add(input)
}

// bn256AddByzantium implements a native elliptic curve point addition
// conforming to Byzantium consensus rules.
type bn256AddByzantium struct{}
322 323

// RequiredGas returns the gas required to execute the pre-compiled contract.
324 325 326 327 328 329
func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
	return params.Bn256AddGasByzantium
}

func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
	return runBn256Add(input)
330 331
}

332 333 334
// runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
// both Byzantium and Istanbul operations.
func runBn256ScalarMul(input []byte) ([]byte, error) {
335
	p, err := newCurvePoint(getData(input, 0, 64))
336 337 338
	if err != nil {
		return nil, err
	}
339 340 341
	res := new(bn256.G1)
	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
	return res.Marshal(), nil
342
}
343

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
// bn256ScalarMulIstanbul implements a native elliptic curve scalar
// multiplication conforming to Istanbul consensus rules.
type bn256ScalarMulIstanbul struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
	return params.Bn256ScalarMulGasIstanbul
}

func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
	return runBn256ScalarMul(input)
}

// bn256ScalarMulByzantium implements a native elliptic curve scalar
// multiplication conforming to Byzantium consensus rules.
type bn256ScalarMulByzantium struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
	return params.Bn256ScalarMulGasByzantium
}

func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
	return runBn256ScalarMul(input)
}

370
var (
371 372 373 374 375 376 377 378
	// true32Byte is returned if the bn256 pairing check succeeds.
	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}

	// false32Byte is returned if the bn256 pairing check fails.
	false32Byte = make([]byte, 32)

	// errBadPairingInput is returned if the bn256 pairing input is invalid.
	errBadPairingInput = errors.New("bad elliptic curve pairing size")
379 380
)

381 382 383
// runBn256Pairing implements the Bn256Pairing precompile, referenced by both
// Byzantium and Istanbul operations.
func runBn256Pairing(input []byte) ([]byte, error) {
384 385 386 387 388
	// Handle some corner cases cheaply
	if len(input)%192 > 0 {
		return nil, errBadPairingInput
	}
	// Convert the input into a set of coordinates
389
	var (
390 391
		cs []*bn256.G1
		ts []*bn256.G2
392
	)
393 394 395 396
	for i := 0; i < len(input); i += 192 {
		c, err := newCurvePoint(input[i : i+64])
		if err != nil {
			return nil, err
397
		}
398 399 400
		t, err := newTwistPoint(input[i+64 : i+192])
		if err != nil {
			return nil, err
401
		}
402 403
		cs = append(cs, c)
		ts = append(ts, t)
404
	}
405
	// Execute the pairing checks and return the results
406
	if bn256.PairingCheck(cs, ts) {
407 408
		return true32Byte, nil
	}
409
	return false32Byte, nil
410
}
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

// bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
// conforming to Istanbul consensus rules.
type bn256PairingIstanbul struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
	return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
}

func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
	return runBn256Pairing(input)
}

// bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
// conforming to Byzantium consensus rules.
type bn256PairingByzantium struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
	return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
}

func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
	return runBn256Pairing(input)
}
437 438 439 440

type blake2F struct{}

func (c *blake2F) RequiredGas(input []byte) uint64 {
441 442
	// If the input is malformed, we can't calculate the gas, return 0 and let the
	// actual call choke and fault.
443 444 445
	if len(input) != blake2FInputLength {
		return 0
	}
446
	return uint64(binary.BigEndian.Uint32(input[0:4]))
447 448
}

449 450 451 452
const (
	blake2FInputLength        = 213
	blake2FFinalBlockBytes    = byte(1)
	blake2FNonFinalBlockBytes = byte(0)
453 454
)

455 456 457
var (
	errBlake2FInvalidInputLength = errors.New("invalid input length")
	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
458 459 460
)

func (c *blake2F) Run(input []byte) ([]byte, error) {
461
	// Make sure the input is valid (correct lenth and final flag)
462
	if len(input) != blake2FInputLength {
463
		return nil, errBlake2FInvalidInputLength
464 465
	}
	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
466
		return nil, errBlake2FInvalidFinalFlag
467
	}
468 469 470 471
	// Parse the input into the Blake2b call parameters
	var (
		rounds = binary.BigEndian.Uint32(input[0:4])
		final  = (input[212] == blake2FFinalBlockBytes)
472

473 474 475 476
		h [8]uint64
		m [16]uint64
		t [2]uint64
	)
477 478 479 480 481 482 483 484 485 486 487
	for i := 0; i < 8; i++ {
		offset := 4 + i*8
		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
	}
	for i := 0; i < 16; i++ {
		offset := 68 + i*8
		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
	}
	t[0] = binary.LittleEndian.Uint64(input[196:204])
	t[1] = binary.LittleEndian.Uint64(input[204:212])

488 489
	// Execute the compression function, extract and return the result
	blake2b.F(&h, m, t, final, rounds)
490

491
	output := make([]byte, 64)
492 493 494 495
	for i := 0; i < 8; i++ {
		offset := i * 8
		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
	}
496
	return output, nil
497
}