api.go 79.1 KB
Newer Older
1
// Copyright 2015 The go-ethereum Authors
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package ethapi

import (
20
	"context"
21
	"encoding/hex"
22
	"errors"
23 24 25 26 27
	"fmt"
	"math/big"
	"strings"
	"time"

28
	"github.com/davecgh/go-spew/spew"
29
	"github.com/ethereum/go-ethereum/accounts"
30
	"github.com/ethereum/go-ethereum/accounts/abi"
31
	"github.com/ethereum/go-ethereum/accounts/keystore"
32
	"github.com/ethereum/go-ethereum/accounts/scwallet"
33
	"github.com/ethereum/go-ethereum/common"
34
	"github.com/ethereum/go-ethereum/common/hexutil"
35
	"github.com/ethereum/go-ethereum/common/math"
36
	"github.com/ethereum/go-ethereum/consensus"
37
	"github.com/ethereum/go-ethereum/consensus/misc/eip1559"
38
	"github.com/ethereum/go-ethereum/core"
39
	"github.com/ethereum/go-ethereum/core/state"
40 41 42
	"github.com/ethereum/go-ethereum/core/types"
	"github.com/ethereum/go-ethereum/core/vm"
	"github.com/ethereum/go-ethereum/crypto"
43
	"github.com/ethereum/go-ethereum/eth/tracers/logger"
44
	"github.com/ethereum/go-ethereum/log"
45
	"github.com/ethereum/go-ethereum/p2p"
46
	"github.com/ethereum/go-ethereum/params"
47 48
	"github.com/ethereum/go-ethereum/rlp"
	"github.com/ethereum/go-ethereum/rpc"
49
	"github.com/tyler-smith/go-bip39"
50 51
)

52 53
// EthereumAPI provides an API to access Ethereum related information.
type EthereumAPI struct {
54
	b Backend
55 56
}

57 58 59
// NewEthereumAPI creates a new Ethereum protocol API.
func NewEthereumAPI(b Backend) *EthereumAPI {
	return &EthereumAPI{b}
60 61
}

62
// GasPrice returns a suggestion for a gas price for legacy transactions.
63
func (s *EthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) {
64 65 66 67 68 69 70 71 72 73
	tipcap, err := s.b.SuggestGasTipCap(ctx)
	if err != nil {
		return nil, err
	}
	if head := s.b.CurrentHeader(); head.BaseFee != nil {
		tipcap.Add(tipcap, head.BaseFee)
	}
	return (*hexutil.Big)(tipcap), err
}

74
// MaxPriorityFeePerGas returns a suggestion for a gas tip cap for dynamic fee transactions.
75
func (s *EthereumAPI) MaxPriorityFeePerGas(ctx context.Context) (*hexutil.Big, error) {
76 77 78 79 80
	tipcap, err := s.b.SuggestGasTipCap(ctx)
	if err != nil {
		return nil, err
	}
	return (*hexutil.Big)(tipcap), err
81 82
}

83
type feeHistoryResult struct {
84
	OldestBlock  *hexutil.Big     `json:"oldestBlock"`
85 86 87
	Reward       [][]*hexutil.Big `json:"reward,omitempty"`
	BaseFee      []*hexutil.Big   `json:"baseFeePerGas,omitempty"`
	GasUsedRatio []float64        `json:"gasUsedRatio"`
88 89
}

90
// FeeHistory returns the fee market history.
91
func (s *EthereumAPI) FeeHistory(ctx context.Context, blockCount math.HexOrDecimal64, lastBlock rpc.BlockNumber, rewardPercentiles []float64) (*feeHistoryResult, error) {
92
	oldest, reward, baseFee, gasUsed, err := s.b.FeeHistory(ctx, uint64(blockCount), lastBlock, rewardPercentiles)
93
	if err != nil {
94
		return nil, err
95
	}
96
	results := &feeHistoryResult{
97
		OldestBlock:  (*hexutil.Big)(oldest),
98
		GasUsedRatio: gasUsed,
99 100 101
	}
	if reward != nil {
		results.Reward = make([][]*hexutil.Big, len(reward))
102 103 104 105
		for i, w := range reward {
			results.Reward[i] = make([]*hexutil.Big, len(w))
			for j, v := range w {
				results.Reward[i][j] = (*hexutil.Big)(v)
106 107 108 109 110 111 112 113 114 115 116 117
			}
		}
	}
	if baseFee != nil {
		results.BaseFee = make([]*hexutil.Big, len(baseFee))
		for i, v := range baseFee {
			results.BaseFee[i] = (*hexutil.Big)(v)
		}
	}
	return results, nil
}

118
// Syncing returns false in case the node is currently not syncing with the network. It can be up-to-date or has not
119
// yet received the latest block headers from its pears. In case it is synchronizing:
120
// - startingBlock: block number this node started to synchronize from
121 122 123 124
// - currentBlock:  block number this node is currently importing
// - highestBlock:  block number of the highest block header this node has received from peers
// - pulledStates:  number of state entries processed until now
// - knownStates:   number of known state entries that still need to be pulled
125
func (s *EthereumAPI) Syncing() (interface{}, error) {
126
	progress := s.b.SyncProgress()
127 128

	// Return not syncing if the synchronisation already completed
129
	if progress.CurrentBlock >= progress.HighestBlock {
130 131 132 133
		return false, nil
	}
	// Otherwise gather the block sync stats
	return map[string]interface{}{
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
		"startingBlock":       hexutil.Uint64(progress.StartingBlock),
		"currentBlock":        hexutil.Uint64(progress.CurrentBlock),
		"highestBlock":        hexutil.Uint64(progress.HighestBlock),
		"syncedAccounts":      hexutil.Uint64(progress.SyncedAccounts),
		"syncedAccountBytes":  hexutil.Uint64(progress.SyncedAccountBytes),
		"syncedBytecodes":     hexutil.Uint64(progress.SyncedBytecodes),
		"syncedBytecodeBytes": hexutil.Uint64(progress.SyncedBytecodeBytes),
		"syncedStorage":       hexutil.Uint64(progress.SyncedStorage),
		"syncedStorageBytes":  hexutil.Uint64(progress.SyncedStorageBytes),
		"healedTrienodes":     hexutil.Uint64(progress.HealedTrienodes),
		"healedTrienodeBytes": hexutil.Uint64(progress.HealedTrienodeBytes),
		"healedBytecodes":     hexutil.Uint64(progress.HealedBytecodes),
		"healedBytecodeBytes": hexutil.Uint64(progress.HealedBytecodeBytes),
		"healingTrienodes":    hexutil.Uint64(progress.HealingTrienodes),
		"healingBytecode":     hexutil.Uint64(progress.HealingBytecode),
149 150 151
	}, nil
}

152
// TxPoolAPI offers and API for the transaction pool. It only operates on data that is non-confidential.
153
type TxPoolAPI struct {
154 155 156
	b Backend
}

157 158 159
// NewTxPoolAPI creates a new tx pool service that gives information about the transaction pool.
func NewTxPoolAPI(b Backend) *TxPoolAPI {
	return &TxPoolAPI{b}
160 161 162
}

// Content returns the transactions contained within the transaction pool.
163
func (s *TxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction {
164 165 166
	content := map[string]map[string]map[string]*RPCTransaction{
		"pending": make(map[string]map[string]*RPCTransaction),
		"queued":  make(map[string]map[string]*RPCTransaction),
167 168
	}
	pending, queue := s.b.TxPoolContent()
169
	curHeader := s.b.CurrentHeader()
170
	// Flatten the pending transactions
171 172
	for account, txs := range pending {
		dump := make(map[string]*RPCTransaction)
173
		for _, tx := range txs {
174
			dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
175 176 177 178
		}
		content["pending"][account.Hex()] = dump
	}
	// Flatten the queued transactions
179 180
	for account, txs := range queue {
		dump := make(map[string]*RPCTransaction)
181
		for _, tx := range txs {
182
			dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
183 184 185 186 187 188
		}
		content["queued"][account.Hex()] = dump
	}
	return content
}

189
// ContentFrom returns the transactions contained within the transaction pool.
190
func (s *TxPoolAPI) ContentFrom(addr common.Address) map[string]map[string]*RPCTransaction {
191 192 193 194 195 196 197
	content := make(map[string]map[string]*RPCTransaction, 2)
	pending, queue := s.b.TxPoolContentFrom(addr)
	curHeader := s.b.CurrentHeader()

	// Build the pending transactions
	dump := make(map[string]*RPCTransaction, len(pending))
	for _, tx := range pending {
198
		dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
199 200 201 202 203 204
	}
	content["pending"] = dump

	// Build the queued transactions
	dump = make(map[string]*RPCTransaction, len(queue))
	for _, tx := range queue {
205
		dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())
206 207 208 209 210 211
	}
	content["queued"] = dump

	return content
}

212
// Status returns the number of pending and queued transaction in the pool.
213
func (s *TxPoolAPI) Status() map[string]hexutil.Uint {
214
	pending, queue := s.b.Stats()
215 216 217
	return map[string]hexutil.Uint{
		"pending": hexutil.Uint(pending),
		"queued":  hexutil.Uint(queue),
218 219 220 221 222
	}
}

// Inspect retrieves the content of the transaction pool and flattens it into an
// easily inspectable list.
223
func (s *TxPoolAPI) Inspect() map[string]map[string]map[string]string {
224 225 226
	content := map[string]map[string]map[string]string{
		"pending": make(map[string]map[string]string),
		"queued":  make(map[string]map[string]string),
227 228 229 230 231 232
	}
	pending, queue := s.b.TxPoolContent()

	// Define a formatter to flatten a transaction into a string
	var format = func(tx *types.Transaction) string {
		if to := tx.To(); to != nil {
233
			return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice())
234
		}
235
		return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice())
236 237
	}
	// Flatten the pending transactions
238 239
	for account, txs := range pending {
		dump := make(map[string]string)
240 241
		for _, tx := range txs {
			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
242 243 244 245
		}
		content["pending"][account.Hex()] = dump
	}
	// Flatten the queued transactions
246 247
	for account, txs := range queue {
		dump := make(map[string]string)
248 249
		for _, tx := range txs {
			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
250 251 252 253 254 255
		}
		content["queued"][account.Hex()] = dump
	}
	return content
}

256
// EthereumAccountAPI provides an API to access accounts managed by this node.
257
// It offers only methods that can retrieve accounts.
258
type EthereumAccountAPI struct {
259 260 261
	am *accounts.Manager
}

262 263 264
// NewEthereumAccountAPI creates a new EthereumAccountAPI.
func NewEthereumAccountAPI(am *accounts.Manager) *EthereumAccountAPI {
	return &EthereumAccountAPI{am: am}
265 266
}

267 268
// Accounts returns the collection of accounts this node manages.
func (s *EthereumAccountAPI) Accounts() []common.Address {
269
	return s.am.Accounts()
270 271
}

272
// PersonalAccountAPI provides an API to access accounts managed by this node.
273 274
// It offers methods to create, (un)lock en list accounts. Some methods accept
// passwords and are therefore considered private by default.
275
type PersonalAccountAPI struct {
276 277 278
	am        *accounts.Manager
	nonceLock *AddrLocker
	b         Backend
279 280
}

281 282 283
// NewPersonalAccountAPI create a new PersonalAccountAPI.
func NewPersonalAccountAPI(b Backend, nonceLock *AddrLocker) *PersonalAccountAPI {
	return &PersonalAccountAPI{
284 285 286
		am:        b.AccountManager(),
		nonceLock: nonceLock,
		b:         b,
287 288 289
	}
}

290
// ListAccounts will return a list of addresses for accounts this node manages.
291
func (s *PersonalAccountAPI) ListAccounts() []common.Address {
292
	return s.am.Accounts()
293 294
}

295 296 297 298 299
// rawWallet is a JSON representation of an accounts.Wallet interface, with its
// data contents extracted into plain fields.
type rawWallet struct {
	URL      string             `json:"url"`
	Status   string             `json:"status"`
300 301
	Failure  string             `json:"failure,omitempty"`
	Accounts []accounts.Account `json:"accounts,omitempty"`
302 303 304
}

// ListWallets will return a list of wallets this node manages.
305
func (s *PersonalAccountAPI) ListWallets() []rawWallet {
306
	wallets := make([]rawWallet, 0) // return [] instead of nil if empty
307
	for _, wallet := range s.am.Wallets() {
308 309 310
		status, failure := wallet.Status()

		raw := rawWallet{
311
			URL:      wallet.URL().String(),
312
			Status:   status,
313
			Accounts: wallet.Accounts(),
314 315 316 317 318
		}
		if failure != nil {
			raw.Failure = failure.Error()
		}
		wallets = append(wallets, raw)
319 320 321 322
	}
	return wallets
}

323 324 325 326
// OpenWallet initiates a hardware wallet opening procedure, establishing a USB
// connection and attempting to authenticate via the provided passphrase. Note,
// the method may return an extra challenge requiring a second open (e.g. the
// Trezor PIN matrix challenge).
327
func (s *PersonalAccountAPI) OpenWallet(url string, passphrase *string) error {
328 329 330 331 332 333 334 335 336 337 338
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return err
	}
	pass := ""
	if passphrase != nil {
		pass = *passphrase
	}
	return wallet.Open(pass)
}

339
// DeriveAccount requests an HD wallet to derive a new account, optionally pinning
340
// it for later reuse.
341
func (s *PersonalAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) {
342 343 344 345
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return accounts.Account{}, err
	}
346 347 348 349
	derivPath, err := accounts.ParseDerivationPath(path)
	if err != nil {
		return accounts.Account{}, err
	}
350 351 352
	if pin == nil {
		pin = new(bool)
	}
353
	return wallet.Derive(derivPath, *pin)
354 355
}

356
// NewAccount will create a new account and returns the address for the new account.
357
func (s *PersonalAccountAPI) NewAccount(password string) (common.AddressEIP55, error) {
358 359
	ks, err := fetchKeystore(s.am)
	if err != nil {
360
		return common.AddressEIP55{}, err
361 362
	}
	acc, err := ks.NewAccount(password)
363
	if err == nil {
364 365
		addrEIP55 := common.AddressEIP55(acc.Address)
		log.Info("Your new key was generated", "address", addrEIP55.String())
366 367
		log.Warn("Please backup your key file!", "path", acc.URL.Path)
		log.Warn("Please remember your password!")
368
		return addrEIP55, nil
369
	}
370
	return common.AddressEIP55{}, err
371 372
}

373
// fetchKeystore retrieves the encrypted keystore from the account manager.
374 375 376 377 378
func fetchKeystore(am *accounts.Manager) (*keystore.KeyStore, error) {
	if ks := am.Backends(keystore.KeyStoreType); len(ks) > 0 {
		return ks[0].(*keystore.KeyStore), nil
	}
	return nil, errors.New("local keystore not used")
379 380
}

381 382
// ImportRawKey stores the given hex encoded ECDSA key into the key directory,
// encrypting it with the passphrase.
383
func (s *PersonalAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) {
384
	key, err := crypto.HexToECDSA(privkey)
385 386 387
	if err != nil {
		return common.Address{}, err
	}
388 389 390 391 392
	ks, err := fetchKeystore(s.am)
	if err != nil {
		return common.Address{}, err
	}
	acc, err := ks.ImportECDSA(key, password)
393 394 395 396 397 398
	return acc.Address, err
}

// UnlockAccount will unlock the account associated with the given address with
// the given password for duration seconds. If duration is nil it will use a
// default of 300 seconds. It returns an indication if the account was unlocked.
399
func (s *PersonalAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) {
400 401 402 403 404 405 406
	// When the API is exposed by external RPC(http, ws etc), unless the user
	// explicitly specifies to allow the insecure account unlocking, otherwise
	// it is disabled.
	if s.b.ExtRPCEnabled() && !s.b.AccountManager().Config().InsecureUnlockAllowed {
		return false, errors.New("account unlock with HTTP access is forbidden")
	}

407
	const max = uint64(time.Duration(math.MaxInt64) / time.Second)
408
	var d time.Duration
409
	if duration == nil {
410
		d = 300 * time.Second
411 412
	} else if *duration > max {
		return false, errors.New("unlock duration too large")
413 414
	} else {
		d = time.Duration(*duration) * time.Second
415
	}
416 417 418 419 420
	ks, err := fetchKeystore(s.am)
	if err != nil {
		return false, err
	}
	err = ks.TimedUnlock(accounts.Account{Address: addr}, password, d)
421 422 423
	if err != nil {
		log.Warn("Failed account unlock attempt", "address", addr, "err", err)
	}
424
	return err == nil, err
425 426 427
}

// LockAccount will lock the account associated with the given address when it's unlocked.
428
func (s *PersonalAccountAPI) LockAccount(addr common.Address) bool {
429 430 431 432
	if ks, err := fetchKeystore(s.am); err == nil {
		return ks.Lock(addr) == nil
	}
	return false
433 434
}

435
// signTransaction sets defaults and signs the given transaction
436 437
// NOTE: the caller needs to ensure that the nonceLock is held, if applicable,
// and release it after the transaction has been submitted to the tx pool
438
func (s *PersonalAccountAPI) signTransaction(ctx context.Context, args *TransactionArgs, passwd string) (*types.Transaction, error) {
439
	// Look up the wallet containing the requested signer
440
	account := accounts.Account{Address: args.from()}
441 442
	wallet, err := s.am.Find(account)
	if err != nil {
443
		return nil, err
444 445 446
	}
	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
447
		return nil, err
448
	}
449
	// Assemble the transaction and sign with the wallet
450
	tx := args.toTransaction()
451

452
	return wallet.SignTxWithPassphrase(account, passwd, tx, s.b.ChainConfig().ChainID)
453 454 455
}

// SendTransaction will create a transaction from the given arguments and
456 457
// tries to sign it with the key associated with args.From. If the given
// passwd isn't able to decrypt the key it fails.
458
func (s *PersonalAccountAPI) SendTransaction(ctx context.Context, args TransactionArgs, passwd string) (common.Hash, error) {
459
	if args.Nonce == nil {
460
		// Hold the mutex around signing to prevent concurrent assignment of
461
		// the same nonce to multiple accounts.
462 463
		s.nonceLock.LockAddr(args.from())
		defer s.nonceLock.UnlockAddr(args.from())
464
	}
465
	signed, err := s.signTransaction(ctx, &args, passwd)
466
	if err != nil {
467
		log.Warn("Failed transaction send attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err)
468 469
		return common.Hash{}, err
	}
470
	return SubmitTransaction(ctx, s.b, signed)
471 472
}

473
// SignTransaction will create a transaction from the given arguments and
474
// tries to sign it with the key associated with args.From. If the given passwd isn't
475 476
// able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast
// to other nodes
477
func (s *PersonalAccountAPI) SignTransaction(ctx context.Context, args TransactionArgs, passwd string) (*SignTransactionResult, error) {
478 479
	// No need to obtain the noncelock mutex, since we won't be sending this
	// tx into the transaction pool, but right back to the user
480
	if args.From == nil {
481
		return nil, errors.New("sender not specified")
482
	}
483
	if args.Gas == nil {
484
		return nil, errors.New("gas not specified")
485
	}
486
	if args.GasPrice == nil && (args.MaxFeePerGas == nil || args.MaxPriorityFeePerGas == nil) {
487
		return nil, errors.New("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas")
488 489
	}
	if args.Nonce == nil {
490
		return nil, errors.New("nonce not specified")
491
	}
492
	// Before actually signing the transaction, ensure the transaction fee is reasonable.
493 494
	tx := args.toTransaction()
	if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil {
495 496
		return nil, err
	}
497
	signed, err := s.signTransaction(ctx, &args, passwd)
498
	if err != nil {
499
		log.Warn("Failed transaction sign attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err)
500 501
		return nil, err
	}
502
	data, err := signed.MarshalBinary()
503 504 505 506 507 508
	if err != nil {
		return nil, err
	}
	return &SignTransactionResult{data, signed}, nil
}

509
// Sign calculates an Ethereum ECDSA signature for:
510
// keccak256("\x19Ethereum Signed Message:\n" + len(message) + message))
511
//
512 513 514
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
515 516 517
// The key used to calculate the signature is decrypted with the given password.
//
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign
518
func (s *PersonalAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) {
519 520 521 522 523 524 525 526
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Assemble sign the data with the wallet
527
	signature, err := wallet.SignTextWithPassphrase(account, passwd, data)
528
	if err != nil {
529
		log.Warn("Failed data sign attempt", "address", addr, "err", err)
530 531
		return nil, err
	}
532
	signature[crypto.RecoveryIDOffset] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
533
	return signature, nil
534 535 536 537 538 539 540 541
}

// EcRecover returns the address for the account that was used to create the signature.
// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
// the address of:
// hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message})
// addr = ecrecover(hash, signature)
//
542
// Note, the signature must conform to the secp256k1 curve R, S and V values, where
543
// the V value must be 27 or 28 for legacy reasons.
544
//
545
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
546
func (s *PersonalAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) {
547 548
	if len(sig) != crypto.SignatureLength {
		return common.Address{}, fmt.Errorf("signature must be %d bytes long", crypto.SignatureLength)
549
	}
550
	if sig[crypto.RecoveryIDOffset] != 27 && sig[crypto.RecoveryIDOffset] != 28 {
551
		return common.Address{}, errors.New("invalid Ethereum signature (V is not 27 or 28)")
552
	}
553
	sig[crypto.RecoveryIDOffset] -= 27 // Transform yellow paper V from 27/28 to 0/1
554

555
	rpk, err := crypto.SigToPub(accounts.TextHash(data), sig)
556 557 558
	if err != nil {
		return common.Address{}, err
	}
559
	return crypto.PubkeyToAddress(*rpk), nil
560 561
}

562
// InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key.
563
func (s *PersonalAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) {
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return "", err
	}

	entropy, err := bip39.NewEntropy(256)
	if err != nil {
		return "", err
	}

	mnemonic, err := bip39.NewMnemonic(entropy)
	if err != nil {
		return "", err
	}

	seed := bip39.NewSeed(mnemonic, "")

	switch wallet := wallet.(type) {
	case *scwallet.Wallet:
		return mnemonic, wallet.Initialize(seed)
	default:
585
		return "", errors.New("specified wallet does not support initialization")
586 587 588
	}
}

589
// Unpair deletes a pairing between wallet and geth.
590
func (s *PersonalAccountAPI) Unpair(ctx context.Context, url string, pin string) error {
591 592 593 594 595 596 597 598 599
	wallet, err := s.am.Wallet(url)
	if err != nil {
		return err
	}

	switch wallet := wallet.(type) {
	case *scwallet.Wallet:
		return wallet.Unpair([]byte(pin))
	default:
600
		return errors.New("specified wallet does not support pairing")
601 602 603
	}
}

604 605
// BlockChainAPI provides an API to access Ethereum blockchain data.
type BlockChainAPI struct {
606
	b Backend
607 608
}

609 610 611
// NewBlockChainAPI creates a new Ethereum blockchain API.
func NewBlockChainAPI(b Backend) *BlockChainAPI {
	return &BlockChainAPI{b}
612 613
}

614
// ChainId is the EIP-155 replay-protection chain id for the current Ethereum chain config.
615 616 617 618 619
//
// Note, this method does not conform to EIP-695 because the configured chain ID is always
// returned, regardless of the current head block. We used to return an error when the chain
// wasn't synced up to a block where EIP-155 is enabled, but this behavior caused issues
// in CL clients.
620 621
func (api *BlockChainAPI) ChainId() *hexutil.Big {
	return (*hexutil.Big)(api.b.ChainConfig().ChainID)
622 623
}

624
// BlockNumber returns the block number of the chain head.
625
func (s *BlockChainAPI) BlockNumber() hexutil.Uint64 {
626
	header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available
627
	return hexutil.Uint64(header.Number.Uint64())
628 629 630 631 632
}

// GetBalance returns the amount of wei for the given address in the state of the
// given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta
// block numbers are also allowed.
633
func (s *BlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Big, error) {
634
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
635 636 637
	if state == nil || err != nil {
		return nil, err
	}
638
	return (*hexutil.Big)(state.GetBalance(address)), state.Error()
639 640
}

641 642 643 644 645 646 647 648 649 650
// Result structs for GetProof
type AccountResult struct {
	Address      common.Address  `json:"address"`
	AccountProof []string        `json:"accountProof"`
	Balance      *hexutil.Big    `json:"balance"`
	CodeHash     common.Hash     `json:"codeHash"`
	Nonce        hexutil.Uint64  `json:"nonce"`
	StorageHash  common.Hash     `json:"storageHash"`
	StorageProof []StorageResult `json:"storageProof"`
}
651

652 653 654 655 656 657
type StorageResult struct {
	Key   string       `json:"key"`
	Value *hexutil.Big `json:"value"`
	Proof []string     `json:"proof"`
}

658 659 660 661 662 663 664 665 666 667 668 669 670
// proofList implements ethdb.KeyValueWriter and collects the proofs as
// hex-strings for delivery to rpc-caller.
type proofList []string

func (n *proofList) Put(key []byte, value []byte) error {
	*n = append(*n, hexutil.Encode(value))
	return nil
}

func (n *proofList) Delete(key []byte) error {
	panic("not supported")
}

671
// GetProof returns the Merkle-proof for a given account and optionally some storage keys.
672
func (s *BlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNrOrHash rpc.BlockNumberOrHash) (*AccountResult, error) {
673 674
	var (
		keys         = make([]common.Hash, len(storageKeys))
675
		keyLengths   = make([]int, len(storageKeys))
676 677 678 679 680
		storageProof = make([]StorageResult, len(storageKeys))
		storageTrie  state.Trie
		storageHash  = types.EmptyRootHash
		codeHash     = types.EmptyCodeHash
	)
681
	// Deserialize all keys. This prevents state access on invalid input.
682
	for i, hexKey := range storageKeys {
683 684 685
		var err error
		keys[i], keyLengths[i], err = decodeHash(hexKey)
		if err != nil {
686 687 688
			return nil, err
		}
	}
689

690
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
691 692 693
	if state == nil || err != nil {
		return nil, err
	}
694
	if storageTrie, err = state.StorageTrie(address); err != nil {
695 696
		return nil, err
	}
697 698

	// If we have a storageTrie, the account exists and we must update
699
	// the storage root hash and the code hash.
700 701
	if storageTrie != nil {
		storageHash = storageTrie.Hash()
702
		codeHash = state.GetCodeHash(address)
703
	}
704
	// Create the proofs for the storageKeys.
705
	for i, key := range keys {
706 707 708 709 710 711 712 713 714 715 716
		// Output key encoding is a bit special: if the input was a 32-byte hash, it is
		// returned as such. Otherwise, we apply the QUANTITY encoding mandated by the
		// JSON-RPC spec for getProof. This behavior exists to preserve backwards
		// compatibility with older client versions.
		var outputKey string
		if keyLengths[i] != 32 {
			outputKey = hexutil.EncodeBig(key.Big())
		} else {
			outputKey = hexutil.Encode(key[:])
		}

717
		if storageTrie == nil {
718
			storageProof[i] = StorageResult{outputKey, &hexutil.Big{}, []string{}}
719
			continue
720
		}
721
		var proof proofList
722
		if err := storageTrie.Prove(crypto.Keccak256(key.Bytes()), &proof); err != nil {
723
			return nil, err
724
		}
725 726
		value := (*hexutil.Big)(state.GetState(address, key).Big())
		storageProof[i] = StorageResult{outputKey, value, proof}
727 728
	}

729
	// Create the accountProof.
730 731 732 733 734 735 736
	accountProof, proofErr := state.GetProof(address)
	if proofErr != nil {
		return nil, proofErr
	}

	return &AccountResult{
		Address:      address,
737
		AccountProof: toHexSlice(accountProof),
738 739 740 741 742 743 744 745
		Balance:      (*hexutil.Big)(state.GetBalance(address)),
		CodeHash:     codeHash,
		Nonce:        hexutil.Uint64(state.GetNonce(address)),
		StorageHash:  storageHash,
		StorageProof: storageProof,
	}, state.Error()
}

746
// decodeHash parses a hex-encoded 32-byte hash. The input may optionally
747
// be prefixed by 0x and can have a byte length up to 32.
748
func decodeHash(s string) (h common.Hash, inputLength int, err error) {
749 750 751
	if strings.HasPrefix(s, "0x") || strings.HasPrefix(s, "0X") {
		s = s[2:]
	}
752 753 754
	if (len(s) & 1) > 0 {
		s = "0" + s
	}
755 756
	b, err := hex.DecodeString(s)
	if err != nil {
757
		return common.Hash{}, 0, errors.New("hex string invalid")
758 759
	}
	if len(b) > 32 {
760
		return common.Hash{}, len(b), errors.New("hex string too long, want at most 32 bytes")
761
	}
762
	return common.BytesToHash(b), len(b), nil
763 764
}

765
// GetHeaderByNumber returns the requested canonical block header.
766 767 768 769
//   - When blockNr is -1 the chain pending header is returned.
//   - When blockNr is -2 the chain latest header is returned.
//   - When blockNr is -3 the chain finalized header is returned.
//   - When blockNr is -4 the chain safe header is returned.
770
func (s *BlockChainAPI) GetHeaderByNumber(ctx context.Context, number rpc.BlockNumber) (map[string]interface{}, error) {
771 772
	header, err := s.b.HeaderByNumber(ctx, number)
	if header != nil && err == nil {
773
		response := s.rpcMarshalHeader(ctx, header)
774 775 776 777 778 779 780 781 782 783 784 785
		if number == rpc.PendingBlockNumber {
			// Pending header need to nil out a few fields
			for _, field := range []string{"hash", "nonce", "miner"} {
				response[field] = nil
			}
		}
		return response, err
	}
	return nil, err
}

// GetHeaderByHash returns the requested header by hash.
786
func (s *BlockChainAPI) GetHeaderByHash(ctx context.Context, hash common.Hash) map[string]interface{} {
787
	header, _ := s.b.HeaderByHash(ctx, hash)
788
	if header != nil {
789
		return s.rpcMarshalHeader(ctx, header)
790 791 792 793 794
	}
	return nil
}

// GetBlockByNumber returns the requested canonical block.
795 796 797 798
//   - When blockNr is -1 the chain pending block is returned.
//   - When blockNr is -2 the chain latest block is returned.
//   - When blockNr is -3 the chain finalized block is returned.
//   - When blockNr is -4 the chain safe block is returned.
799 800
//   - When fullTx is true all transactions in the block are returned, otherwise
//     only the transaction hash is returned.
801
func (s *BlockChainAPI) GetBlockByNumber(ctx context.Context, number rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) {
802 803
	block, err := s.b.BlockByNumber(ctx, number)
	if block != nil && err == nil {
804
		response, err := s.rpcMarshalBlock(ctx, block, true, fullTx)
805
		if err == nil && number == rpc.PendingBlockNumber {
806
			// Pending blocks need to nil out a few fields
807
			for _, field := range []string{"hash", "nonce", "miner"} {
808 809 810 811 812 813 814 815 816 817
				response[field] = nil
			}
		}
		return response, err
	}
	return nil, err
}

// GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full
// detail, otherwise only the transaction hash is returned.
818
func (s *BlockChainAPI) GetBlockByHash(ctx context.Context, hash common.Hash, fullTx bool) (map[string]interface{}, error) {
819
	block, err := s.b.BlockByHash(ctx, hash)
820
	if block != nil {
821
		return s.rpcMarshalBlock(ctx, block, true, fullTx)
822 823 824 825
	}
	return nil, err
}

826
// GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index.
827
func (s *BlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) {
828 829 830
	block, err := s.b.BlockByNumber(ctx, blockNr)
	if block != nil {
		uncles := block.Uncles()
831
		if index >= hexutil.Uint(len(uncles)) {
832
			log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index)
833 834
			return nil, nil
		}
835
		block = types.NewBlockWithHeader(uncles[index])
836
		return s.rpcMarshalBlock(ctx, block, false, false)
837 838 839 840
	}
	return nil, err
}

841
// GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index.
842
func (s *BlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) {
843
	block, err := s.b.BlockByHash(ctx, blockHash)
844 845
	if block != nil {
		uncles := block.Uncles()
846
		if index >= hexutil.Uint(len(uncles)) {
847
			log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index)
848 849
			return nil, nil
		}
850
		block = types.NewBlockWithHeader(uncles[index])
851
		return s.rpcMarshalBlock(ctx, block, false, false)
852 853 854 855 856
	}
	return nil, err
}

// GetUncleCountByBlockNumber returns number of uncles in the block for the given block number
857
func (s *BlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
858
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
859 860
		n := hexutil.Uint(len(block.Uncles()))
		return &n
861 862 863 864 865
	}
	return nil
}

// GetUncleCountByBlockHash returns number of uncles in the block for the given block hash
866
func (s *BlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
867
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
868 869
		n := hexutil.Uint(len(block.Uncles()))
		return &n
870 871 872 873 874
	}
	return nil
}

// GetCode returns the code stored at the given address in the state for the given block number.
875
func (s *BlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
876
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
877
	if state == nil || err != nil {
878
		return nil, err
879
	}
880 881
	code := state.GetCode(address)
	return code, state.Error()
882 883 884 885 886
}

// GetStorageAt returns the storage from the state at the given address, key and
// block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block
// numbers are also allowed.
887
func (s *BlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, hexKey string, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
888
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
889
	if state == nil || err != nil {
890
		return nil, err
891
	}
892
	key, _, err := decodeHash(hexKey)
893 894 895 896
	if err != nil {
		return nil, fmt.Errorf("unable to decode storage key: %s", err)
	}
	res := state.GetState(address, key)
897
	return res[:], state.Error()
898 899
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
// GetBlockReceipts returns the block receipts for the given block hash or number or tag.
func (s *BlockChainAPI) GetBlockReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]map[string]interface{}, error) {
	block, err := s.b.BlockByNumberOrHash(ctx, blockNrOrHash)
	if block == nil || err != nil {
		// When the block doesn't exist, the RPC method should return JSON null
		// as per specification.
		return nil, nil
	}
	receipts, err := s.b.GetReceipts(ctx, block.Hash())
	if err != nil {
		return nil, err
	}
	txs := block.Transactions()
	if len(txs) != len(receipts) {
		return nil, fmt.Errorf("receipts length mismatch: %d vs %d", len(txs), len(receipts))
	}

	// Derive the sender.
	signer := types.MakeSigner(s.b.ChainConfig(), block.Number(), block.Time())

	result := make([]map[string]interface{}, len(receipts))
	for i, receipt := range receipts {
		result[i] = marshalReceipt(receipt, block.Hash(), block.NumberU64(), signer, txs[i], i)
	}

	return result, nil
}

928 929
// OverrideAccount indicates the overriding fields of account during the execution
// of a message call.
930 931 932 933
// Note, state and stateDiff can't be specified at the same time. If state is
// set, message execution will only use the data in the given state. Otherwise
// if statDiff is set, all diff will be applied first and then execute the call
// message.
934
type OverrideAccount struct {
935 936 937 938 939 940 941
	Nonce     *hexutil.Uint64              `json:"nonce"`
	Code      *hexutil.Bytes               `json:"code"`
	Balance   **hexutil.Big                `json:"balance"`
	State     *map[common.Hash]common.Hash `json:"state"`
	StateDiff *map[common.Hash]common.Hash `json:"stateDiff"`
}

942
// StateOverride is the collection of overridden accounts.
943
type StateOverride map[common.Address]OverrideAccount
944

945 946 947 948
// Apply overrides the fields of specified accounts into the given state.
func (diff *StateOverride) Apply(state *state.StateDB) error {
	if diff == nil {
		return nil
949
	}
950
	for addr, account := range *diff {
951 952 953 954 955 956 957 958 959 960 961 962 963
		// Override account nonce.
		if account.Nonce != nil {
			state.SetNonce(addr, uint64(*account.Nonce))
		}
		// Override account(contract) code.
		if account.Code != nil {
			state.SetCode(addr, *account.Code)
		}
		// Override account balance.
		if account.Balance != nil {
			state.SetBalance(addr, (*big.Int)(*account.Balance))
		}
		if account.State != nil && account.StateDiff != nil {
964
			return fmt.Errorf("account %s has both 'state' and 'stateDiff'", addr.Hex())
965 966 967 968 969 970 971 972 973 974 975 976
		}
		// Replace entire state if caller requires.
		if account.State != nil {
			state.SetStorage(addr, *account.State)
		}
		// Apply state diff into specified accounts.
		if account.StateDiff != nil {
			for key, value := range *account.StateDiff {
				state.SetState(addr, key, value)
			}
		}
	}
977 978 979 980
	// Now finalize the changes. Finalize is normally performed between transactions.
	// By using finalize, the overrides are semantically behaving as
	// if they were created in a transaction just before the tracing occur.
	state.Finalise(false)
981 982 983
	return nil
}

984 985 986 987
// BlockOverrides is a set of header fields to override.
type BlockOverrides struct {
	Number     *hexutil.Big
	Difficulty *hexutil.Big
988
	Time       *hexutil.Uint64
989 990 991
	GasLimit   *hexutil.Uint64
	Coinbase   *common.Address
	Random     *common.Hash
992
	BaseFee    *hexutil.Big
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
}

// Apply overrides the given header fields into the given block context.
func (diff *BlockOverrides) Apply(blockCtx *vm.BlockContext) {
	if diff == nil {
		return
	}
	if diff.Number != nil {
		blockCtx.BlockNumber = diff.Number.ToInt()
	}
	if diff.Difficulty != nil {
		blockCtx.Difficulty = diff.Difficulty.ToInt()
	}
	if diff.Time != nil {
1007
		blockCtx.Time = uint64(*diff.Time)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	}
	if diff.GasLimit != nil {
		blockCtx.GasLimit = uint64(*diff.GasLimit)
	}
	if diff.Coinbase != nil {
		blockCtx.Coinbase = *diff.Coinbase
	}
	if diff.Random != nil {
		blockCtx.Random = diff.Random
	}
1018 1019 1020
	if diff.BaseFee != nil {
		blockCtx.BaseFee = diff.BaseFee.ToInt()
	}
1021 1022
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
// ChainContextBackend provides methods required to implement ChainContext.
type ChainContextBackend interface {
	Engine() consensus.Engine
	HeaderByNumber(context.Context, rpc.BlockNumber) (*types.Header, error)
}

// ChainContext is an implementation of core.ChainContext. It's main use-case
// is instantiating a vm.BlockContext without having access to the BlockChain object.
type ChainContext struct {
	b   ChainContextBackend
	ctx context.Context
}

// NewChainContext creates a new ChainContext object.
func NewChainContext(ctx context.Context, backend ChainContextBackend) *ChainContext {
	return &ChainContext{ctx: ctx, b: backend}
}

func (context *ChainContext) Engine() consensus.Engine {
	return context.b.Engine()
}

func (context *ChainContext) GetHeader(hash common.Hash, number uint64) *types.Header {
	// This method is called to get the hash for a block number when executing the BLOCKHASH
	// opcode. Hence no need to search for non-canonical blocks.
	header, err := context.b.HeaderByNumber(context.ctx, rpc.BlockNumber(number))
	if err != nil || header.Hash() != hash {
		return nil
	}
	return header
}

1055
func doCall(ctx context.Context, b Backend, args TransactionArgs, state *state.StateDB, header *types.Header, overrides *StateOverride, blockOverrides *BlockOverrides, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) {
1056 1057 1058
	if err := overrides.Apply(state); err != nil {
		return nil, err
	}
1059 1060 1061
	// Setup context so it may be cancelled the call has completed
	// or, in case of unmetered gas, setup a context with a timeout.
	var cancel context.CancelFunc
1062 1063
	if timeout > 0 {
		ctx, cancel = context.WithTimeout(ctx, timeout)
1064 1065
	} else {
		ctx, cancel = context.WithCancel(ctx)
1066
	}
1067 1068
	// Make sure the context is cancelled when the call has completed
	// this makes sure resources are cleaned up.
1069
	defer cancel()
1070 1071

	// Get a new instance of the EVM.
1072 1073 1074 1075
	msg, err := args.ToMessage(globalGasCap, header.BaseFee)
	if err != nil {
		return nil, err
	}
1076 1077 1078 1079
	blockCtx := core.NewEVMBlockContext(header, NewChainContext(ctx, b), nil)
	if blockOverrides != nil {
		blockOverrides.Apply(&blockCtx)
	}
1080 1081
	evm, vmError := b.GetEVM(ctx, msg, state, header, &vm.Config{NoBaseFee: true}, &blockCtx)

1082 1083 1084
	// Wait for the context to be done and cancel the evm. Even if the
	// EVM has finished, cancelling may be done (repeatedly)
	go func() {
1085 1086
		<-ctx.Done()
		evm.Cancel()
1087 1088
	}()

1089
	// Execute the message.
1090
	gp := new(core.GasPool).AddGas(math.MaxUint64)
1091
	result, err := core.ApplyMessage(evm, msg, gp)
1092
	if err := vmError(); err != nil {
1093
		return nil, err
1094
	}
1095

1096 1097
	// If the timer caused an abort, return an appropriate error message
	if evm.Cancelled() {
1098
		return nil, fmt.Errorf("execution aborted (timeout = %v)", timeout)
1099
	}
1100
	if err != nil {
1101
		return result, fmt.Errorf("err: %w (supplied gas %d)", err, msg.GasLimit)
1102 1103
	}
	return result, nil
1104 1105
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
func DoCall(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) {
	defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now())

	state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
	if state == nil || err != nil {
		return nil, err
	}

	return doCall(ctx, b, args, state, header, overrides, blockOverrides, timeout, globalGasCap)
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
func newRevertError(result *core.ExecutionResult) *revertError {
	reason, errUnpack := abi.UnpackRevert(result.Revert())
	err := errors.New("execution reverted")
	if errUnpack == nil {
		err = fmt.Errorf("execution reverted: %v", reason)
	}
	return &revertError{
		error:  err,
		reason: hexutil.Encode(result.Revert()),
	}
}

1129
// revertError is an API error that encompasses an EVM revertal with JSON error
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
// code and a binary data blob.
type revertError struct {
	error
	reason string // revert reason hex encoded
}

// ErrorCode returns the JSON error code for a revertal.
// See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal
func (e *revertError) ErrorCode() int {
	return 3
}

// ErrorData returns the hex encoded revert reason.
func (e *revertError) ErrorData() interface{} {
	return e.reason
}

1147
// Call executes the given transaction on the state for the given block number.
1148 1149 1150 1151 1152
//
// Additionally, the caller can specify a batch of contract for fields overriding.
//
// Note, this function doesn't make and changes in the state/blockchain and is
// useful to execute and retrieve values.
1153 1154
func (s *BlockChainAPI) Call(ctx context.Context, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides) (hexutil.Bytes, error) {
	result, err := DoCall(ctx, s.b, args, blockNrOrHash, overrides, blockOverrides, s.b.RPCEVMTimeout(), s.b.RPCGasCap())
1155 1156 1157
	if err != nil {
		return nil, err
	}
1158 1159 1160
	// If the result contains a revert reason, try to unpack and return it.
	if len(result.Revert()) > 0 {
		return nil, newRevertError(result)
1161
	}
1162
	return result.Return(), result.Err
1163 1164
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
// executeEstimate is a helper that executes the transaction under a given gas limit and returns
// true if the transaction fails for a reason that might be related to not enough gas. A non-nil
// error means execution failed due to reasons unrelated to the gas limit.
func executeEstimate(ctx context.Context, b Backend, args TransactionArgs, state *state.StateDB, header *types.Header, gasCap uint64, gasLimit uint64) (bool, *core.ExecutionResult, error) {
	args.Gas = (*hexutil.Uint64)(&gasLimit)
	result, err := doCall(ctx, b, args, state, header, nil, nil, 0, gasCap)
	if err != nil {
		if errors.Is(err, core.ErrIntrinsicGas) {
			return true, nil, nil // Special case, raise gas limit
		}
		return true, nil, err // Bail out
	}
	return result.Failed(), result, nil
}

// DoEstimateGas returns the lowest possible gas limit that allows the transaction to run
// successfully at block `blockNrOrHash`. It returns error if the transaction would revert, or if
// there are unexpected failures. The gas limit is capped by both `args.Gas` (if non-nil &
// non-zero) and `gasCap` (if non-zero).
1184
func DoEstimateGas(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, gasCap uint64) (hexutil.Uint64, error) {
1185
	// Binary search the gas limit, as it may need to be higher than the amount used
1186
	var (
1187 1188
		lo uint64 // lowest-known gas limit where tx execution fails
		hi uint64 // lowest-known gas limit where tx execution succeeds
1189
	)
1190 1191 1192 1193 1194
	// Use zero address if sender unspecified.
	if args.From == nil {
		args.From = new(common.Address)
	}
	// Determine the highest gas limit can be used during the estimation.
1195 1196
	if args.Gas != nil && uint64(*args.Gas) >= params.TxGas {
		hi = uint64(*args.Gas)
1197
	} else {
1198
		// Retrieve the block to act as the gas ceiling
1199
		block, err := b.BlockByNumberOrHash(ctx, blockNrOrHash)
1200
		if err != nil {
1201
			return 0, err
1202
		}
1203 1204 1205
		if block == nil {
			return 0, errors.New("block not found")
		}
1206
		hi = block.GasLimit()
1207
	}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	// Normalize the max fee per gas the call is willing to spend.
	var feeCap *big.Int
	if args.GasPrice != nil && (args.MaxFeePerGas != nil || args.MaxPriorityFeePerGas != nil) {
		return 0, errors.New("both gasPrice and (maxFeePerGas or maxPriorityFeePerGas) specified")
	} else if args.GasPrice != nil {
		feeCap = args.GasPrice.ToInt()
	} else if args.MaxFeePerGas != nil {
		feeCap = args.MaxFeePerGas.ToInt()
	} else {
		feeCap = common.Big0
	}
1219 1220 1221 1222 1223 1224 1225 1226 1227

	state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
	if state == nil || err != nil {
		return 0, err
	}
	if err := overrides.Apply(state); err != nil {
		return 0, err
	}

1228
	// Recap the highest gas limit with account's available balance.
1229
	if feeCap.BitLen() != 0 {
1230 1231 1232 1233
		balance := state.GetBalance(*args.From) // from can't be nil
		available := new(big.Int).Set(balance)
		if args.Value != nil {
			if args.Value.ToInt().Cmp(available) >= 0 {
1234
				return 0, core.ErrInsufficientFundsForTransfer
1235 1236 1237
			}
			available.Sub(available, args.Value.ToInt())
		}
1238
		allowance := new(big.Int).Div(available, feeCap)
1239 1240 1241

		// If the allowance is larger than maximum uint64, skip checking
		if allowance.IsUint64() && hi > allowance.Uint64() {
1242 1243 1244 1245 1246
			transfer := args.Value
			if transfer == nil {
				transfer = new(hexutil.Big)
			}
			log.Warn("Gas estimation capped by limited funds", "original", hi, "balance", balance,
1247
				"sent", transfer.ToInt(), "maxFeePerGas", feeCap, "fundable", allowance)
1248 1249 1250 1251
			hi = allowance.Uint64()
		}
	}
	// Recap the highest gas allowance with specified gascap.
1252
	if gasCap != 0 && hi > gasCap {
1253
		log.Warn("Caller gas above allowance, capping", "requested", hi, "cap", gasCap)
1254
		hi = gasCap
1255
	}
1256

1257 1258 1259
	// We first execute the transaction at the highest allowable gas limit, since if this fails we
	// can return error immediately.
	failed, result, err := executeEstimate(ctx, b, args, state.Copy(), header, gasCap, hi)
1260 1261 1262
	if err != nil {
		return 0, err
	}
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	if failed {
		if result != nil && result.Err != vm.ErrOutOfGas {
			if len(result.Revert()) > 0 {
				return 0, newRevertError(result)
			}
			return 0, result.Err
		}
		return 0, fmt.Errorf("gas required exceeds allowance (%d)", hi)
	}
	// For almost any transaction, the gas consumed by the unconstrained execution above
	// lower-bounds the gas limit required for it to succeed. One exception is those txs that
	// explicitly check gas remaining in order to successfully execute within a given limit, but we
	// probably don't want to return a lowest possible gas limit for these cases anyway.
	lo = result.UsedGas - 1

	// Binary search for the smallest gas limit that allows the tx to execute successfully.
1279 1280
	for lo+1 < hi {
		mid := (hi + lo) / 2
1281 1282 1283 1284 1285 1286 1287
		if mid > lo*2 {
			// Most txs don't need much higher gas limit than their gas used, and most txs don't
			// require near the full block limit of gas, so the selection of where to bisect the
			// range here is skewed to favor the low side.
			mid = lo * 2
		}
		failed, _, err = executeEstimate(ctx, b, args, state.Copy(), header, gasCap, mid)
1288
		if err != nil {
1289 1290 1291
			// This should not happen under normal conditions since if we make it this far the
			// transaction had run without error at least once before.
			log.Error("execution error in estimate gas", "err", err)
1292 1293 1294
			return 0, err
		}
		if failed {
1295
			lo = mid
1296 1297 1298 1299
		} else {
			hi = mid
		}
	}
1300
	return hexutil.Uint64(hi), nil
1301 1302
}

1303 1304 1305 1306 1307
// EstimateGas returns the lowest possible gas limit that allows the transaction to run
// successfully at block `blockNrOrHash`, or the latest block if `blockNrOrHash` is unspecified. It
// returns error if the transaction would revert or if there are unexpected failures. The returned
// value is capped by both `args.Gas` (if non-nil & non-zero) and the backend's RPCGasCap
// configuration (if non-zero).
1308
func (s *BlockChainAPI) EstimateGas(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash, overrides *StateOverride) (hexutil.Uint64, error) {
1309
	bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.LatestBlockNumber)
1310 1311 1312
	if blockNrOrHash != nil {
		bNrOrHash = *blockNrOrHash
	}
1313
	return DoEstimateGas(ctx, s.b, args, bNrOrHash, overrides, s.b.RPCGasCap())
1314 1315
}

1316
// RPCMarshalHeader converts the given header to the RPC output .
1317
func RPCMarshalHeader(head *types.Header) map[string]interface{} {
1318
	result := map[string]interface{}{
1319
		"number":           (*hexutil.Big)(head.Number),
1320
		"hash":             head.Hash(),
1321 1322 1323 1324 1325 1326
		"parentHash":       head.ParentHash,
		"nonce":            head.Nonce,
		"mixHash":          head.MixDigest,
		"sha3Uncles":       head.UncleHash,
		"logsBloom":        head.Bloom,
		"stateRoot":        head.Root,
1327
		"miner":            head.Coinbase,
1328
		"difficulty":       (*hexutil.Big)(head.Difficulty),
1329
		"extraData":        hexutil.Bytes(head.Extra),
1330 1331
		"gasLimit":         hexutil.Uint64(head.GasLimit),
		"gasUsed":          hexutil.Uint64(head.GasUsed),
1332
		"timestamp":        hexutil.Uint64(head.Time),
1333
		"transactionsRoot": head.TxHash,
1334
		"receiptsRoot":     head.ReceiptHash,
1335
	}
1336 1337 1338 1339 1340

	if head.BaseFee != nil {
		result["baseFeePerGas"] = (*hexutil.Big)(head.BaseFee)
	}

1341 1342 1343 1344
	if head.WithdrawalsHash != nil {
		result["withdrawalsRoot"] = head.WithdrawalsHash
	}

1345
	return result
1346 1347 1348 1349 1350
}

// RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are
// returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
// transaction hashes.
1351
func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool, config *params.ChainConfig) map[string]interface{} {
1352
	fields := RPCMarshalHeader(block.Header())
1353
	fields["size"] = hexutil.Uint64(block.Size())
1354 1355

	if inclTx {
1356 1357
		formatTx := func(idx int, tx *types.Transaction) interface{} {
			return tx.Hash()
1358 1359
		}
		if fullTx {
1360 1361
			formatTx = func(idx int, tx *types.Transaction) interface{} {
				return newRPCTransactionFromBlockIndex(block, uint64(idx), config)
1362 1363
			}
		}
1364
		txs := block.Transactions()
1365
		transactions := make([]interface{}, len(txs))
1366
		for i, tx := range txs {
1367
			transactions[i] = formatTx(i, tx)
1368 1369 1370
		}
		fields["transactions"] = transactions
	}
1371
	uncles := block.Uncles()
1372 1373 1374 1375 1376
	uncleHashes := make([]common.Hash, len(uncles))
	for i, uncle := range uncles {
		uncleHashes[i] = uncle.Hash()
	}
	fields["uncles"] = uncleHashes
1377 1378 1379
	if block.Header().WithdrawalsHash != nil {
		fields["withdrawals"] = block.Withdrawals()
	}
1380
	return fields
1381 1382
}

1383
// rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires
1384 1385
// a `BlockchainAPI`.
func (s *BlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} {
1386
	fields := RPCMarshalHeader(header)
1387
	fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, header.Hash()))
1388 1389 1390 1391
	return fields
}

// rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires
1392 1393
// a `BlockchainAPI`.
func (s *BlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
1394
	fields := RPCMarshalBlock(b, inclTx, fullTx, s.b.ChainConfig())
1395
	if inclTx {
1396
		fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, b.Hash()))
1397
	}
1398
	return fields, nil
1399 1400
}

1401 1402
// RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction
type RPCTransaction struct {
1403 1404 1405 1406 1407
	BlockHash        *common.Hash      `json:"blockHash"`
	BlockNumber      *hexutil.Big      `json:"blockNumber"`
	From             common.Address    `json:"from"`
	Gas              hexutil.Uint64    `json:"gas"`
	GasPrice         *hexutil.Big      `json:"gasPrice"`
1408 1409
	GasFeeCap        *hexutil.Big      `json:"maxFeePerGas,omitempty"`
	GasTipCap        *hexutil.Big      `json:"maxPriorityFeePerGas,omitempty"`
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	Hash             common.Hash       `json:"hash"`
	Input            hexutil.Bytes     `json:"input"`
	Nonce            hexutil.Uint64    `json:"nonce"`
	To               *common.Address   `json:"to"`
	TransactionIndex *hexutil.Uint64   `json:"transactionIndex"`
	Value            *hexutil.Big      `json:"value"`
	Type             hexutil.Uint64    `json:"type"`
	Accesses         *types.AccessList `json:"accessList,omitempty"`
	ChainID          *hexutil.Big      `json:"chainId,omitempty"`
	V                *hexutil.Big      `json:"v"`
	R                *hexutil.Big      `json:"r"`
	S                *hexutil.Big      `json:"s"`
1422
	YParity          *hexutil.Uint64   `json:"yParity,omitempty"`
1423 1424
}

1425 1426
// newRPCTransaction returns a transaction that will serialize to the RPC
// representation, with the given location metadata set (if available).
1427 1428
func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, blockTime uint64, index uint64, baseFee *big.Int, config *params.ChainConfig) *RPCTransaction {
	signer := types.MakeSigner(config, new(big.Int).SetUint64(blockNumber), blockTime)
1429
	from, _ := types.Sender(signer, tx)
1430
	v, r, s := tx.RawSignatureValues()
1431
	result := &RPCTransaction{
1432
		Type:     hexutil.Uint64(tx.Type()),
1433
		From:     from,
1434
		Gas:      hexutil.Uint64(tx.Gas()),
1435
		GasPrice: (*hexutil.Big)(tx.GasPrice()),
1436
		Hash:     tx.Hash(),
1437
		Input:    hexutil.Bytes(tx.Data()),
1438
		Nonce:    hexutil.Uint64(tx.Nonce()),
1439
		To:       tx.To(),
1440 1441 1442 1443
		Value:    (*hexutil.Big)(tx.Value()),
		V:        (*hexutil.Big)(v),
		R:        (*hexutil.Big)(r),
		S:        (*hexutil.Big)(s),
1444
	}
1445
	if blockHash != (common.Hash{}) {
1446
		result.BlockHash = &blockHash
1447
		result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber))
1448
		result.TransactionIndex = (*hexutil.Uint64)(&index)
1449
	}
1450

1451
	switch tx.Type() {
1452 1453
	case types.LegacyTxType:
		// if a legacy transaction has an EIP-155 chain id, include it explicitly
1454
		if id := tx.ChainId(); id.Sign() != 0 {
1455 1456
			result.ChainID = (*hexutil.Big)(id)
		}
1457

1458 1459
	case types.AccessListTxType:
		al := tx.AccessList()
1460
		yparity := hexutil.Uint64(v.Sign())
1461 1462
		result.Accesses = &al
		result.ChainID = (*hexutil.Big)(tx.ChainId())
1463 1464
		result.YParity = &yparity

1465
	case types.DynamicFeeTxType:
1466
		al := tx.AccessList()
1467
		yparity := hexutil.Uint64(v.Sign())
1468 1469
		result.Accesses = &al
		result.ChainID = (*hexutil.Big)(tx.ChainId())
1470
		result.YParity = &yparity
1471 1472
		result.GasFeeCap = (*hexutil.Big)(tx.GasFeeCap())
		result.GasTipCap = (*hexutil.Big)(tx.GasTipCap())
1473 1474
		// if the transaction has been mined, compute the effective gas price
		if baseFee != nil && blockHash != (common.Hash{}) {
1475
			// price = min(gasTipCap + baseFee, gasFeeCap)
1476
			price := math.BigMin(new(big.Int).Add(tx.GasTipCap(), baseFee), tx.GasFeeCap())
1477 1478
			result.GasPrice = (*hexutil.Big)(price)
		} else {
1479
			result.GasPrice = (*hexutil.Big)(tx.GasFeeCap())
1480
		}
1481
	}
1482
	return result
1483 1484
}

1485 1486
// NewRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation
func NewRPCPendingTransaction(tx *types.Transaction, current *types.Header, config *params.ChainConfig) *RPCTransaction {
1487 1488 1489 1490 1491
	var (
		baseFee     *big.Int
		blockNumber = uint64(0)
		blockTime   = uint64(0)
	)
1492
	if current != nil {
1493
		baseFee = eip1559.CalcBaseFee(config, current)
1494
		blockNumber = current.Number.Uint64()
1495
		blockTime = current.Time
1496
	}
1497
	return newRPCTransaction(tx, common.Hash{}, blockNumber, blockTime, 0, baseFee, config)
1498 1499
}

1500
// newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation.
1501
func newRPCTransactionFromBlockIndex(b *types.Block, index uint64, config *params.ChainConfig) *RPCTransaction {
1502 1503 1504
	txs := b.Transactions()
	if index >= uint64(len(txs)) {
		return nil
1505
	}
1506
	return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), b.Time(), index, b.BaseFee(), config)
1507
}
1508

1509 1510 1511 1512 1513 1514
// newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index.
func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes {
	txs := b.Transactions()
	if index >= uint64(len(txs)) {
		return nil
	}
1515
	blob, _ := txs[index].MarshalBinary()
1516
	return blob
1517 1518
}

1519
// accessListResult returns an optional accesslist
1520
// It's the result of the `debug_createAccessList` RPC call.
1521 1522 1523 1524 1525 1526 1527
// It contains an error if the transaction itself failed.
type accessListResult struct {
	Accesslist *types.AccessList `json:"accessList"`
	Error      string            `json:"error,omitempty"`
	GasUsed    hexutil.Uint64    `json:"gasUsed"`
}

1528
// CreateAccessList creates an EIP-2930 type AccessList for the given transaction.
1529
// Reexec and BlockNrOrHash can be specified to create the accessList on top of a certain state.
1530
func (s *BlockChainAPI) CreateAccessList(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (*accessListResult, error) {
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber)
	if blockNrOrHash != nil {
		bNrOrHash = *blockNrOrHash
	}
	acl, gasUsed, vmerr, err := AccessList(ctx, s.b, bNrOrHash, args)
	if err != nil {
		return nil, err
	}
	result := &accessListResult{Accesslist: &acl, GasUsed: hexutil.Uint64(gasUsed)}
	if vmerr != nil {
		result.Error = vmerr.Error()
	}
	return result, nil
}

// AccessList creates an access list for the given transaction.
// If the accesslist creation fails an error is returned.
// If the transaction itself fails, an vmErr is returned.
1549
func AccessList(ctx context.Context, b Backend, blockNrOrHash rpc.BlockNumberOrHash, args TransactionArgs) (acl types.AccessList, gasUsed uint64, vmErr error, err error) {
1550 1551 1552 1553 1554
	// Retrieve the execution context
	db, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
	if db == nil || err != nil {
		return nil, 0, nil, err
	}
1555 1556 1557 1558 1559
	// If the gas amount is not set, default to RPC gas cap.
	if args.Gas == nil {
		tmp := hexutil.Uint64(b.RPCGasCap())
		args.Gas = &tmp
	}
1560 1561 1562 1563 1564 1565 1566 1567 1568

	// Ensure any missing fields are filled, extract the recipient and input data
	if err := args.setDefaults(ctx, b); err != nil {
		return nil, 0, nil, err
	}
	var to common.Address
	if args.To != nil {
		to = *args.To
	} else {
1569
		to = crypto.CreateAddress(args.from(), uint64(*args.Nonce))
1570
	}
1571
	isPostMerge := header.Difficulty.Cmp(common.Big0) == 0
1572
	// Retrieve the precompiles since they don't need to be added to the access list
1573
	precompiles := vm.ActivePrecompiles(b.ChainConfig().Rules(header.Number, isPostMerge, header.Time))
1574 1575

	// Create an initial tracer
1576
	prevTracer := logger.NewAccessListTracer(nil, args.from(), to, precompiles)
1577
	if args.AccessList != nil {
1578
		prevTracer = logger.NewAccessListTracer(*args.AccessList, args.from(), to, precompiles)
1579 1580 1581 1582 1583 1584 1585 1586
	}
	for {
		// Retrieve the current access list to expand
		accessList := prevTracer.AccessList()
		log.Trace("Creating access list", "input", accessList)

		// Copy the original db so we don't modify it
		statedb := db.Copy()
1587 1588 1589 1590 1591 1592
		// Set the accesslist to the last al
		args.AccessList = &accessList
		msg, err := args.ToMessage(b.RPCGasCap(), header.BaseFee)
		if err != nil {
			return nil, 0, nil, err
		}
1593 1594

		// Apply the transaction with the access list tracer
1595
		tracer := logger.NewAccessListTracer(accessList, args.from(), to, precompiles)
1596
		config := vm.Config{Tracer: tracer, NoBaseFee: true}
1597
		vmenv, _ := b.GetEVM(ctx, msg, statedb, header, &config, nil)
1598
		res, err := core.ApplyMessage(vmenv, msg, new(core.GasPool).AddGas(msg.GasLimit))
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		if err != nil {
			return nil, 0, nil, fmt.Errorf("failed to apply transaction: %v err: %v", args.toTransaction().Hash(), err)
		}
		if tracer.Equal(prevTracer) {
			return accessList, res.UsedGas, res.Err, nil
		}
		prevTracer = tracer
	}
}

1609 1610
// TransactionAPI exposes methods for reading and creating transaction data.
type TransactionAPI struct {
1611 1612
	b         Backend
	nonceLock *AddrLocker
1613
	signer    types.Signer
1614 1615
}

1616 1617
// NewTransactionAPI creates a new RPC service with methods for interacting with transactions.
func NewTransactionAPI(b Backend, nonceLock *AddrLocker) *TransactionAPI {
1618 1619 1620
	// The signer used by the API should always be the 'latest' known one because we expect
	// signers to be backwards-compatible with old transactions.
	signer := types.LatestSigner(b.ChainConfig())
1621
	return &TransactionAPI{b, nonceLock, signer}
1622 1623 1624
}

// GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number.
1625
func (s *TransactionAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
1626
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1627 1628
		n := hexutil.Uint(len(block.Transactions()))
		return &n
1629 1630 1631 1632 1633
	}
	return nil
}

// GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash.
1634
func (s *TransactionAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
1635
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1636 1637
		n := hexutil.Uint(len(block.Transactions()))
		return &n
1638 1639 1640 1641 1642
	}
	return nil
}

// GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index.
1643
func (s *TransactionAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction {
1644
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1645
		return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig())
1646
	}
1647
	return nil
1648 1649 1650
}

// GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index.
1651
func (s *TransactionAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction {
1652
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1653
		return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig())
1654
	}
1655
	return nil
1656 1657
}

1658
// GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index.
1659
func (s *TransactionAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes {
1660
	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
1661
		return newRPCRawTransactionFromBlockIndex(block, uint64(index))
1662
	}
1663
	return nil
1664 1665 1666
}

// GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index.
1667
func (s *TransactionAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes {
1668
	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
1669
		return newRPCRawTransactionFromBlockIndex(block, uint64(index))
1670
	}
1671
	return nil
1672 1673
}

1674
// GetTransactionCount returns the number of transactions the given address has sent for the given block number
1675
func (s *TransactionAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) {
1676
	// Ask transaction pool for the nonce which includes pending transactions
1677
	if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber {
1678 1679 1680 1681 1682 1683 1684
		nonce, err := s.b.GetPoolNonce(ctx, address)
		if err != nil {
			return nil, err
		}
		return (*hexutil.Uint64)(&nonce), nil
	}
	// Resolve block number and use its state to ask for the nonce
1685
	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
1686 1687 1688
	if state == nil || err != nil {
		return nil, err
	}
1689 1690
	nonce := state.GetNonce(address)
	return (*hexutil.Uint64)(&nonce), state.Error()
1691 1692 1693
}

// GetTransactionByHash returns the transaction for the given hash
1694
func (s *TransactionAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) {
1695
	// Try to return an already finalized transaction
1696 1697 1698 1699 1700
	tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
		return nil, err
	}
	if tx != nil {
1701 1702 1703 1704
		header, err := s.b.HeaderByHash(ctx, blockHash)
		if err != nil {
			return nil, err
		}
1705
		return newRPCTransaction(tx, blockHash, blockNumber, header.Time, index, header.BaseFee, s.b.ChainConfig()), nil
1706
	}
1707 1708
	// No finalized transaction, try to retrieve it from the pool
	if tx := s.b.GetPoolTransaction(hash); tx != nil {
1709
		return NewRPCPendingTransaction(tx, s.b.CurrentHeader(), s.b.ChainConfig()), nil
1710
	}
1711

1712
	// Transaction unknown, return as such
1713
	return nil, nil
1714 1715
}

1716
// GetRawTransactionByHash returns the bytes of the transaction for the given hash.
1717
func (s *TransactionAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
1718
	// Retrieve a finalized transaction, or a pooled otherwise
1719 1720 1721 1722 1723
	tx, _, _, _, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
		return nil, err
	}
	if tx == nil {
1724 1725 1726 1727
		if tx = s.b.GetPoolTransaction(hash); tx == nil {
			// Transaction not found anywhere, abort
			return nil, nil
		}
1728
	}
1729
	// Serialize to RLP and return
1730
	return tx.MarshalBinary()
1731 1732
}

1733
// GetTransactionReceipt returns the transaction receipt for the given transaction hash.
1734
func (s *TransactionAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) {
1735
	tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
1736
	if tx == nil || err != nil {
1737 1738
		// When the transaction doesn't exist, the RPC method should return JSON null
		// as per specification.
1739
		return nil, nil
1740
	}
1741 1742 1743 1744
	header, err := s.b.HeaderByHash(ctx, blockHash)
	if err != nil {
		return nil, err
	}
1745 1746 1747 1748
	receipts, err := s.b.GetReceipts(ctx, blockHash)
	if err != nil {
		return nil, err
	}
1749
	if uint64(len(receipts)) <= index {
1750
		return nil, nil
1751
	}
1752
	receipt := receipts[index]
1753

1754
	// Derive the sender.
1755
	signer := types.MakeSigner(s.b.ChainConfig(), header.Number, header.Time)
1756 1757 1758 1759 1760
	return marshalReceipt(receipt, blockHash, blockNumber, signer, tx, int(index)), nil
}

// marshalReceipt marshals a transaction receipt into a JSON object.
func marshalReceipt(receipt *types.Receipt, blockHash common.Hash, blockNumber uint64, signer types.Signer, tx *types.Transaction, txIndex int) map[string]interface{} {
1761
	from, _ := types.Sender(signer, tx)
1762 1763

	fields := map[string]interface{}{
1764 1765
		"blockHash":         blockHash,
		"blockNumber":       hexutil.Uint64(blockNumber),
1766 1767
		"transactionHash":   tx.Hash(),
		"transactionIndex":  hexutil.Uint64(txIndex),
1768 1769
		"from":              from,
		"to":                tx.To(),
1770 1771
		"gasUsed":           hexutil.Uint64(receipt.GasUsed),
		"cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed),
1772 1773
		"contractAddress":   nil,
		"logs":              receipt.Logs,
1774
		"logsBloom":         receipt.Bloom,
1775
		"type":              hexutil.Uint(tx.Type()),
1776
		"effectiveGasPrice": (*hexutil.Big)(receipt.EffectiveGasPrice),
1777
	}
1778

1779 1780 1781 1782
	// Assign receipt status or post state.
	if len(receipt.PostState) > 0 {
		fields["root"] = hexutil.Bytes(receipt.PostState)
	} else {
1783
		fields["status"] = hexutil.Uint(receipt.Status)
1784
	}
1785
	if receipt.Logs == nil {
1786
		fields["logs"] = []*types.Log{}
1787
	}
1788

1789
	// If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation
1790
	if receipt.ContractAddress != (common.Address{}) {
1791 1792
		fields["contractAddress"] = receipt.ContractAddress
	}
1793
	return fields
1794 1795 1796
}

// sign is a helper function that signs a transaction with the private key of the given address.
1797
func (s *TransactionAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) {
1798 1799 1800 1801 1802 1803 1804 1805
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Request the wallet to sign the transaction
1806
	return wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
1807 1808
}

1809 1810
// SubmitTransaction is a helper function that submits tx to txPool and logs a message.
func SubmitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) {
1811 1812
	// If the transaction fee cap is already specified, ensure the
	// fee of the given transaction is _reasonable_.
1813 1814
	if err := checkTxFee(tx.GasPrice(), tx.Gas(), b.RPCTxFeeCap()); err != nil {
		return common.Hash{}, err
1815
	}
1816 1817 1818 1819
	if !b.UnprotectedAllowed() && !tx.Protected() {
		// Ensure only eip155 signed transactions are submitted if EIP155Required is set.
		return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC")
	}
1820
	if err := b.SendTx(ctx, tx); err != nil {
1821 1822
		return common.Hash{}, err
	}
1823
	// Print a log with full tx details for manual investigations and interventions
1824 1825
	head := b.CurrentBlock()
	signer := types.MakeSigner(b.ChainConfig(), head.Number, head.Time)
1826 1827 1828 1829 1830
	from, err := types.Sender(signer, tx)
	if err != nil {
		return common.Hash{}, err
	}

1831 1832
	if tx.To() == nil {
		addr := crypto.CreateAddress(from, tx.Nonce())
1833
		log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "contract", addr.Hex(), "value", tx.Value())
1834
	} else {
1835
		log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "recipient", tx.To(), "value", tx.Value())
1836
	}
1837
	return tx.Hash(), nil
1838 1839 1840 1841
}

// SendTransaction creates a transaction for the given argument, sign it and submit it to the
// transaction pool.
1842
func (s *TransactionAPI) SendTransaction(ctx context.Context, args TransactionArgs) (common.Hash, error) {
1843
	// Look up the wallet containing the requested signer
1844
	account := accounts.Account{Address: args.from()}
1845 1846 1847 1848 1849

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return common.Hash{}, err
	}
1850 1851

	if args.Nonce == nil {
1852
		// Hold the mutex around signing to prevent concurrent assignment of
1853
		// the same nonce to multiple accounts.
1854 1855
		s.nonceLock.LockAddr(args.from())
		defer s.nonceLock.UnlockAddr(args.from())
1856 1857 1858 1859 1860 1861
	}

	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
		return common.Hash{}, err
	}
1862
	// Assemble the transaction and sign with the wallet
1863
	tx := args.toTransaction()
1864

1865
	signed, err := wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
1866 1867 1868
	if err != nil {
		return common.Hash{}, err
	}
1869
	return SubmitTransaction(ctx, s.b, signed)
1870 1871
}

1872 1873 1874
// FillTransaction fills the defaults (nonce, gas, gasPrice or 1559 fields)
// on a given unsigned transaction, and returns it to the caller for further
// processing (signing + broadcast).
1875
func (s *TransactionAPI) FillTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) {
1876 1877 1878 1879 1880 1881
	// Set some sanity defaults and terminate on failure
	if err := args.setDefaults(ctx, s.b); err != nil {
		return nil, err
	}
	// Assemble the transaction and obtain rlp
	tx := args.toTransaction()
1882
	data, err := tx.MarshalBinary()
1883 1884 1885 1886 1887 1888
	if err != nil {
		return nil, err
	}
	return &SignTransactionResult{data, tx}, nil
}

1889 1890
// SendRawTransaction will add the signed transaction to the transaction pool.
// The sender is responsible for signing the transaction and using the correct nonce.
1891
func (s *TransactionAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) {
1892
	tx := new(types.Transaction)
1893
	if err := tx.UnmarshalBinary(input); err != nil {
1894
		return common.Hash{}, err
1895
	}
1896
	return SubmitTransaction(ctx, s.b, tx)
1897 1898
}

1899
// Sign calculates an ECDSA signature for:
1900
// keccak256("\x19Ethereum Signed Message:\n" + len(message) + message).
1901
//
1902 1903 1904
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons.
//
1905 1906 1907
// The account associated with addr must be unlocked.
//
// https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
1908
func (s *TransactionAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) {
1909 1910 1911 1912 1913 1914 1915 1916
	// Look up the wallet containing the requested signer
	account := accounts.Account{Address: addr}

	wallet, err := s.b.AccountManager().Find(account)
	if err != nil {
		return nil, err
	}
	// Sign the requested hash with the wallet
1917
	signature, err := wallet.SignText(account, data)
1918
	if err == nil {
1919
		signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
1920 1921
	}
	return signature, err
1922 1923 1924 1925
}

// SignTransactionResult represents a RLP encoded signed transaction.
type SignTransactionResult struct {
1926 1927
	Raw hexutil.Bytes      `json:"raw"`
	Tx  *types.Transaction `json:"tx"`
1928 1929 1930 1931 1932
}

// SignTransaction will sign the given transaction with the from account.
// The node needs to have the private key of the account corresponding with
// the given from address and it needs to be unlocked.
1933
func (s *TransactionAPI) SignTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) {
1934
	if args.Gas == nil {
1935
		return nil, errors.New("gas not specified")
1936
	}
1937
	if args.GasPrice == nil && (args.MaxPriorityFeePerGas == nil || args.MaxFeePerGas == nil) {
1938
		return nil, errors.New("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas")
1939
	}
1940
	if args.Nonce == nil {
1941
		return nil, errors.New("nonce not specified")
1942
	}
1943 1944
	if err := args.setDefaults(ctx, s.b); err != nil {
		return nil, err
1945
	}
1946
	// Before actually sign the transaction, ensure the transaction fee is reasonable.
1947 1948
	tx := args.toTransaction()
	if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil {
1949 1950
		return nil, err
	}
1951
	signed, err := s.sign(args.from(), tx)
1952 1953 1954
	if err != nil {
		return nil, err
	}
1955
	data, err := signed.MarshalBinary()
1956 1957 1958
	if err != nil {
		return nil, err
	}
1959
	return &SignTransactionResult{data, signed}, nil
1960 1961
}

1962 1963
// PendingTransactions returns the transactions that are in the transaction pool
// and have a from address that is one of the accounts this node manages.
1964
func (s *TransactionAPI) PendingTransactions() ([]*RPCTransaction, error) {
1965 1966 1967 1968
	pending, err := s.b.GetPoolTransactions()
	if err != nil {
		return nil, err
	}
1969 1970 1971 1972 1973 1974
	accounts := make(map[common.Address]struct{})
	for _, wallet := range s.b.AccountManager().Wallets() {
		for _, account := range wallet.Accounts() {
			accounts[account.Address] = struct{}{}
		}
	}
1975
	curHeader := s.b.CurrentHeader()
1976 1977
	transactions := make([]*RPCTransaction, 0, len(pending))
	for _, tx := range pending {
1978
		from, _ := types.Sender(s.signer, tx)
1979
		if _, exists := accounts[from]; exists {
1980
			transactions = append(transactions, NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()))
1981 1982
		}
	}
1983
	return transactions, nil
1984 1985
}

1986 1987
// Resend accepts an existing transaction and a new gas price and limit. It will remove
// the given transaction from the pool and reinsert it with the new gas price and limit.
1988
func (s *TransactionAPI) Resend(ctx context.Context, sendArgs TransactionArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) {
1989
	if sendArgs.Nonce == nil {
1990
		return common.Hash{}, errors.New("missing transaction nonce in transaction spec")
1991 1992 1993 1994 1995
	}
	if err := sendArgs.setDefaults(ctx, s.b); err != nil {
		return common.Hash{}, err
	}
	matchTx := sendArgs.toTransaction()
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

	// Before replacing the old transaction, ensure the _new_ transaction fee is reasonable.
	var price = matchTx.GasPrice()
	if gasPrice != nil {
		price = gasPrice.ToInt()
	}
	var gas = matchTx.Gas()
	if gasLimit != nil {
		gas = uint64(*gasLimit)
	}
	if err := checkTxFee(price, gas, s.b.RPCTxFeeCap()); err != nil {
		return common.Hash{}, err
	}
	// Iterate the pending list for replacement
2010 2011 2012 2013
	pending, err := s.b.GetPoolTransactions()
	if err != nil {
		return common.Hash{}, err
	}
2014
	for _, p := range pending {
2015 2016
		wantSigHash := s.signer.Hash(matchTx)
		pFrom, err := types.Sender(s.signer, p)
2017
		if err == nil && pFrom == sendArgs.from() && s.signer.Hash(p) == wantSigHash {
2018
			// Match. Re-sign and send the transaction.
2019
			if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 {
2020
				sendArgs.GasPrice = gasPrice
2021
			}
2022
			if gasLimit != nil && *gasLimit != 0 {
2023
				sendArgs.Gas = gasLimit
2024
			}
2025
			signedTx, err := s.sign(sendArgs.from(), sendArgs.toTransaction())
2026 2027 2028 2029 2030 2031 2032 2033 2034
			if err != nil {
				return common.Hash{}, err
			}
			if err = s.b.SendTx(ctx, signedTx); err != nil {
				return common.Hash{}, err
			}
			return signedTx.Hash(), nil
		}
	}
2035
	return common.Hash{}, fmt.Errorf("transaction %#x not found", matchTx.Hash())
2036 2037
}

2038 2039 2040
// DebugAPI is the collection of Ethereum APIs exposed over the debugging
// namespace.
type DebugAPI struct {
2041 2042 2043
	b Backend
}

2044 2045 2046
// NewDebugAPI creates a new instance of DebugAPI.
func NewDebugAPI(b Backend) *DebugAPI {
	return &DebugAPI{b: b}
2047 2048
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
// GetRawHeader retrieves the RLP encoding for a single header.
func (api *DebugAPI) GetRawHeader(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
	var hash common.Hash
	if h, ok := blockNrOrHash.Hash(); ok {
		hash = h
	} else {
		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return nil, err
		}
		hash = block.Hash()
	}
	header, _ := api.b.HeaderByHash(ctx, hash)
2062
	if header == nil {
2063
		return nil, fmt.Errorf("header #%d not found", hash)
2064
	}
2065
	return rlp.EncodeToBytes(header)
2066 2067
}

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
// GetRawBlock retrieves the RLP encoded for a single block.
func (api *DebugAPI) GetRawBlock(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
	var hash common.Hash
	if h, ok := blockNrOrHash.Hash(); ok {
		hash = h
	} else {
		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return nil, err
		}
		hash = block.Hash()
	}
	block, _ := api.b.BlockByHash(ctx, hash)
2081
	if block == nil {
2082
		return nil, fmt.Errorf("block #%d not found", hash)
2083
	}
2084
	return rlp.EncodeToBytes(block)
2085 2086
}

2087
// GetRawReceipts retrieves the binary-encoded receipts of a single block.
2088
func (api *DebugAPI) GetRawReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]hexutil.Bytes, error) {
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	var hash common.Hash
	if h, ok := blockNrOrHash.Hash(); ok {
		hash = h
	} else {
		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
		if err != nil {
			return nil, err
		}
		hash = block.Hash()
	}
	receipts, err := api.b.GetReceipts(ctx, hash)
	if err != nil {
		return nil, err
	}
	result := make([]hexutil.Bytes, len(receipts))
	for i, receipt := range receipts {
		b, err := receipt.MarshalBinary()
		if err != nil {
			return nil, err
		}
		result[i] = b
	}
	return result, nil
}

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
// GetRawTransaction returns the bytes of the transaction for the given hash.
func (s *DebugAPI) GetRawTransaction(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
	// Retrieve a finalized transaction, or a pooled otherwise
	tx, _, _, _, err := s.b.GetTransaction(ctx, hash)
	if err != nil {
		return nil, err
	}
	if tx == nil {
		if tx = s.b.GetPoolTransaction(hash); tx == nil {
			// Transaction not found anywhere, abort
			return nil, nil
		}
	}
	return tx.MarshalBinary()
}

2130
// PrintBlock retrieves a block and returns its pretty printed form.
2131
func (api *DebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) {
2132 2133 2134 2135
	block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
	if block == nil {
		return "", fmt.Errorf("block #%d not found", number)
	}
2136
	return spew.Sdump(block), nil
2137 2138
}

2139
// ChaindbProperty returns leveldb properties of the key-value database.
2140
func (api *DebugAPI) ChaindbProperty(property string) (string, error) {
2141 2142 2143 2144 2145
	if property == "" {
		property = "leveldb.stats"
	} else if !strings.HasPrefix(property, "leveldb.") {
		property = "leveldb." + property
	}
2146
	return api.b.ChainDb().Stat(property)
2147 2148
}

2149 2150
// ChaindbCompact flattens the entire key-value database into a single level,
// removing all unused slots and merging all keys.
2151
func (api *DebugAPI) ChaindbCompact() error {
2152
	for b := byte(0); b < 255; b++ {
2153
		log.Info("Compacting chain database", "range", fmt.Sprintf("0x%0.2X-0x%0.2X", b, b+1))
2154
		if err := api.b.ChainDb().Compact([]byte{b}, []byte{b + 1}); err != nil {
2155
			log.Error("Database compaction failed", "err", err)
2156 2157 2158 2159 2160 2161
			return err
		}
	}
	return nil
}

2162
// SetHead rewinds the head of the blockchain to a previous block.
2163
func (api *DebugAPI) SetHead(number hexutil.Uint64) {
2164
	api.b.SetHead(uint64(number))
2165 2166
}

2167 2168
// NetAPI offers network related RPC methods
type NetAPI struct {
2169 2170
	net            *p2p.Server
	networkVersion uint64
2171 2172
}

2173 2174 2175
// NewNetAPI creates a new net API instance.
func NewNetAPI(net *p2p.Server, networkVersion uint64) *NetAPI {
	return &NetAPI{net, networkVersion}
2176 2177 2178
}

// Listening returns an indication if the node is listening for network connections.
2179
func (s *NetAPI) Listening() bool {
2180 2181 2182 2183
	return true // always listening
}

// PeerCount returns the number of connected peers
2184
func (s *NetAPI) PeerCount() hexutil.Uint {
2185
	return hexutil.Uint(s.net.PeerCount())
2186 2187
}

2188
// Version returns the current ethereum protocol version.
2189
func (s *NetAPI) Version() string {
2190 2191 2192
	return fmt.Sprintf("%d", s.networkVersion)
}

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
// checkTxFee is an internal function used to check whether the fee of
// the given transaction is _reasonable_(under the cap).
func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error {
	// Short circuit if there is no cap for transaction fee at all.
	if cap == 0 {
		return nil
	}
	feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether)))
	feeFloat, _ := feeEth.Float64()
	if feeFloat > cap {
		return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap)
	}
	return nil
}
2207 2208 2209 2210 2211 2212 2213 2214 2215

// toHexSlice creates a slice of hex-strings based on []byte.
func toHexSlice(b [][]byte) []string {
	r := make([]string, len(b))
	for i := range b {
		r[i] = hexutil.Encode(b[i])
	}
	return r
}