contracts.go 32.9 KB
Newer Older
1
// Copyright 2014 The go-ethereum Authors
2
// This file is part of the go-ethereum library.
3
//
4
// The go-ethereum library is free software: you can redistribute it and/or modify
5 6 7 8
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
9
// The go-ethereum library is distributed in the hope that it will be useful,
10
// but WITHOUT ANY WARRANTY; without even the implied warranty of
11
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 13 14
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
15
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
16

obscuren's avatar
obscuren committed
17
package vm
obscuren's avatar
obscuren committed
18 19

import (
20
	"crypto/sha256"
21
	"encoding/binary"
22
	"errors"
23
	"math/big"
24

obscuren's avatar
obscuren committed
25
	"github.com/ethereum/go-ethereum/common"
26
	"github.com/ethereum/go-ethereum/common/math"
27
	"github.com/ethereum/go-ethereum/crypto"
28
	"github.com/ethereum/go-ethereum/crypto/blake2b"
29
	"github.com/ethereum/go-ethereum/crypto/bls12381"
30
	"github.com/ethereum/go-ethereum/crypto/bn256"
31
	"github.com/ethereum/go-ethereum/params"
32 33

	//lint:ignore SA1019 Needed for precompile
34
	"golang.org/x/crypto/ripemd160"
obscuren's avatar
obscuren committed
35 36
)

37
// PrecompiledContract is the basic interface for native Go contracts. The implementation
38 39 40
// requires a deterministic gas count based on the input size of the Run method of the
// contract.
type PrecompiledContract interface {
41 42
	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
obscuren's avatar
obscuren committed
43 44
}

45 46 47
// PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
// contracts used in the Frontier and Homestead releases.
var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
48
	common.BytesToAddress([]byte{1}): &ecrecover{},
49 50
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
51
	common.BytesToAddress([]byte{4}): &dataCopy{},
obscuren's avatar
obscuren committed
52 53
}

54 55 56
// PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
// contracts used in the Byzantium release.
var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
57 58 59 60
	common.BytesToAddress([]byte{1}): &ecrecover{},
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
	common.BytesToAddress([]byte{4}): &dataCopy{},
61
	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
62 63 64 65 66 67 68 69 70 71 72 73
	common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
	common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
	common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
}

// PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
// contracts used in the Istanbul release.
var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
	common.BytesToAddress([]byte{1}): &ecrecover{},
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
	common.BytesToAddress([]byte{4}): &dataCopy{},
74
	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
75 76 77
	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
78
	common.BytesToAddress([]byte{9}): &blake2F{},
79 80
}

81 82 83
// PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum
// contracts used in the Berlin release.
var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{
84 85 86 87 88 89 90 91 92 93 94 95 96 97
	common.BytesToAddress([]byte{1}): &ecrecover{},
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
	common.BytesToAddress([]byte{4}): &dataCopy{},
	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true},
	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
	common.BytesToAddress([]byte{9}): &blake2F{},
}

// PrecompiledContractsBLS contains the set of pre-compiled Ethereum
// contracts specified in EIP-2537. These are exported for testing purposes.
var PrecompiledContractsBLS = map[common.Address]PrecompiledContract{
98 99 100 101 102 103 104 105 106 107 108
	common.BytesToAddress([]byte{10}): &bls12381G1Add{},
	common.BytesToAddress([]byte{11}): &bls12381G1Mul{},
	common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{},
	common.BytesToAddress([]byte{13}): &bls12381G2Add{},
	common.BytesToAddress([]byte{14}): &bls12381G2Mul{},
	common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{},
	common.BytesToAddress([]byte{16}): &bls12381Pairing{},
	common.BytesToAddress([]byte{17}): &bls12381MapG1{},
	common.BytesToAddress([]byte{18}): &bls12381MapG2{},
}

109
var (
110
	PrecompiledAddressesBerlin    []common.Address
111 112 113 114 115 116 117 118 119 120
	PrecompiledAddressesIstanbul  []common.Address
	PrecompiledAddressesByzantium []common.Address
	PrecompiledAddressesHomestead []common.Address
)

func init() {
	for k := range PrecompiledContractsHomestead {
		PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k)
	}
	for k := range PrecompiledContractsByzantium {
121
		PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k)
122 123 124 125
	}
	for k := range PrecompiledContractsIstanbul {
		PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k)
	}
126 127
	for k := range PrecompiledContractsBerlin {
		PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k)
128 129 130
	}
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144
// ActivePrecompiles returns the precompiles enabled with the current configuration.
func ActivePrecompiles(rules params.Rules) []common.Address {
	switch {
	case rules.IsBerlin:
		return PrecompiledAddressesBerlin
	case rules.IsIstanbul:
		return PrecompiledAddressesIstanbul
	case rules.IsByzantium:
		return PrecompiledAddressesByzantium
	default:
		return PrecompiledAddressesHomestead
	}
}

145
// RunPrecompiledContract runs and evaluates the output of a precompiled contract.
146 147 148 149 150 151 152 153
// It returns
// - the returned bytes,
// - the _remaining_ gas,
// - any error that occurred
func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) {
	gasCost := p.RequiredGas(input)
	if suppliedGas < gasCost {
		return nil, 0, ErrOutOfGas
obscuren's avatar
obscuren committed
154
	}
155 156 157
	suppliedGas -= gasCost
	output, err := p.Run(input)
	return output, suppliedGas, err
obscuren's avatar
obscuren committed
158 159
}

160
// ECRECOVER implemented as a native contract.
161
type ecrecover struct{}
obscuren's avatar
obscuren committed
162

163
func (c *ecrecover) RequiredGas(input []byte) uint64 {
164
	return params.EcrecoverGas
obscuren's avatar
obscuren committed
165 166
}

167
func (c *ecrecover) Run(input []byte) ([]byte, error) {
168
	const ecRecoverInputLength = 128
obscuren's avatar
obscuren committed
169

170 171
	input = common.RightPadBytes(input, ecRecoverInputLength)
	// "input" is (hash, v, r, s), each 32 bytes
172
	// but for ecrecover we want (r, s, v)
obscuren's avatar
obscuren committed
173

174 175 176
	r := new(big.Int).SetBytes(input[64:96])
	s := new(big.Int).SetBytes(input[96:128])
	v := input[63] - 27
177

178 179
	// tighter sig s values input homestead only apply to tx sigs
	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
180
		return nil, nil
181
	}
182 183 184 185 186
	// We must make sure not to modify the 'input', so placing the 'v' along with
	// the signature needs to be done on a new allocation
	sig := make([]byte, 65)
	copy(sig, input[64:128])
	sig[64] = v
187
	// v needs to be at the end for libsecp256k1
188
	pubKey, err := crypto.Ecrecover(input[:32], sig)
obscuren's avatar
obscuren committed
189
	// make sure the public key is a valid one
190
	if err != nil {
191
		return nil, nil
192
	}
obscuren's avatar
obscuren committed
193

194
	// the first byte of pubkey is bitcoin heritage
195
	return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
obscuren's avatar
obscuren committed
196
}
197

198
// SHA256 implemented as a native contract.
199
type sha256hash struct{}
200

201 202 203 204
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
205
func (c *sha256hash) RequiredGas(input []byte) uint64 {
206
	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
207
}
208 209
func (c *sha256hash) Run(input []byte) ([]byte, error) {
	h := sha256.Sum256(input)
210
	return h[:], nil
211 212
}

213
// RIPEMD160 implemented as a native contract.
214
type ripemd160hash struct{}
215

216 217 218 219
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
220
func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
221
	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
222
}
223
func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
224
	ripemd := ripemd160.New()
225
	ripemd.Write(input)
226
	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
227 228
}

229
// data copy implemented as a native contract.
230 231
type dataCopy struct{}

232 233 234 235
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
236
func (c *dataCopy) RequiredGas(input []byte) uint64 {
237
	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
238
}
239 240
func (c *dataCopy) Run(in []byte) ([]byte, error) {
	return in, nil
241
}
242

243
// bigModExp implements a native big integer exponential modular operation.
244 245 246
type bigModExp struct {
	eip2565 bool
}
247

248
var (
249
	big0      = big.NewInt(0)
250
	big1      = big.NewInt(1)
251
	big3      = big.NewInt(3)
252
	big4      = big.NewInt(4)
253
	big7      = big.NewInt(7)
254 255
	big8      = big.NewInt(8)
	big16     = big.NewInt(16)
256
	big20     = big.NewInt(20)
257 258 259 260 261 262 263 264 265
	big32     = big.NewInt(32)
	big64     = big.NewInt(64)
	big96     = big.NewInt(96)
	big480    = big.NewInt(480)
	big1024   = big.NewInt(1024)
	big3072   = big.NewInt(3072)
	big199680 = big.NewInt(199680)
)

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
// modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198
//
// def mult_complexity(x):
//    if x <= 64: return x ** 2
//    elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072
//    else: return x ** 2 // 16 + 480 * x - 199680
//
// where is x is max(length_of_MODULUS, length_of_BASE)
func modexpMultComplexity(x *big.Int) *big.Int {
	switch {
	case x.Cmp(big64) <= 0:
		x.Mul(x, x) // x ** 2
	case x.Cmp(big1024) <= 0:
		// (x ** 2 // 4 ) + ( 96 * x - 3072)
		x = new(big.Int).Add(
			new(big.Int).Div(new(big.Int).Mul(x, x), big4),
			new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072),
		)
	default:
		// (x ** 2 // 16) + (480 * x - 199680)
		x = new(big.Int).Add(
			new(big.Int).Div(new(big.Int).Mul(x, x), big16),
			new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680),
		)
	}
	return x
}

294
// RequiredGas returns the gas required to execute the pre-compiled contract.
295
func (c *bigModExp) RequiredGas(input []byte) uint64 {
296
	var (
297 298 299
		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
300
	)
301 302 303 304 305
	if len(input) > 96 {
		input = input[96:]
	} else {
		input = input[:0]
	}
306 307 308 309 310
	// Retrieve the head 32 bytes of exp for the adjusted exponent length
	var expHead *big.Int
	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
		expHead = new(big.Int)
	} else {
311 312
		if expLen.Cmp(big32) > 0 {
			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
313
		} else {
314
			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
315
		}
316
	}
317 318 319 320 321 322
	// Calculate the adjusted exponent length
	var msb int
	if bitlen := expHead.BitLen(); bitlen > 0 {
		msb = bitlen - 1
	}
	adjExpLen := new(big.Int)
323 324 325
	if expLen.Cmp(big32) > 0 {
		adjExpLen.Sub(expLen, big32)
		adjExpLen.Mul(big8, adjExpLen)
326 327 328 329
	}
	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
	// Calculate the gas cost of the operation
	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
330 331 332 333 334 335 336 337 338 339 340
	if c.eip2565 {
		// EIP-2565 has three changes
		// 1. Different multComplexity (inlined here)
		// in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565):
		//
		// def mult_complexity(x):
		//    ceiling(x/8)^2
		//
		//where is x is max(length_of_MODULUS, length_of_BASE)
		gas = gas.Add(gas, big7)
		gas = gas.Div(gas, big8)
341
		gas.Mul(gas, gas)
342 343 344 345 346 347 348 349 350 351 352 353

		gas.Mul(gas, math.BigMax(adjExpLen, big1))
		// 2. Different divisor (`GQUADDIVISOR`) (3)
		gas.Div(gas, big3)
		if gas.BitLen() > 64 {
			return math.MaxUint64
		}
		// 3. Minimum price of 200 gas
		if gas.Uint64() < 200 {
			return 200
		}
		return gas.Uint64()
354
	}
355
	gas = modexpMultComplexity(gas)
356
	gas.Mul(gas, math.BigMax(adjExpLen, big1))
357
	gas.Div(gas, big20)
358 359 360 361 362 363 364 365

	if gas.BitLen() > 64 {
		return math.MaxUint64
	}
	return gas.Uint64()
}

func (c *bigModExp) Run(input []byte) ([]byte, error) {
366
	var (
367 368 369
		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
370
	)
371 372 373 374 375 376 377 378 379 380
	if len(input) > 96 {
		input = input[96:]
	} else {
		input = input[:0]
	}
	// Handle a special case when both the base and mod length is zero
	if baseLen == 0 && modLen == 0 {
		return []byte{}, nil
	}
	// Retrieve the operands and execute the exponentiation
381
	var (
382 383 384
		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
385 386 387 388
	)
	if mod.BitLen() == 0 {
		// Modulo 0 is undefined, return zero
		return common.LeftPadBytes([]byte{}, int(modLen)), nil
389
	}
390
	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
391 392
}

393 394 395
// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newCurvePoint(blob []byte) (*bn256.G1, error) {
396 397 398
	p := new(bn256.G1)
	if _, err := p.Unmarshal(blob); err != nil {
		return nil, err
399
	}
400 401
	return p, nil
}
402

403 404 405
// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newTwistPoint(blob []byte) (*bn256.G2, error) {
406 407 408
	p := new(bn256.G2)
	if _, err := p.Unmarshal(blob); err != nil {
		return nil, err
409
	}
410
	return p, nil
411 412
}

413 414 415
// runBn256Add implements the Bn256Add precompile, referenced by both
// Byzantium and Istanbul operations.
func runBn256Add(input []byte) ([]byte, error) {
416
	x, err := newCurvePoint(getData(input, 0, 64))
417 418
	if err != nil {
		return nil, err
419
	}
420
	y, err := newCurvePoint(getData(input, 64, 64))
421 422
	if err != nil {
		return nil, err
423
	}
424 425 426
	res := new(bn256.G1)
	res.Add(x, y)
	return res.Marshal(), nil
427 428
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
// bn256Add implements a native elliptic curve point addition conforming to
// Istanbul consensus rules.
type bn256AddIstanbul struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
	return params.Bn256AddGasIstanbul
}

func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
	return runBn256Add(input)
}

// bn256AddByzantium implements a native elliptic curve point addition
// conforming to Byzantium consensus rules.
type bn256AddByzantium struct{}
445 446

// RequiredGas returns the gas required to execute the pre-compiled contract.
447 448 449 450 451 452
func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
	return params.Bn256AddGasByzantium
}

func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
	return runBn256Add(input)
453 454
}

455 456 457
// runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
// both Byzantium and Istanbul operations.
func runBn256ScalarMul(input []byte) ([]byte, error) {
458
	p, err := newCurvePoint(getData(input, 0, 64))
459 460 461
	if err != nil {
		return nil, err
	}
462 463 464
	res := new(bn256.G1)
	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
	return res.Marshal(), nil
465
}
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
// bn256ScalarMulIstanbul implements a native elliptic curve scalar
// multiplication conforming to Istanbul consensus rules.
type bn256ScalarMulIstanbul struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
	return params.Bn256ScalarMulGasIstanbul
}

func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
	return runBn256ScalarMul(input)
}

// bn256ScalarMulByzantium implements a native elliptic curve scalar
// multiplication conforming to Byzantium consensus rules.
type bn256ScalarMulByzantium struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
	return params.Bn256ScalarMulGasByzantium
}

func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
	return runBn256ScalarMul(input)
}

493
var (
494 495 496 497 498 499 500 501
	// true32Byte is returned if the bn256 pairing check succeeds.
	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}

	// false32Byte is returned if the bn256 pairing check fails.
	false32Byte = make([]byte, 32)

	// errBadPairingInput is returned if the bn256 pairing input is invalid.
	errBadPairingInput = errors.New("bad elliptic curve pairing size")
502 503
)

504 505 506
// runBn256Pairing implements the Bn256Pairing precompile, referenced by both
// Byzantium and Istanbul operations.
func runBn256Pairing(input []byte) ([]byte, error) {
507 508 509 510 511
	// Handle some corner cases cheaply
	if len(input)%192 > 0 {
		return nil, errBadPairingInput
	}
	// Convert the input into a set of coordinates
512
	var (
513 514
		cs []*bn256.G1
		ts []*bn256.G2
515
	)
516 517 518 519
	for i := 0; i < len(input); i += 192 {
		c, err := newCurvePoint(input[i : i+64])
		if err != nil {
			return nil, err
520
		}
521 522 523
		t, err := newTwistPoint(input[i+64 : i+192])
		if err != nil {
			return nil, err
524
		}
525 526
		cs = append(cs, c)
		ts = append(ts, t)
527
	}
528
	// Execute the pairing checks and return the results
529
	if bn256.PairingCheck(cs, ts) {
530 531
		return true32Byte, nil
	}
532
	return false32Byte, nil
533
}
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559

// bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
// conforming to Istanbul consensus rules.
type bn256PairingIstanbul struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
	return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
}

func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
	return runBn256Pairing(input)
}

// bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
// conforming to Byzantium consensus rules.
type bn256PairingByzantium struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
	return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
}

func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
	return runBn256Pairing(input)
}
560 561 562 563

type blake2F struct{}

func (c *blake2F) RequiredGas(input []byte) uint64 {
564 565
	// If the input is malformed, we can't calculate the gas, return 0 and let the
	// actual call choke and fault.
566 567 568
	if len(input) != blake2FInputLength {
		return 0
	}
569
	return uint64(binary.BigEndian.Uint32(input[0:4]))
570 571
}

572 573 574 575
const (
	blake2FInputLength        = 213
	blake2FFinalBlockBytes    = byte(1)
	blake2FNonFinalBlockBytes = byte(0)
576 577
)

578 579 580
var (
	errBlake2FInvalidInputLength = errors.New("invalid input length")
	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
581 582 583
)

func (c *blake2F) Run(input []byte) ([]byte, error) {
584
	// Make sure the input is valid (correct length and final flag)
585
	if len(input) != blake2FInputLength {
586
		return nil, errBlake2FInvalidInputLength
587 588
	}
	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
589
		return nil, errBlake2FInvalidFinalFlag
590
	}
591 592 593 594
	// Parse the input into the Blake2b call parameters
	var (
		rounds = binary.BigEndian.Uint32(input[0:4])
		final  = (input[212] == blake2FFinalBlockBytes)
595

596 597 598 599
		h [8]uint64
		m [16]uint64
		t [2]uint64
	)
600 601 602 603 604 605 606 607 608 609 610
	for i := 0; i < 8; i++ {
		offset := 4 + i*8
		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
	}
	for i := 0; i < 16; i++ {
		offset := 68 + i*8
		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
	}
	t[0] = binary.LittleEndian.Uint64(input[196:204])
	t[1] = binary.LittleEndian.Uint64(input[204:212])

611 612
	// Execute the compression function, extract and return the result
	blake2b.F(&h, m, t, final, rounds)
613

614
	output := make([]byte, 64)
615 616 617 618
	for i := 0; i < 8; i++ {
		offset := i * 8
		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
	}
619
	return output, nil
620
}
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

var (
	errBLS12381InvalidInputLength          = errors.New("invalid input length")
	errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes")
	errBLS12381G1PointSubgroup             = errors.New("g1 point is not on correct subgroup")
	errBLS12381G2PointSubgroup             = errors.New("g2 point is not on correct subgroup")
)

// bls12381G1Add implements EIP-2537 G1Add precompile.
type bls12381G1Add struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G1Add) RequiredGas(input []byte) uint64 {
	return params.Bls12381G1AddGas
}

func (c *bls12381G1Add) Run(input []byte) ([]byte, error) {
	// Implements EIP-2537 G1Add precompile.
	// > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each).
	// > Output is an encoding of addition operation result - single G1 point (`128` bytes).
	if len(input) != 256 {
		return nil, errBLS12381InvalidInputLength
	}
	var err error
	var p0, p1 *bls12381.PointG1

	// Initialize G1
	g := bls12381.NewG1()

	// Decode G1 point p_0
	if p0, err = g.DecodePoint(input[:128]); err != nil {
		return nil, err
	}
	// Decode G1 point p_1
	if p1, err = g.DecodePoint(input[128:]); err != nil {
		return nil, err
	}

	// Compute r = p_0 + p_1
	r := g.New()
	g.Add(r, p0, p1)

	// Encode the G1 point result into 128 bytes
	return g.EncodePoint(r), nil
}

// bls12381G1Mul implements EIP-2537 G1Mul precompile.
type bls12381G1Mul struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 {
	return params.Bls12381G1MulGas
}

func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) {
	// Implements EIP-2537 G1Mul precompile.
	// > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
	// > Output is an encoding of multiplication operation result - single G1 point (`128` bytes).
	if len(input) != 160 {
		return nil, errBLS12381InvalidInputLength
	}
	var err error
	var p0 *bls12381.PointG1

	// Initialize G1
	g := bls12381.NewG1()

	// Decode G1 point
	if p0, err = g.DecodePoint(input[:128]); err != nil {
		return nil, err
	}
	// Decode scalar value
	e := new(big.Int).SetBytes(input[128:])

	// Compute r = e * p_0
	r := g.New()
	g.MulScalar(r, p0, e)

	// Encode the G1 point into 128 bytes
	return g.EncodePoint(r), nil
}

// bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile.
type bls12381G1MultiExp struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 {
	// Calculate G1 point, scalar value pair length
	k := len(input) / 160
	if k == 0 {
		// Return 0 gas for small input length
		return 0
	}
	// Lookup discount value for G1 point, scalar value pair length
715 716 717 718 719
	var discount uint64
	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
		discount = params.Bls12381MultiExpDiscountTable[k-1]
	} else {
		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	}
	// Calculate gas and return the result
	return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000
}

func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) {
	// Implements EIP-2537 G1MultiExp precompile.
	// G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
	// Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes).
	k := len(input) / 160
	if len(input) == 0 || len(input)%160 != 0 {
		return nil, errBLS12381InvalidInputLength
	}
	var err error
	points := make([]*bls12381.PointG1, k)
	scalars := make([]*big.Int, k)

	// Initialize G1
	g := bls12381.NewG1()

	// Decode point scalar pairs
	for i := 0; i < k; i++ {
		off := 160 * i
		t0, t1, t2 := off, off+128, off+160
		// Decode G1 point
		if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
			return nil, err
		}
		// Decode scalar value
		scalars[i] = new(big.Int).SetBytes(input[t1:t2])
	}

	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
	r := g.New()
	g.MultiExp(r, points, scalars)

	// Encode the G1 point to 128 bytes
	return g.EncodePoint(r), nil
}

// bls12381G2Add implements EIP-2537 G2Add precompile.
type bls12381G2Add struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G2Add) RequiredGas(input []byte) uint64 {
	return params.Bls12381G2AddGas
}

func (c *bls12381G2Add) Run(input []byte) ([]byte, error) {
	// Implements EIP-2537 G2Add precompile.
	// > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each).
	// > Output is an encoding of addition operation result - single G2 point (`256` bytes).
	if len(input) != 512 {
		return nil, errBLS12381InvalidInputLength
	}
	var err error
	var p0, p1 *bls12381.PointG2

	// Initialize G2
	g := bls12381.NewG2()
	r := g.New()

	// Decode G2 point p_0
	if p0, err = g.DecodePoint(input[:256]); err != nil {
		return nil, err
	}
	// Decode G2 point p_1
	if p1, err = g.DecodePoint(input[256:]); err != nil {
		return nil, err
	}

	// Compute r = p_0 + p_1
	g.Add(r, p0, p1)

	// Encode the G2 point into 256 bytes
	return g.EncodePoint(r), nil
}

// bls12381G2Mul implements EIP-2537 G2Mul precompile.
type bls12381G2Mul struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 {
	return params.Bls12381G2MulGas
}

func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) {
	// Implements EIP-2537 G2MUL precompile logic.
	// > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
	// > Output is an encoding of multiplication operation result - single G2 point (`256` bytes).
	if len(input) != 288 {
		return nil, errBLS12381InvalidInputLength
	}
	var err error
	var p0 *bls12381.PointG2

	// Initialize G2
	g := bls12381.NewG2()

	// Decode G2 point
	if p0, err = g.DecodePoint(input[:256]); err != nil {
		return nil, err
	}
	// Decode scalar value
	e := new(big.Int).SetBytes(input[256:])

	// Compute r = e * p_0
	r := g.New()
	g.MulScalar(r, p0, e)

	// Encode the G2 point into 256 bytes
	return g.EncodePoint(r), nil
}

// bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile.
type bls12381G2MultiExp struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 {
	// Calculate G2 point, scalar value pair length
	k := len(input) / 288
	if k == 0 {
		// Return 0 gas for small input length
		return 0
	}
	// Lookup discount value for G2 point, scalar value pair length
846 847 848 849 850
	var discount uint64
	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
		discount = params.Bls12381MultiExpDiscountTable[k-1]
	} else {
		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	}
	// Calculate gas and return the result
	return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000
}

func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) {
	// Implements EIP-2537 G2MultiExp precompile logic
	// > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
	// > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes).
	k := len(input) / 288
	if len(input) == 0 || len(input)%288 != 0 {
		return nil, errBLS12381InvalidInputLength
	}
	var err error
	points := make([]*bls12381.PointG2, k)
	scalars := make([]*big.Int, k)

	// Initialize G2
	g := bls12381.NewG2()

	// Decode point scalar pairs
	for i := 0; i < k; i++ {
		off := 288 * i
		t0, t1, t2 := off, off+256, off+288
		// Decode G1 point
		if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
			return nil, err
		}
		// Decode scalar value
		scalars[i] = new(big.Int).SetBytes(input[t1:t2])
	}

	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
	r := g.New()
	g.MultiExp(r, points, scalars)

	// Encode the G2 point to 256 bytes.
	return g.EncodePoint(r), nil
}

// bls12381Pairing implements EIP-2537 Pairing precompile.
type bls12381Pairing struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381Pairing) RequiredGas(input []byte) uint64 {
	return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas
}

func (c *bls12381Pairing) Run(input []byte) ([]byte, error) {
	// Implements EIP-2537 Pairing precompile logic.
	// > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure:
	// > - `128` bytes of G1 point encoding
	// > - `256` bytes of G2 point encoding
	// > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise
	// > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively).
	k := len(input) / 384
	if len(input) == 0 || len(input)%384 != 0 {
		return nil, errBLS12381InvalidInputLength
	}

	// Initialize BLS12-381 pairing engine
	e := bls12381.NewPairingEngine()
	g1, g2 := e.G1, e.G2

	// Decode pairs
	for i := 0; i < k; i++ {
		off := 384 * i
		t0, t1, t2 := off, off+128, off+384

		// Decode G1 point
		p1, err := g1.DecodePoint(input[t0:t1])
		if err != nil {
			return nil, err
		}
		// Decode G2 point
		p2, err := g2.DecodePoint(input[t1:t2])
		if err != nil {
			return nil, err
		}

		// 'point is on curve' check already done,
		// Here we need to apply subgroup checks.
		if !g1.InCorrectSubgroup(p1) {
			return nil, errBLS12381G1PointSubgroup
		}
		if !g2.InCorrectSubgroup(p2) {
			return nil, errBLS12381G2PointSubgroup
		}

		// Update pairing engine with G1 and G2 ponits
		e.AddPair(p1, p2)
	}
	// Prepare 32 byte output
	out := make([]byte, 32)

	// Compute pairing and set the result
	if e.Check() {
		out[31] = 1
	}
	return out, nil
}

// decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element.
// Removes top 16 bytes of 64 byte input.
func decodeBLS12381FieldElement(in []byte) ([]byte, error) {
	if len(in) != 64 {
		return nil, errors.New("invalid field element length")
	}
	// check top bytes
	for i := 0; i < 16; i++ {
		if in[i] != byte(0x00) {
			return nil, errBLS12381InvalidFieldElementTopBytes
		}
	}
	out := make([]byte, 48)
	copy(out[:], in[16:])
	return out, nil
}

// bls12381MapG1 implements EIP-2537 MapG1 precompile.
type bls12381MapG1 struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381MapG1) RequiredGas(input []byte) uint64 {
	return params.Bls12381MapG1Gas
}

func (c *bls12381MapG1) Run(input []byte) ([]byte, error) {
	// Implements EIP-2537 Map_To_G1 precompile.
	// > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field.
	// > Output of this call is `128` bytes and is G1 point following respective encoding rules.
	if len(input) != 64 {
		return nil, errBLS12381InvalidInputLength
	}

	// Decode input field element
	fe, err := decodeBLS12381FieldElement(input)
	if err != nil {
		return nil, err
	}

	// Initialize G1
	g := bls12381.NewG1()

	// Compute mapping
	r, err := g.MapToCurve(fe)
	if err != nil {
		return nil, err
	}

1001
	// Encode the G1 point to 128 bytes
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	return g.EncodePoint(r), nil
}

// bls12381MapG2 implements EIP-2537 MapG2 precompile.
type bls12381MapG2 struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381MapG2) RequiredGas(input []byte) uint64 {
	return params.Bls12381MapG2Gas
}

func (c *bls12381MapG2) Run(input []byte) ([]byte, error) {
	// Implements EIP-2537 Map_FP2_TO_G2 precompile logic.
	// > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field.
	// > Output of this call is `256` bytes and is G2 point following respective encoding rules.
	if len(input) != 128 {
		return nil, errBLS12381InvalidInputLength
	}

	// Decode input field element
	fe := make([]byte, 96)
	c0, err := decodeBLS12381FieldElement(input[:64])
	if err != nil {
		return nil, err
	}
	copy(fe[48:], c0)
	c1, err := decodeBLS12381FieldElement(input[64:])
	if err != nil {
		return nil, err
	}
	copy(fe[:48], c1)

	// Initialize G2
	g := bls12381.NewG2()

	// Compute mapping
	r, err := g.MapToCurve(fe)
	if err != nil {
		return nil, err
	}

	// Encode the G2 point to 256 bytes
	return g.EncodePoint(r), nil
}