ledger.go 20.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// This file contains the implementation for interacting with the Ledger hardware
// wallets. The wire protocol spec can be found in the Ledger Blue GitHub repo:
// https://raw.githubusercontent.com/LedgerHQ/blue-app-eth/master/doc/ethapp.asc

package usbwallet

import (
	"encoding/binary"
	"encoding/hex"
	"errors"
	"fmt"
	"io"
	"math/big"

	"github.com/ethereum/go-ethereum/accounts"
	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/common/hexutil"
	"github.com/ethereum/go-ethereum/core/types"
35
	"github.com/ethereum/go-ethereum/crypto"
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
	"github.com/ethereum/go-ethereum/log"
	"github.com/ethereum/go-ethereum/rlp"
)

// ledgerOpcode is an enumeration encoding the supported Ledger opcodes.
type ledgerOpcode byte

// ledgerParam1 is an enumeration encoding the supported Ledger parameters for
// specific opcodes. The same parameter values may be reused between opcodes.
type ledgerParam1 byte

// ledgerParam2 is an enumeration encoding the supported Ledger parameters for
// specific opcodes. The same parameter values may be reused between opcodes.
type ledgerParam2 byte

const (
	ledgerOpRetrieveAddress  ledgerOpcode = 0x02 // Returns the public key and Ethereum address for a given BIP 32 path
	ledgerOpSignTransaction  ledgerOpcode = 0x04 // Signs an Ethereum transaction after having the user validate the parameters
	ledgerOpGetConfiguration ledgerOpcode = 0x06 // Returns specific wallet application configuration
55
	ledgerOpSignTypedMessage ledgerOpcode = 0x0c // Signs an Ethereum message following the EIP 712 specification
56 57

	ledgerP1DirectlyFetchAddress    ledgerParam1 = 0x00 // Return address directly from the wallet
58
	ledgerP1InitTypedMessageData    ledgerParam1 = 0x00 // First chunk of Typed Message data
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
	ledgerP1InitTransactionData     ledgerParam1 = 0x00 // First transaction data block for signing
	ledgerP1ContTransactionData     ledgerParam1 = 0x80 // Subsequent transaction data block for signing
	ledgerP2DiscardAddressChainCode ledgerParam2 = 0x00 // Do not return the chain code along with the address
)

// errLedgerReplyInvalidHeader is the error message returned by a Ledger data exchange
// if the device replies with a mismatching header. This usually means the device
// is in browser mode.
var errLedgerReplyInvalidHeader = errors.New("ledger: invalid reply header")

// errLedgerInvalidVersionReply is the error message returned by a Ledger version retrieval
// when a response does arrive, but it does not contain the expected data.
var errLedgerInvalidVersionReply = errors.New("ledger: invalid version reply")

// ledgerDriver implements the communication with a Ledger hardware wallet.
type ledgerDriver struct {
	device  io.ReadWriter // USB device connection to communicate through
	version [3]byte       // Current version of the Ledger firmware (zero if app is offline)
	browser bool          // Flag whether the Ledger is in browser mode (reply channel mismatch)
	failure error         // Any failure that would make the device unusable
	log     log.Logger    // Contextual logger to tag the ledger with its id
}

// newLedgerDriver creates a new instance of a Ledger USB protocol driver.
func newLedgerDriver(logger log.Logger) driver {
	return &ledgerDriver{
		log: logger,
	}
}

// Status implements usbwallet.driver, returning various states the Ledger can
// currently be in.
func (w *ledgerDriver) Status() (string, error) {
	if w.failure != nil {
		return fmt.Sprintf("Failed: %v", w.failure), w.failure
	}
	if w.browser {
		return "Ethereum app in browser mode", w.failure
	}
	if w.offline() {
		return "Ethereum app offline", w.failure
	}
	return fmt.Sprintf("Ethereum app v%d.%d.%d online", w.version[0], w.version[1], w.version[2]), w.failure
}

// offline returns whether the wallet and the Ethereum app is offline or not.
//
// The method assumes that the state lock is held!
func (w *ledgerDriver) offline() bool {
	return w.version == [3]byte{0, 0, 0}
}

// Open implements usbwallet.driver, attempting to initialize the connection to the
// Ledger hardware wallet. The Ledger does not require a user passphrase, so that
// parameter is silently discarded.
func (w *ledgerDriver) Open(device io.ReadWriter, passphrase string) error {
	w.device, w.failure = device, nil

	_, err := w.ledgerDerive(accounts.DefaultBaseDerivationPath)
	if err != nil {
		// Ethereum app is not running or in browser mode, nothing more to do, return
		if err == errLedgerReplyInvalidHeader {
			w.browser = true
		}
		return nil
	}
	// Try to resolve the Ethereum app's version, will fail prior to v1.0.2
	if w.version, err = w.ledgerVersion(); err != nil {
		w.version = [3]byte{1, 0, 0} // Assume worst case, can't verify if v1.0.0 or v1.0.1
	}
	return nil
}

// Close implements usbwallet.driver, cleaning up and metadata maintained within
// the Ledger driver.
func (w *ledgerDriver) Close() error {
	w.browser, w.version = false, [3]byte{}
	return nil
}

// Heartbeat implements usbwallet.driver, performing a sanity check against the
// Ledger to see if it's still online.
func (w *ledgerDriver) Heartbeat() error {
	if _, err := w.ledgerVersion(); err != nil && err != errLedgerInvalidVersionReply {
		w.failure = err
		return err
	}
	return nil
}

// Derive implements usbwallet.driver, sending a derivation request to the Ledger
// and returning the Ethereum address located on that derivation path.
func (w *ledgerDriver) Derive(path accounts.DerivationPath) (common.Address, error) {
	return w.ledgerDerive(path)
}

// SignTx implements usbwallet.driver, sending the transaction to the Ledger and
// waiting for the user to confirm or deny the transaction.
//
// Note, if the version of the Ethereum application running on the Ledger wallet is
// too old to sign EIP-155 transactions, but such is requested nonetheless, an error
// will be returned opposed to silently signing in Homestead mode.
func (w *ledgerDriver) SignTx(path accounts.DerivationPath, tx *types.Transaction, chainID *big.Int) (common.Address, *types.Transaction, error) {
	// If the Ethereum app doesn't run, abort
	if w.offline() {
		return common.Address{}, nil, accounts.ErrWalletClosed
	}
	// Ensure the wallet is capable of signing the given transaction
167
	if chainID != nil && w.version[0] <= 1 && w.version[1] <= 0 && w.version[2] <= 2 {
168
		//lint:ignore ST1005 brand name displayed on the console
169 170 171 172 173 174
		return common.Address{}, nil, fmt.Errorf("Ledger v%d.%d.%d doesn't support signing this transaction, please update to v1.0.3 at least", w.version[0], w.version[1], w.version[2])
	}
	// All infos gathered and metadata checks out, request signing
	return w.ledgerSign(path, tx, chainID)
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
// SignTypedMessage implements usbwallet.driver, sending the message to the Ledger and
// waiting for the user to sign or deny the transaction.
//
// Note: this was introduced in the ledger 1.5.0 firmware
func (w *ledgerDriver) SignTypedMessage(path accounts.DerivationPath, domainHash []byte, messageHash []byte) ([]byte, error) {
	// If the Ethereum app doesn't run, abort
	if w.offline() {
		return nil, accounts.ErrWalletClosed
	}
	// Ensure the wallet is capable of signing the given transaction
	if w.version[0] < 1 && w.version[1] < 5 {
		//lint:ignore ST1005 brand name displayed on the console
		return nil, fmt.Errorf("Ledger version >= 1.5.0 required for EIP-712 signing (found version v%d.%d.%d)", w.version[0], w.version[1], w.version[2])
	}
	// All infos gathered and metadata checks out, request signing
	return w.ledgerSignTypedMessage(path, domainHash, messageHash)
}

193 194 195 196 197
// ledgerVersion retrieves the current version of the Ethereum wallet app running
// on the Ledger wallet.
//
// The version retrieval protocol is defined as follows:
//
198 199 200
//	CLA | INS | P1 | P2 | Lc | Le
//	----+-----+----+----+----+---
//	 E0 | 06  | 00 | 00 | 00 | 04
201 202 203
//
// With no input data, and the output data being:
//
204 205 206 207 208 209
//	Description                                        | Length
//	---------------------------------------------------+--------
//	Flags 01: arbitrary data signature enabled by user | 1 byte
//	Application major version                          | 1 byte
//	Application minor version                          | 1 byte
//	Application patch version                          | 1 byte
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
func (w *ledgerDriver) ledgerVersion() ([3]byte, error) {
	// Send the request and wait for the response
	reply, err := w.ledgerExchange(ledgerOpGetConfiguration, 0, 0, nil)
	if err != nil {
		return [3]byte{}, err
	}
	if len(reply) != 4 {
		return [3]byte{}, errLedgerInvalidVersionReply
	}
	// Cache the version for future reference
	var version [3]byte
	copy(version[:], reply[1:])
	return version, nil
}

// ledgerDerive retrieves the currently active Ethereum address from a Ledger
// wallet at the specified derivation path.
//
// The address derivation protocol is defined as follows:
//
230 231 232 233 234 235 236
//	CLA | INS | P1 | P2 | Lc  | Le
//	----+-----+----+----+-----+---
//	 E0 | 02  | 00 return address
//	            01 display address and confirm before returning
//	               | 00: do not return the chain code
//	               | 01: return the chain code
//	                    | var | 00
237 238 239
//
// Where the input data is:
//
240 241 242 243 244 245
//	Description                                      | Length
//	-------------------------------------------------+--------
//	Number of BIP 32 derivations to perform (max 10) | 1 byte
//	First derivation index (big endian)              | 4 bytes
//	...                                              | 4 bytes
//	Last derivation index (big endian)               | 4 bytes
246 247 248
//
// And the output data is:
//
249 250 251 252 253 254 255
//	Description             | Length
//	------------------------+-------------------
//	Public Key length       | 1 byte
//	Uncompressed Public Key | arbitrary
//	Ethereum address length | 1 byte
//	Ethereum address        | 40 bytes hex ascii
//	Chain code if requested | 32 bytes
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
func (w *ledgerDriver) ledgerDerive(derivationPath []uint32) (common.Address, error) {
	// Flatten the derivation path into the Ledger request
	path := make([]byte, 1+4*len(derivationPath))
	path[0] = byte(len(derivationPath))
	for i, component := range derivationPath {
		binary.BigEndian.PutUint32(path[1+4*i:], component)
	}
	// Send the request and wait for the response
	reply, err := w.ledgerExchange(ledgerOpRetrieveAddress, ledgerP1DirectlyFetchAddress, ledgerP2DiscardAddressChainCode, path)
	if err != nil {
		return common.Address{}, err
	}
	// Discard the public key, we don't need that for now
	if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
		return common.Address{}, errors.New("reply lacks public key entry")
	}
	reply = reply[1+int(reply[0]):]

	// Extract the Ethereum hex address string
	if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
		return common.Address{}, errors.New("reply lacks address entry")
	}
	hexstr := reply[1 : 1+int(reply[0])]

	// Decode the hex sting into an Ethereum address and return
	var address common.Address
282 283 284
	if _, err = hex.Decode(address[:], hexstr); err != nil {
		return common.Address{}, err
	}
285 286 287 288 289 290 291 292
	return address, nil
}

// ledgerSign sends the transaction to the Ledger wallet, and waits for the user
// to confirm or deny the transaction.
//
// The transaction signing protocol is defined as follows:
//
293 294 295 296 297
//	CLA | INS | P1 | P2 | Lc  | Le
//	----+-----+----+----+-----+---
//	 E0 | 04  | 00: first transaction data block
//	            80: subsequent transaction data block
//	               | 00 | variable | variable
298 299 300
//
// Where the input for the first transaction block (first 255 bytes) is:
//
301 302 303 304 305 306 307
//	Description                                      | Length
//	-------------------------------------------------+----------
//	Number of BIP 32 derivations to perform (max 10) | 1 byte
//	First derivation index (big endian)              | 4 bytes
//	...                                              | 4 bytes
//	Last derivation index (big endian)               | 4 bytes
//	RLP transaction chunk                            | arbitrary
308 309 310
//
// And the input for subsequent transaction blocks (first 255 bytes) are:
//
311 312 313
//	Description           | Length
//	----------------------+----------
//	RLP transaction chunk | arbitrary
314 315 316
//
// And the output data is:
//
317 318 319 320 321
//	Description | Length
//	------------+---------
//	signature V | 1 byte
//	signature R | 32 bytes
//	signature S | 32 bytes
322 323 324 325 326 327 328
func (w *ledgerDriver) ledgerSign(derivationPath []uint32, tx *types.Transaction, chainID *big.Int) (common.Address, *types.Transaction, error) {
	// Flatten the derivation path into the Ledger request
	path := make([]byte, 1+4*len(derivationPath))
	path[0] = byte(len(derivationPath))
	for i, component := range derivationPath {
		binary.BigEndian.PutUint32(path[1+4*i:], component)
	}
329
	// Create the transaction RLP based on whether legacy or EIP155 signing was requested
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	var (
		txrlp []byte
		err   error
	)
	if chainID == nil {
		if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data()}); err != nil {
			return common.Address{}, nil, err
		}
	} else {
		if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data(), chainID, big.NewInt(0), big.NewInt(0)}); err != nil {
			return common.Address{}, nil, err
		}
	}
	payload := append(path, txrlp...)

	// Send the request and wait for the response
	var (
		op    = ledgerP1InitTransactionData
		reply []byte
	)
	for len(payload) > 0 {
		// Calculate the size of the next data chunk
		chunk := 255
		if chunk > len(payload) {
			chunk = len(payload)
		}
		// Send the chunk over, ensuring it's processed correctly
		reply, err = w.ledgerExchange(ledgerOpSignTransaction, op, 0, payload[:chunk])
		if err != nil {
			return common.Address{}, nil, err
		}
		// Shift the payload and ensure subsequent chunks are marked as such
		payload = payload[chunk:]
		op = ledgerP1ContTransactionData
	}
	// Extract the Ethereum signature and do a sanity validation
366
	if len(reply) != crypto.SignatureLength {
367 368 369 370 371 372 373 374 375 376
		return common.Address{}, nil, errors.New("reply lacks signature")
	}
	signature := append(reply[1:], reply[0])

	// Create the correct signer and signature transform based on the chain ID
	var signer types.Signer
	if chainID == nil {
		signer = new(types.HomesteadSigner)
	} else {
		signer = types.NewEIP155Signer(chainID)
377
		signature[64] -= byte(chainID.Uint64()*2 + 35)
378 379 380 381 382 383 384 385 386 387 388 389
	}
	signed, err := tx.WithSignature(signer, signature)
	if err != nil {
		return common.Address{}, nil, err
	}
	sender, err := types.Sender(signer, signed)
	if err != nil {
		return common.Address{}, nil, err
	}
	return sender, signed, nil
}

390 391 392 393 394
// ledgerSignTypedMessage sends the transaction to the Ledger wallet, and waits for the user
// to confirm or deny the transaction.
//
// The signing protocol is defined as follows:
//
395 396 397
//	CLA | INS | P1 | P2                          | Lc  | Le
//	----+-----+----+-----------------------------+-----+---
//	 E0 | 0C  | 00 | implementation version : 00 | variable | variable
398 399 400
//
// Where the input is:
//
401 402 403 404 405 406 407 408
//	Description                                      | Length
//	-------------------------------------------------+----------
//	Number of BIP 32 derivations to perform (max 10) | 1 byte
//	First derivation index (big endian)              | 4 bytes
//	...                                              | 4 bytes
//	Last derivation index (big endian)               | 4 bytes
//	domain hash                                      | 32 bytes
//	message hash                                     | 32 bytes
409 410 411
//
// And the output data is:
//
412 413 414 415 416
//	Description | Length
//	------------+---------
//	signature V | 1 byte
//	signature R | 32 bytes
//	signature S | 32 bytes
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
func (w *ledgerDriver) ledgerSignTypedMessage(derivationPath []uint32, domainHash []byte, messageHash []byte) ([]byte, error) {
	// Flatten the derivation path into the Ledger request
	path := make([]byte, 1+4*len(derivationPath))
	path[0] = byte(len(derivationPath))
	for i, component := range derivationPath {
		binary.BigEndian.PutUint32(path[1+4*i:], component)
	}
	// Create the 712 message
	payload := append(path, domainHash...)
	payload = append(payload, messageHash...)

	// Send the request and wait for the response
	var (
		op    = ledgerP1InitTypedMessageData
		reply []byte
		err   error
	)

	// Send the message over, ensuring it's processed correctly
	reply, err = w.ledgerExchange(ledgerOpSignTypedMessage, op, 0, payload)

	if err != nil {
		return nil, err
	}

	// Extract the Ethereum signature and do a sanity validation
	if len(reply) != crypto.SignatureLength {
		return nil, errors.New("reply lacks signature")
	}
	signature := append(reply[1:], reply[0])
	return signature, nil
}

450 451 452 453 454
// ledgerExchange performs a data exchange with the Ledger wallet, sending it a
// message and retrieving the response.
//
// The common transport header is defined as follows:
//
455 456 457 458 459 460
//	Description                           | Length
//	--------------------------------------+----------
//	Communication channel ID (big endian) | 2 bytes
//	Command tag                           | 1 byte
//	Packet sequence index (big endian)    | 2 bytes
//	Payload                               | arbitrary
461 462 463 464 465 466 467 468 469 470 471 472 473
//
// The Communication channel ID allows commands multiplexing over the same
// physical link. It is not used for the time being, and should be set to 0101
// to avoid compatibility issues with implementations ignoring a leading 00 byte.
//
// The Command tag describes the message content. Use TAG_APDU (0x05) for standard
// APDU payloads, or TAG_PING (0x02) for a simple link test.
//
// The Packet sequence index describes the current sequence for fragmented payloads.
// The first fragment index is 0x00.
//
// APDU Command payloads are encoded as follows:
//
474 475 476 477 478 479 480 481 482
//	Description              | Length
//	-----------------------------------
//	APDU length (big endian) | 2 bytes
//	APDU CLA                 | 1 byte
//	APDU INS                 | 1 byte
//	APDU P1                  | 1 byte
//	APDU P2                  | 1 byte
//	APDU length              | 1 byte
//	Optional APDU data       | arbitrary
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
func (w *ledgerDriver) ledgerExchange(opcode ledgerOpcode, p1 ledgerParam1, p2 ledgerParam2, data []byte) ([]byte, error) {
	// Construct the message payload, possibly split into multiple chunks
	apdu := make([]byte, 2, 7+len(data))

	binary.BigEndian.PutUint16(apdu, uint16(5+len(data)))
	apdu = append(apdu, []byte{0xe0, byte(opcode), byte(p1), byte(p2), byte(len(data))}...)
	apdu = append(apdu, data...)

	// Stream all the chunks to the device
	header := []byte{0x01, 0x01, 0x05, 0x00, 0x00} // Channel ID and command tag appended
	chunk := make([]byte, 64)
	space := len(chunk) - len(header)

	for i := 0; len(apdu) > 0; i++ {
		// Construct the new message to stream
		chunk = append(chunk[:0], header...)
		binary.BigEndian.PutUint16(chunk[3:], uint16(i))

		if len(apdu) > space {
			chunk = append(chunk, apdu[:space]...)
			apdu = apdu[space:]
		} else {
			chunk = append(chunk, apdu...)
			apdu = nil
		}
		// Send over to the device
		w.log.Trace("Data chunk sent to the Ledger", "chunk", hexutil.Bytes(chunk))
		if _, err := w.device.Write(chunk); err != nil {
			return nil, err
		}
	}
	// Stream the reply back from the wallet in 64 byte chunks
	var reply []byte
	chunk = chunk[:64] // Yeah, we surely have enough space
	for {
		// Read the next chunk from the Ledger wallet
		if _, err := io.ReadFull(w.device, chunk); err != nil {
			return nil, err
		}
		w.log.Trace("Data chunk received from the Ledger", "chunk", hexutil.Bytes(chunk))

		// Make sure the transport header matches
		if chunk[0] != 0x01 || chunk[1] != 0x01 || chunk[2] != 0x05 {
			return nil, errLedgerReplyInvalidHeader
		}
		// If it's the first chunk, retrieve the total message length
		var payload []byte

		if chunk[3] == 0x00 && chunk[4] == 0x00 {
			reply = make([]byte, 0, int(binary.BigEndian.Uint16(chunk[5:7])))
			payload = chunk[7:]
		} else {
			payload = chunk[5:]
		}
		// Append to the reply and stop when filled up
		if left := cap(reply) - len(reply); left > len(payload) {
			reply = append(reply, payload...)
		} else {
			reply = append(reply, payload[:left]...)
			break
		}
	}
	return reply[:len(reply)-2], nil
}