curve.go 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright 2014 The go-ethereum Authors
// This file is part of go-ethereum.
//
// go-ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// go-ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with go-ethereum.  If not, see <http://www.gnu.org/licenses/>.

obscuren's avatar
obscuren committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
package crypto

// Copyright 2010 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package bitelliptic implements several Koblitz elliptic curves over prime
// fields.

// This package operates, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
// calculation can be performed within the transform (as in ScalarMult and
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
// reverse the transform than to operate in affine coordinates.

import (
	"crypto/elliptic"
	"io"
	"math/big"
	"sync"
)

// A BitCurve represents a Koblitz Curve with a=0.
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
type BitCurve struct {
	P       *big.Int // the order of the underlying field
	N       *big.Int // the order of the base point
	B       *big.Int // the constant of the BitCurve equation
	Gx, Gy  *big.Int // (x,y) of the base point
	BitSize int      // the size of the underlying field
}

func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
	return &elliptic.CurveParams{BitCurve.P, BitCurve.N, BitCurve.B, BitCurve.Gx, BitCurve.Gy, BitCurve.BitSize}
}

// IsOnBitCurve returns true if the given (x,y) lies on the BitCurve.
func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
	// y² = x³ + b
	y2 := new(big.Int).Mul(y, y) //y²
	y2.Mod(y2, BitCurve.P)       //y²%P

	x3 := new(big.Int).Mul(x, x) //x²
	x3.Mul(x3, x)                //x³

	x3.Add(x3, BitCurve.B) //x³+B
	x3.Mod(x3, BitCurve.P) //(x³+B)%P

	return x3.Cmp(y2) == 0
}

//TODO: double check if the function is okay
// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file.
func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
	zinv := new(big.Int).ModInverse(z, BitCurve.P)
	zinvsq := new(big.Int).Mul(zinv, zinv)

	xOut = new(big.Int).Mul(x, zinvsq)
	xOut.Mod(xOut, BitCurve.P)
	zinvsq.Mul(zinvsq, zinv)
	yOut = new(big.Int).Mul(y, zinvsq)
	yOut.Mod(yOut, BitCurve.P)
	return
}

// Add returns the sum of (x1,y1) and (x2,y2)
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
	z := new(big.Int).SetInt64(1)
	return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
}

// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
	z1z1 := new(big.Int).Mul(z1, z1)
	z1z1.Mod(z1z1, BitCurve.P)
	z2z2 := new(big.Int).Mul(z2, z2)
	z2z2.Mod(z2z2, BitCurve.P)

	u1 := new(big.Int).Mul(x1, z2z2)
	u1.Mod(u1, BitCurve.P)
	u2 := new(big.Int).Mul(x2, z1z1)
	u2.Mod(u2, BitCurve.P)
	h := new(big.Int).Sub(u2, u1)
	if h.Sign() == -1 {
		h.Add(h, BitCurve.P)
	}
	i := new(big.Int).Lsh(h, 1)
	i.Mul(i, i)
	j := new(big.Int).Mul(h, i)

	s1 := new(big.Int).Mul(y1, z2)
	s1.Mul(s1, z2z2)
	s1.Mod(s1, BitCurve.P)
	s2 := new(big.Int).Mul(y2, z1)
	s2.Mul(s2, z1z1)
	s2.Mod(s2, BitCurve.P)
	r := new(big.Int).Sub(s2, s1)
	if r.Sign() == -1 {
		r.Add(r, BitCurve.P)
	}
	r.Lsh(r, 1)
	v := new(big.Int).Mul(u1, i)

	x3 := new(big.Int).Set(r)
	x3.Mul(x3, x3)
	x3.Sub(x3, j)
	x3.Sub(x3, v)
	x3.Sub(x3, v)
	x3.Mod(x3, BitCurve.P)

	y3 := new(big.Int).Set(r)
	v.Sub(v, x3)
	y3.Mul(y3, v)
	s1.Mul(s1, j)
	s1.Lsh(s1, 1)
	y3.Sub(y3, s1)
	y3.Mod(y3, BitCurve.P)

	z3 := new(big.Int).Add(z1, z2)
	z3.Mul(z3, z3)
	z3.Sub(z3, z1z1)
	if z3.Sign() == -1 {
		z3.Add(z3, BitCurve.P)
	}
	z3.Sub(z3, z2z2)
	if z3.Sign() == -1 {
		z3.Add(z3, BitCurve.P)
	}
	z3.Mul(z3, h)
	z3.Mod(z3, BitCurve.P)

	return x3, y3, z3
}

// Double returns 2*(x,y)
func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
	z1 := new(big.Int).SetInt64(1)
	return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
}

// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l

	a := new(big.Int).Mul(x, x) //X1²
	b := new(big.Int).Mul(y, y) //Y1²
	c := new(big.Int).Mul(b, b) //B²

	d := new(big.Int).Add(x, b) //X1+B
	d.Mul(d, d)                 //(X1+B)²
	d.Sub(d, a)                 //(X1+B)²-A
	d.Sub(d, c)                 //(X1+B)²-A-C
	d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C)

	e := new(big.Int).Mul(big.NewInt(3), a) //3*A
	f := new(big.Int).Mul(e, e)             //E²

	x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
	x3.Sub(f, x3)                            //F-2*D
	x3.Mod(x3, BitCurve.P)

	y3 := new(big.Int).Sub(d, x3)                  //D-X3
	y3.Mul(e, y3)                                  //E*(D-X3)
	y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
	y3.Mod(y3, BitCurve.P)

	z3 := new(big.Int).Mul(y, z) //Y1*Z1
	z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1
	z3.Mod(z3, BitCurve.P)

	return x3, y3, z3
}

//TODO: double check if it is okay
// ScalarMult returns k*(Bx,By) where k is a number in big-endian form.
func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
	// We have a slight problem in that the identity of the group (the
	// point at infinity) cannot be represented in (x, y) form on a finite
	// machine. Thus the standard add/double algorithm has to be tweaked
	// slightly: our initial state is not the identity, but x, and we
	// ignore the first true bit in |k|.  If we don't find any true bits in
	// |k|, then we return nil, nil, because we cannot return the identity
	// element.

	Bz := new(big.Int).SetInt64(1)
	x := Bx
	y := By
	z := Bz

	seenFirstTrue := false
	for _, byte := range k {
		for bitNum := 0; bitNum < 8; bitNum++ {
			if seenFirstTrue {
				x, y, z = BitCurve.doubleJacobian(x, y, z)
			}
			if byte&0x80 == 0x80 {
				if !seenFirstTrue {
					seenFirstTrue = true
				} else {
					x, y, z = BitCurve.addJacobian(Bx, By, Bz, x, y, z)
				}
			}
			byte <<= 1
		}
	}

	if !seenFirstTrue {
		return nil, nil
	}

	return BitCurve.affineFromJacobian(x, y, z)
}

// ScalarBaseMult returns k*G, where G is the base point of the group and k is
// an integer in big-endian form.
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
	return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
}

var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}

//TODO: double check if it is okay
// GenerateKey returns a public/private key pair. The private key is generated
// using the given reader, which must return random data.
func (BitCurve *BitCurve) GenerateKey(rand io.Reader) (priv []byte, x, y *big.Int, err error) {
	byteLen := (BitCurve.BitSize + 7) >> 3
	priv = make([]byte, byteLen)

	for x == nil {
		_, err = io.ReadFull(rand, priv)
		if err != nil {
			return
		}
		// We have to mask off any excess bits in the case that the size of the
		// underlying field is not a whole number of bytes.
		priv[0] &= mask[BitCurve.BitSize%8]
		// This is because, in tests, rand will return all zeros and we don't
		// want to get the point at infinity and loop forever.
		priv[1] ^= 0x42
		x, y = BitCurve.ScalarBaseMult(priv)
	}
	return
}

// Marshal converts a point into the form specified in section 4.3.6 of ANSI
// X9.62.
func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
	byteLen := (BitCurve.BitSize + 7) >> 3

	ret := make([]byte, 1+2*byteLen)
	ret[0] = 4 // uncompressed point

	xBytes := x.Bytes()
	copy(ret[1+byteLen-len(xBytes):], xBytes)
	yBytes := y.Bytes()
	copy(ret[1+2*byteLen-len(yBytes):], yBytes)
	return ret
}

// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
// error, x = nil.
func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
	byteLen := (BitCurve.BitSize + 7) >> 3
	if len(data) != 1+2*byteLen {
		return
	}
	if data[0] != 4 { // uncompressed form
		return
	}
	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
	y = new(big.Int).SetBytes(data[1+byteLen:])
	return
}

//curve parameters taken from:
//http://www.secg.org/collateral/sec2_final.pdf

var initonce sync.Once
var ecp160k1 *BitCurve
var ecp192k1 *BitCurve
var ecp224k1 *BitCurve
var ecp256k1 *BitCurve

func initAll() {
	initS160()
	initS192()
	initS224()
	initS256()
}

func initS160() {
	// See SEC 2 section 2.4.1
	ecp160k1 = new(BitCurve)
	ecp160k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73", 16)
	ecp160k1.N, _ = new(big.Int).SetString("0100000000000000000001B8FA16DFAB9ACA16B6B3", 16)
	ecp160k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000007", 16)
	ecp160k1.Gx, _ = new(big.Int).SetString("3B4C382CE37AA192A4019E763036F4F5DD4D7EBB", 16)
	ecp160k1.Gy, _ = new(big.Int).SetString("938CF935318FDCED6BC28286531733C3F03C4FEE", 16)
	ecp160k1.BitSize = 160
}

func initS192() {
	// See SEC 2 section 2.5.1
	ecp192k1 = new(BitCurve)
	ecp192k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", 16)
	ecp192k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 16)
	ecp192k1.B, _ = new(big.Int).SetString("000000000000000000000000000000000000000000000003", 16)
	ecp192k1.Gx, _ = new(big.Int).SetString("DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D", 16)
	ecp192k1.Gy, _ = new(big.Int).SetString("9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D", 16)
	ecp192k1.BitSize = 192
}

func initS224() {
	// See SEC 2 section 2.6.1
	ecp224k1 = new(BitCurve)
	ecp224k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", 16)
	ecp224k1.N, _ = new(big.Int).SetString("010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 16)
	ecp224k1.B, _ = new(big.Int).SetString("00000000000000000000000000000000000000000000000000000005", 16)
	ecp224k1.Gx, _ = new(big.Int).SetString("A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C", 16)
	ecp224k1.Gy, _ = new(big.Int).SetString("7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5", 16)
	ecp224k1.BitSize = 224
}

func initS256() {
	// See SEC 2 section 2.7.1
	ecp256k1 = new(BitCurve)
	ecp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
	ecp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
	ecp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
	ecp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
	ecp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
	ecp256k1.BitSize = 256
}

// S160 returns a BitCurve which implements secp160k1 (see SEC 2 section 2.4.1)
func S160() *BitCurve {
	initonce.Do(initAll)
	return ecp160k1
}

// S192 returns a BitCurve which implements secp192k1 (see SEC 2 section 2.5.1)
func S192() *BitCurve {
	initonce.Do(initAll)
	return ecp192k1
}

// S224 returns a BitCurve which implements secp224k1 (see SEC 2 section 2.6.1)
func S224() *BitCurve {
	initonce.Do(initAll)
	return ecp224k1
}

// S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1)
func S256() *BitCurve {
	initonce.Do(initAll)
	return ecp256k1
}