big.go 5.44 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

// Package math provides integer math utilities.
package math

import (
21
	"fmt"
22 23 24
	"math/big"
)

25
// Various big integer limit values.
26 27 28 29
var (
	tt255     = BigPow(2, 255)
	tt256     = BigPow(2, 256)
	tt256m1   = new(big.Int).Sub(tt256, big.NewInt(1))
30
	tt63      = BigPow(2, 63)
31
	MaxBig256 = new(big.Int).Set(tt256m1)
32
	MaxBig63  = new(big.Int).Sub(tt63, big.NewInt(1))
33 34
)

35 36 37 38 39 40 41
const (
	// number of bits in a big.Word
	wordBits = 32 << (uint64(^big.Word(0)) >> 63)
	// number of bytes in a big.Word
	wordBytes = wordBits / 8
)

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
// HexOrDecimal256 marshals big.Int as hex or decimal.
type HexOrDecimal256 big.Int

// UnmarshalText implements encoding.TextUnmarshaler.
func (i *HexOrDecimal256) UnmarshalText(input []byte) error {
	bigint, ok := ParseBig256(string(input))
	if !ok {
		return fmt.Errorf("invalid hex or decimal integer %q", input)
	}
	*i = HexOrDecimal256(*bigint)
	return nil
}

// MarshalText implements encoding.TextMarshaler.
func (i *HexOrDecimal256) MarshalText() ([]byte, error) {
57 58 59
	if i == nil {
		return []byte("0x0"), nil
	}
60 61 62
	return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil
}

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
// ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax.
// Leading zeros are accepted. The empty string parses as zero.
func ParseBig256(s string) (*big.Int, bool) {
	if s == "" {
		return new(big.Int), true
	}
	var bigint *big.Int
	var ok bool
	if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") {
		bigint, ok = new(big.Int).SetString(s[2:], 16)
	} else {
		bigint, ok = new(big.Int).SetString(s, 10)
	}
	if ok && bigint.BitLen() > 256 {
		bigint, ok = nil, false
	}
	return bigint, ok
}

82
// MustParseBig256 parses s as a 256 bit big integer and panics if the string is invalid.
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
func MustParseBig256(s string) *big.Int {
	v, ok := ParseBig256(s)
	if !ok {
		panic("invalid 256 bit integer: " + s)
	}
	return v
}

// BigPow returns a ** b as a big integer.
func BigPow(a, b int64) *big.Int {
	r := big.NewInt(a)
	return r.Exp(r, big.NewInt(b), nil)
}

// BigMax returns the larger of x or y.
func BigMax(x, y *big.Int) *big.Int {
	if x.Cmp(y) < 0 {
		return y
	}
	return x
}

// BigMin returns the smaller of x or y.
func BigMin(x, y *big.Int) *big.Int {
	if x.Cmp(y) > 0 {
		return y
	}
	return x
}

// FirstBitSet returns the index of the first 1 bit in v, counting from LSB.
func FirstBitSet(v *big.Int) int {
	for i := 0; i < v.BitLen(); i++ {
		if v.Bit(i) > 0 {
			return i
		}
	}
	return v.BitLen()
}

// PaddedBigBytes encodes a big integer as a big-endian byte slice. The length
// of the slice is at least n bytes.
func PaddedBigBytes(bigint *big.Int, n int) []byte {
126 127
	if bigint.BitLen()/8 >= n {
		return bigint.Bytes()
128 129
	}
	ret := make([]byte, n)
130 131 132 133
	ReadBits(bigint, ret)
	return ret
}

134
// bigEndianByteAt returns the byte at position n,
135
// in Big-Endian encoding
136 137
// So n==0 returns the least significant byte
func bigEndianByteAt(bigint *big.Int, n int) byte {
138 139 140 141 142 143 144 145 146 147 148 149 150
	words := bigint.Bits()
	// Check word-bucket the byte will reside in
	i := n / wordBytes
	if i >= len(words) {
		return byte(0)
	}
	word := words[i]
	// Offset of the byte
	shift := 8 * uint(n%wordBytes)

	return byte(word >> shift)
}

151
// Byte returns the byte at position n,
152 153 154
// with the supplied padlength in Little-Endian encoding.
// n==0 returns the MSB
// Example: bigint '5', padlength 32, n=31 => 5
155 156
func Byte(bigint *big.Int, padlength, n int) byte {
	if n >= padlength {
157 158
		return byte(0)
	}
159
	return bigEndianByteAt(bigint, padlength-1-n)
160 161
}

162 163 164 165 166 167 168 169 170 171 172
// ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure
// that buf has enough space. If buf is too short the result will be incomplete.
func ReadBits(bigint *big.Int, buf []byte) {
	i := len(buf)
	for _, d := range bigint.Bits() {
		for j := 0; j < wordBytes && i > 0; j++ {
			i--
			buf[i] = byte(d)
			d >>= 8
		}
	}
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
}

// U256 encodes as a 256 bit two's complement number. This operation is destructive.
func U256(x *big.Int) *big.Int {
	return x.And(x, tt256m1)
}

// S256 interprets x as a two's complement number.
// x must not exceed 256 bits (the result is undefined if it does) and is not modified.
//
//   S256(0)        = 0
//   S256(1)        = 1
//   S256(2**255)   = -2**255
//   S256(2**256-1) = -1
func S256(x *big.Int) *big.Int {
	if x.Cmp(tt255) < 0 {
		return x
	}
191
	return new(big.Int).Sub(x, tt256)
192 193 194 195 196 197 198 199 200 201 202
}

// Exp implements exponentiation by squaring.
// Exp returns a newly-allocated big integer and does not change
// base or exponent. The result is truncated to 256 bits.
//
// Courtesy @karalabe and @chfast
func Exp(base, exponent *big.Int) *big.Int {
	result := big.NewInt(1)

	for _, word := range exponent.Bits() {
203
		for i := 0; i < wordBits; i++ {
204 205 206 207 208 209 210 211 212
			if word&1 == 1 {
				U256(result.Mul(result, base))
			}
			U256(base.Mul(base, base))
			word >>= 1
		}
	}
	return result
}