compiler.go 6.68 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package asm

import (
	"fmt"
	"math/big"
	"os"
	"strings"

	"github.com/ethereum/go-ethereum/common/math"
	"github.com/ethereum/go-ethereum/core/vm"
)

// Compiler contains information about the parsed source
// and holds the tokens for the program.
type Compiler struct {
	tokens []token
	binary []interface{}

	labels map[string]int

	pc, pos int

	debug bool
}

// newCompiler returns a new allocated compiler.
func NewCompiler(debug bool) *Compiler {
	return &Compiler{
		labels: make(map[string]int),
		debug:  debug,
	}
}

// Feed feeds tokens in to ch and are interpreted by
// the compiler.
//
// feed is the first pass in the compile stage as it
54
// collects the used labels in the program and keeps a
55 56 57 58 59
// program counter which is used to determine the locations
// of the jump dests. The labels can than be used in the
// second stage to push labels and determine the right
// position.
func (c *Compiler) Feed(ch <-chan token) {
60
	var prev token
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
	for i := range ch {
		switch i.typ {
		case number:
			num := math.MustParseBig256(i.text).Bytes()
			if len(num) == 0 {
				num = []byte{0}
			}
			c.pc += len(num)
		case stringValue:
			c.pc += len(i.text) - 2
		case element:
			c.pc++
		case labelDef:
			c.labels[i.text] = c.pc
			c.pc++
		case label:
77 78 79 80
			c.pc += 4
			if prev.typ == element && isJump(prev.text) {
				c.pc++
			}
81 82 83
		}

		c.tokens = append(c.tokens, i)
84
		prev = i
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
	}
	if c.debug {
		fmt.Fprintln(os.Stderr, "found", len(c.labels), "labels")
	}
}

// Compile compiles the current tokens and returns a
// binary string that can be interpreted by the EVM
// and an error if it failed.
//
// compile is the second stage in the compile phase
// which compiles the tokens to EVM instructions.
func (c *Compiler) Compile() (string, []error) {
	var errors []error
	// continue looping over the tokens until
	// the stack has been exhausted.
	for c.pos < len(c.tokens) {
		if err := c.compileLine(); err != nil {
			errors = append(errors, err)
		}
	}

	// turn the binary to hex
	var bin string
	for _, v := range c.binary {
		switch v := v.(type) {
		case vm.OpCode:
			bin += fmt.Sprintf("%x", []byte{byte(v)})
		case []byte:
			bin += fmt.Sprintf("%x", v)
		}
	}
	return bin, errors
}

// next returns the next token and increments the
121
// position.
122 123 124 125 126 127
func (c *Compiler) next() token {
	token := c.tokens[c.pos]
	c.pos++
	return token
}

128
// compileLine compiles a single line instruction e.g.
129
// "push 1", "jump @label".
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
func (c *Compiler) compileLine() error {
	n := c.next()
	if n.typ != lineStart {
		return compileErr(n, n.typ.String(), lineStart.String())
	}

	lvalue := c.next()
	switch lvalue.typ {
	case eof:
		return nil
	case element:
		if err := c.compileElement(lvalue); err != nil {
			return err
		}
	case labelDef:
		c.compileLabel()
	case lineEnd:
		return nil
	default:
		return compileErr(lvalue, lvalue.text, fmt.Sprintf("%v or %v", labelDef, element))
	}

	if n := c.next(); n.typ != lineEnd {
		return compileErr(n, n.text, lineEnd.String())
	}

	return nil
}

// compileNumber compiles the number to bytes
func (c *Compiler) compileNumber(element token) (int, error) {
	num := math.MustParseBig256(element.text).Bytes()
	if len(num) == 0 {
		num = []byte{0}
	}
	c.pushBin(num)
	return len(num), nil
}

// compileElement compiles the element (push & label or both)
// to a binary representation and may error if incorrect statements
// where fed.
func (c *Compiler) compileElement(element token) error {
	// check for a jump. jumps must be read and compiled
	// from right to left.
	if isJump(element.text) {
		rvalue := c.next()
		switch rvalue.typ {
		case number:
			// TODO figure out how to return the error properly
			c.compileNumber(rvalue)
		case stringValue:
			// strings are quoted, remove them.
			c.pushBin(rvalue.text[1 : len(rvalue.text)-2])
		case label:
			c.pushBin(vm.PUSH4)
			pos := big.NewInt(int64(c.labels[rvalue.text])).Bytes()
			pos = append(make([]byte, 4-len(pos)), pos...)
			c.pushBin(pos)
189 190
		case lineEnd:
			c.pos--
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
		default:
			return compileErr(rvalue, rvalue.text, "number, string or label")
		}
		// push the operation
		c.pushBin(toBinary(element.text))
		return nil
	} else if isPush(element.text) {
		// handle pushes. pushes are read from left to right.
		var value []byte

		rvalue := c.next()
		switch rvalue.typ {
		case number:
			value = math.MustParseBig256(rvalue.text).Bytes()
			if len(value) == 0 {
				value = []byte{0}
			}
		case stringValue:
			value = []byte(rvalue.text[1 : len(rvalue.text)-1])
		case label:
211 212
			value = big.NewInt(int64(c.labels[rvalue.text])).Bytes()
			value = append(make([]byte, 4-len(value)), value...)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
		default:
			return compileErr(rvalue, rvalue.text, "number, string or label")
		}

		if len(value) > 32 {
			return fmt.Errorf("%d type error: unsupported string or number with size > 32", rvalue.lineno)
		}

		c.pushBin(vm.OpCode(int(vm.PUSH1) - 1 + len(value)))
		c.pushBin(value)
	} else {
		c.pushBin(toBinary(element.text))
	}

	return nil
}

// compileLabel pushes a jumpdest to the binary slice.
func (c *Compiler) compileLabel() {
	c.pushBin(vm.JUMPDEST)
}

// pushBin pushes the value v to the binary stack.
func (c *Compiler) pushBin(v interface{}) {
	if c.debug {
		fmt.Printf("%d: %v\n", len(c.binary), v)
	}
	c.binary = append(c.binary, v)
}

// isPush returns whether the string op is either any of
// push(N).
func isPush(op string) bool {
246
	return strings.ToUpper(op) == "PUSH"
247 248 249 250
}

// isJump returns whether the string op is jump(i)
func isJump(op string) bool {
251
	return strings.ToUpper(op) == "JUMPI" || strings.ToUpper(op) == "JUMP"
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
}

// toBinary converts text to a vm.OpCode
func toBinary(text string) vm.OpCode {
	return vm.StringToOp(strings.ToUpper(text))
}

type compileError struct {
	got  string
	want string

	lineno int
}

func (err compileError) Error() string {
	return fmt.Sprintf("%d syntax error: unexpected %v, expected %v", err.lineno, err.got, err.want)
}

func compileErr(c token, got, want string) error {
	return compileError{
		got:    got,
		want:   want,
		lineno: c.lineno,
	}
}