Unverified Commit f457b201 authored by kladko's avatar kladko

SKALE-4586 Added Thread Pool

parent ecde0240
...@@ -206,24 +206,48 @@ namespace moodycamel { ...@@ -206,24 +206,48 @@ namespace moodycamel {
AE_FORCEINLINE void compiler_fence(memory_order order) AE_NO_TSAN AE_FORCEINLINE void compiler_fence(memory_order order) AE_NO_TSAN
{ {
switch (order) { switch (order) {
case memory_order_relaxed: break; case memory_order_relaxed:
case memory_order_acquire: std::atomic_signal_fence(std::memory_order_acquire); break; break;
case memory_order_release: std::atomic_signal_fence(std::memory_order_release); break; case memory_order_acquire:
case memory_order_acq_rel: std::atomic_signal_fence(std::memory_order_acq_rel); break; std::atomic_signal_fence(std::memory_order_acquire);
case memory_order_seq_cst: std::atomic_signal_fence(std::memory_order_seq_cst); break; break;
default: assert(false); case memory_order_release:
std::atomic_signal_fence(std::memory_order_release);
break;
case memory_order_acq_rel:
std::atomic_signal_fence(std::memory_order_acq_rel);
break;
case memory_order_seq_cst:
std::atomic_signal_fence(std::memory_order_seq_cst);
break;
default:
assert(false);
} }
} }
AE_FORCEINLINE void fence(memory_order order) AE_NO_TSAN AE_FORCEINLINE void fence(memory_order order) AE_NO_TSAN
{ {
switch (order) { switch (order) {
case memory_order_relaxed: break; case memory_order_relaxed:
case memory_order_acquire: AE_TSAN_ANNOTATE_ACQUIRE(); std::atomic_thread_fence(std::memory_order_acquire); break; break;
case memory_order_release: AE_TSAN_ANNOTATE_RELEASE(); std::atomic_thread_fence(std::memory_order_release); break; case memory_order_acquire:
case memory_order_acq_rel: AE_TSAN_ANNOTATE_ACQUIRE(); AE_TSAN_ANNOTATE_RELEASE(); std::atomic_thread_fence(std::memory_order_acq_rel); break; AE_TSAN_ANNOTATE_ACQUIRE();
case memory_order_seq_cst: AE_TSAN_ANNOTATE_ACQUIRE(); AE_TSAN_ANNOTATE_RELEASE(); std::atomic_thread_fence(std::memory_order_seq_cst); break; std::atomic_thread_fence(std::memory_order_acquire);
default: assert(false); break;
case memory_order_release:
AE_TSAN_ANNOTATE_RELEASE();
std::atomic_thread_fence(std::memory_order_release);
break;
case memory_order_acq_rel:
AE_TSAN_ANNOTATE_ACQUIRE(); AE_TSAN_ANNOTATE_RELEASE();
std::atomic_thread_fence(std::memory_order_acq_rel);
break;
case memory_order_seq_cst:
AE_TSAN_ANNOTATE_ACQUIRE(); AE_TSAN_ANNOTATE_RELEASE();
std::atomic_thread_fence(std::memory_order_seq_cst);
break;
default:
assert(false);
} }
} }
...@@ -237,8 +261,11 @@ namespace moodycamel { ...@@ -237,8 +261,11 @@ namespace moodycamel {
#endif #endif
#ifdef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC #ifdef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
#include <atomic> #include <atomic>
#endif #endif
#include <utility> #include <utility>
// WARNING: *NOT* A REPLACEMENT FOR std::atomic. READ CAREFULLY: // WARNING: *NOT* A REPLACEMENT FOR std::atomic. READ CAREFULLY:
...@@ -247,21 +274,26 @@ namespace moodycamel { ...@@ -247,21 +274,26 @@ namespace moodycamel {
// at the hardware level -- on most platforms this generally means aligned pointers and integers (only). // at the hardware level -- on most platforms this generally means aligned pointers and integers (only).
namespace moodycamel { namespace moodycamel {
template<typename T> template<typename T>
class weak_atomic class weak_atomic {
{
public: public:
AE_NO_TSAN weak_atomic() : value() { } AE_NO_TSAN weak_atomic() : value() {}
#ifdef AE_VCPP #ifdef AE_VCPP
#pragma warning(push) #pragma warning(push)
#pragma warning(disable: 4100) // Get rid of (erroneous) 'unreferenced formal parameter' warning #pragma warning(disable: 4100) // Get rid of (erroneous) 'unreferenced formal parameter' warning
#endif #endif
template<typename U> AE_NO_TSAN weak_atomic(U&& x) : value(std::forward<U>(x)) { }
template<typename U>
AE_NO_TSAN weak_atomic(U &&x) : value(std::forward<U>(x)) {}
#ifdef __cplusplus_cli #ifdef __cplusplus_cli
// Work around bug with universal reference/nullptr combination that only appears when /clr is on // Work around bug with universal reference/nullptr combination that only appears when /clr is on
AE_NO_TSAN weak_atomic(nullptr_t) : value(nullptr) { } AE_NO_TSAN weak_atomic(nullptr_t) : value(nullptr) { }
#endif #endif
AE_NO_TSAN weak_atomic(weak_atomic const& other) : value(other.load()) { } AE_NO_TSAN weak_atomic(weak_atomic const &other) : value(other.load()) {}
AE_NO_TSAN weak_atomic(weak_atomic&& other) : value(std::move(other.load())) { }
AE_NO_TSAN weak_atomic(weak_atomic &&other) : value(std::move(other.load())) {}
#ifdef AE_VCPP #ifdef AE_VCPP
#pragma warning(pop) #pragma warning(pop)
#endif #endif
...@@ -303,14 +335,14 @@ namespace moodycamel { ...@@ -303,14 +335,14 @@ namespace moodycamel {
return value; return value;
} }
#else #else
template<typename U> template<typename U>
AE_FORCEINLINE weak_atomic const& operator=(U&& x) AE_NO_TSAN AE_FORCEINLINE weak_atomic const &operator=(U &&x) AE_NO_TSAN {
{
value.store(std::forward<U>(x), std::memory_order_relaxed); value.store(std::forward<U>(x), std::memory_order_relaxed);
return *this; return *this;
} }
AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other) AE_NO_TSAN AE_FORCEINLINE weak_atomic const &operator=(weak_atomic const &other) AE_NO_TSAN
{ {
value.store(other.value.load(std::memory_order_relaxed), std::memory_order_relaxed); value.store(other.value.load(std::memory_order_relaxed), std::memory_order_relaxed);
return *this; return *this;
...@@ -327,6 +359,7 @@ namespace moodycamel { ...@@ -327,6 +359,7 @@ namespace moodycamel {
{ {
return value.fetch_add(increment, std::memory_order_release); return value.fetch_add(increment, std::memory_order_release);
} }
#endif #endif
...@@ -336,7 +369,7 @@ namespace moodycamel { ...@@ -336,7 +369,7 @@ namespace moodycamel {
// `volatile` will make memory access slow, but is guaranteed to be reliable. // `volatile` will make memory access slow, but is guaranteed to be reliable.
volatile T value; volatile T value;
#else #else
std::atomic<T> value; std::atomic <T> value;
#endif #endif
}; };
...@@ -369,8 +402,7 @@ extern "C" { ...@@ -369,8 +402,7 @@ extern "C" {
#include <task.h> #include <task.h>
#endif #endif
namespace moodycamel namespace moodycamel {
{
// Code in the spsc_sema namespace below is an adaptation of Jeff Preshing's // Code in the spsc_sema namespace below is an adaptation of Jeff Preshing's
// portable + lightweight semaphore implementations, originally from // portable + lightweight semaphore implementations, originally from
// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h // https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
...@@ -392,8 +424,7 @@ namespace moodycamel ...@@ -392,8 +424,7 @@ namespace moodycamel
// 2. Altered source versions must be plainly marked as such, and must not be // 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software. // misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution. // 3. This notice may not be removed or altered from any source distribution.
namespace spsc_sema namespace spsc_sema {
{
#if defined(_WIN32) #if defined(_WIN32)
class Semaphore class Semaphore
{ {
...@@ -655,8 +686,7 @@ namespace moodycamel ...@@ -655,8 +686,7 @@ namespace moodycamel
//--------------------------------------------------------- //---------------------------------------------------------
// LightweightSemaphore // LightweightSemaphore
//--------------------------------------------------------- //---------------------------------------------------------
class LightweightSemaphore class LightweightSemaphore {
{
public: public:
typedef std::make_signed<std::size_t>::type ssize_t; typedef std::make_signed<std::size_t>::type ssize_t;
...@@ -671,10 +701,8 @@ namespace moodycamel ...@@ -671,10 +701,8 @@ namespace moodycamel
// If we lower it to 1000, testBenaphore becomes 15x slower on my Core i7-5930K Windows PC, // If we lower it to 1000, testBenaphore becomes 15x slower on my Core i7-5930K Windows PC,
// as threads start hitting the kernel semaphore. // as threads start hitting the kernel semaphore.
int spin = 1024; int spin = 1024;
while (--spin >= 0) while (--spin >= 0) {
{ if (m_count.load() > 0) {
if (m_count.load() > 0)
{
m_count.fetch_add_acquire(-1); m_count.fetch_add_acquire(-1);
return true; return true;
} }
...@@ -683,8 +711,7 @@ namespace moodycamel ...@@ -683,8 +711,7 @@ namespace moodycamel
oldCount = m_count.fetch_add_acquire(-1); oldCount = m_count.fetch_add_acquire(-1);
if (oldCount > 0) if (oldCount > 0)
return true; return true;
if (timeout_usecs < 0) if (timeout_usecs < 0) {
{
if (m_sema.wait()) if (m_sema.wait())
return true; return true;
} }
...@@ -695,8 +722,7 @@ namespace moodycamel ...@@ -695,8 +722,7 @@ namespace moodycamel
// it. So we have to re-adjust the count, but only if the semaphore // it. So we have to re-adjust the count, but only if the semaphore
// wasn't signaled enough times for us too since then. If it was, we // wasn't signaled enough times for us too since then. If it was, we
// need to release the semaphore too. // need to release the semaphore too.
while (true) while (true) {
{
oldCount = m_count.fetch_add_release(1); oldCount = m_count.fetch_add_release(1);
if (oldCount < 0) if (oldCount < 0)
return false; // successfully restored things to the way they were return false; // successfully restored things to the way they were
...@@ -708,15 +734,13 @@ namespace moodycamel ...@@ -708,15 +734,13 @@ namespace moodycamel
} }
public: public:
AE_NO_TSAN LightweightSemaphore(ssize_t initialCount = 0) : m_count(initialCount), m_sema() AE_NO_TSAN LightweightSemaphore(ssize_t initialCount = 0) : m_count(initialCount), m_sema() {
{
assert(initialCount >= 0); assert(initialCount >= 0);
} }
bool tryWait() AE_NO_TSAN bool tryWait() AE_NO_TSAN
{ {
if (m_count.load() > 0) if (m_count.load() > 0) {
{
m_count.fetch_add_acquire(-1); m_count.fetch_add_acquire(-1);
return true; return true;
} }
...@@ -738,8 +762,7 @@ namespace moodycamel ...@@ -738,8 +762,7 @@ namespace moodycamel
assert(count >= 0); assert(count >= 0);
ssize_t oldCount = m_count.fetch_add_release(count); ssize_t oldCount = m_count.fetch_add_release(count);
assert(oldCount >= -1); assert(oldCount >= -1);
if (oldCount < 0) if (oldCount < 0) {
{
m_sema.signal(1); m_sema.signal(1);
} }
} }
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#include <cstdint> #include <cstdint>
#include <cstdlib> // For malloc/free/abort & size_t #include <cstdlib> // For malloc/free/abort & size_t
#include <memory> #include <memory>
#if __cplusplus > 199711L || _MSC_VER >= 1700 // C++11 or VS2012 #if __cplusplus > 199711L || _MSC_VER >= 1700 // C++11 or VS2012
#include <chrono> #include <chrono>
#endif #endif
...@@ -73,8 +74,7 @@ ...@@ -73,8 +74,7 @@
namespace moodycamel { namespace moodycamel {
template<typename T, size_t MAX_BLOCK_SIZE = 512> template<typename T, size_t MAX_BLOCK_SIZE = 512>
class MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE ReaderWriterQueue class MOODYCAMEL_MAYBE_ALIGN_TO_CACHELINE ReaderWriterQueue {
{
// Design: Based on a queue-of-queues. The low-level queues are just // Design: Based on a queue-of-queues. The low-level queues are just
// circular buffers with front and tail indices indicating where the // circular buffers with front and tail indices indicating where the
// next element to dequeue is and where the next element can be enqueued, // next element to dequeue is and where the next element can be enqueued,
...@@ -104,14 +104,13 @@ namespace moodycamel { ...@@ -104,14 +104,13 @@ namespace moodycamel {
// at least one extra buffer block). // at least one extra buffer block).
AE_NO_TSAN explicit ReaderWriterQueue(size_t size = 15) AE_NO_TSAN explicit ReaderWriterQueue(size_t size = 15)
#ifndef NDEBUG #ifndef NDEBUG
: enqueuing(false) : enqueuing(false), dequeuing(false)
,dequeuing(false)
#endif #endif
{ {
assert(MAX_BLOCK_SIZE == ceilToPow2(MAX_BLOCK_SIZE) && "MAX_BLOCK_SIZE must be a power of 2"); assert(MAX_BLOCK_SIZE == ceilToPow2(MAX_BLOCK_SIZE) && "MAX_BLOCK_SIZE must be a power of 2");
assert(MAX_BLOCK_SIZE >= 2 && "MAX_BLOCK_SIZE must be at least 2"); assert(MAX_BLOCK_SIZE >= 2 && "MAX_BLOCK_SIZE must be at least 2");
Block* firstBlock = nullptr; Block *firstBlock = nullptr;
largestBlockSize = ceilToPow2(size + 1); // We need a spare slot to fit size elements in the block largestBlockSize = ceilToPow2(size + 1); // We need a spare slot to fit size elements in the block
if (largestBlockSize > MAX_BLOCK_SIZE * 2) { if (largestBlockSize > MAX_BLOCK_SIZE * 2) {
...@@ -122,7 +121,7 @@ namespace moodycamel { ...@@ -122,7 +121,7 @@ namespace moodycamel {
// number of blocks - 1. Solving for size and applying a ceiling to the division gives us (after simplifying): // number of blocks - 1. Solving for size and applying a ceiling to the division gives us (after simplifying):
size_t initialBlockCount = (size + MAX_BLOCK_SIZE * 2 - 3) / (MAX_BLOCK_SIZE - 1); size_t initialBlockCount = (size + MAX_BLOCK_SIZE * 2 - 3) / (MAX_BLOCK_SIZE - 1);
largestBlockSize = MAX_BLOCK_SIZE; largestBlockSize = MAX_BLOCK_SIZE;
Block* lastBlock = nullptr; Block *lastBlock = nullptr;
for (size_t i = 0; i != initialBlockCount; ++i) { for (size_t i = 0; i != initialBlockCount; ++i) {
auto block = make_block(largestBlockSize); auto block = make_block(largestBlockSize);
if (block == nullptr) { if (block == nullptr) {
...@@ -131,93 +130,89 @@ namespace moodycamel { ...@@ -131,93 +130,89 @@ namespace moodycamel {
#else #else
abort(); abort();
#endif #endif
} }
if (firstBlock == nullptr) { if (firstBlock == nullptr) {
firstBlock = block; firstBlock = block;
} } else {
else { lastBlock->next = block;
lastBlock->next = block; }
} lastBlock = block;
lastBlock = block; block->next = firstBlock;
block->next = firstBlock; }
} } else {
} firstBlock = make_block(largestBlockSize);
else { if (firstBlock == nullptr) {
firstBlock = make_block(largestBlockSize);
if (firstBlock == nullptr) {
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED #ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
throw std::bad_alloc(); throw std::bad_alloc();
#else #else
abort(); abort();
#endif #endif
} }
firstBlock->next = firstBlock; firstBlock->next = firstBlock;
} }
frontBlock = firstBlock; frontBlock = firstBlock;
tailBlock = firstBlock; tailBlock = firstBlock;
// Make sure the reader/writer threads will have the initialized memory setup above: // Make sure the reader/writer threads will have the initialized memory setup above:
fence(memory_order_sync); fence(memory_order_sync);
} }
// Note: The queue should not be accessed concurrently while it's // Note: The queue should not be accessed concurrently while it's
// being moved. It's up to the user to synchronize this. // being moved. It's up to the user to synchronize this.
AE_NO_TSAN ReaderWriterQueue(ReaderWriterQueue&& other) AE_NO_TSAN ReaderWriterQueue(ReaderWriterQueue &&other)
: frontBlock(other.frontBlock.load()), : frontBlock(other.frontBlock.load()),
tailBlock(other.tailBlock.load()), tailBlock(other.tailBlock.load()),
largestBlockSize(other.largestBlockSize) largestBlockSize(other.largestBlockSize)
#ifndef NDEBUG #ifndef NDEBUG
,enqueuing(false) , enqueuing(false), dequeuing(false)
,dequeuing(false)
#endif #endif
{ {
other.largestBlockSize = 32; other.largestBlockSize = 32;
Block* b = other.make_block(other.largestBlockSize); Block *b = other.make_block(other.largestBlockSize);
if (b == nullptr) { if (b == nullptr) {
#ifdef MOODYCAMEL_EXCEPTIONS_ENABLED #ifdef MOODYCAMEL_EXCEPTIONS_ENABLED
throw std::bad_alloc(); throw std::bad_alloc();
#else #else
abort(); abort();
#endif #endif
} }
b->next = b; b->next = b;
other.frontBlock = b; other.frontBlock = b;
other.tailBlock = b; other.tailBlock = b;
} }
// Note: The queue should not be accessed concurrently while it's // Note: The queue should not be accessed concurrently while it's
// being moved. It's up to the user to synchronize this. // being moved. It's up to the user to synchronize this.
ReaderWriterQueue& operator=(ReaderWriterQueue&& other) AE_NO_TSAN ReaderWriterQueue &operator=(ReaderWriterQueue &&other) AE_NO_TSAN
{ {
Block* b = frontBlock.load(); Block *b = frontBlock.load();
frontBlock = other.frontBlock.load(); frontBlock = other.frontBlock.load();
other.frontBlock = b; other.frontBlock = b;
b = tailBlock.load(); b = tailBlock.load();
tailBlock = other.tailBlock.load(); tailBlock = other.tailBlock.load();
other.tailBlock = b; other.tailBlock = b;
std::swap(largestBlockSize, other.largestBlockSize); std::swap(largestBlockSize, other.largestBlockSize);
return *this; return *this;
} }
// Note: The queue should not be accessed concurrently while it's // Note: The queue should not be accessed concurrently while it's
// being deleted. It's up to the user to synchronize this. // being deleted. It's up to the user to synchronize this.
AE_NO_TSAN ~ReaderWriterQueue() AE_NO_TSAN ~ReaderWriterQueue() {
{
// Make sure we get the latest version of all variables from other CPUs: // Make sure we get the latest version of all variables from other CPUs:
fence(memory_order_sync); fence(memory_order_sync);
// Destroy any remaining objects in queue and free memory // Destroy any remaining objects in queue and free memory
Block* frontBlock_ = frontBlock; Block *frontBlock_ = frontBlock;
Block* block = frontBlock_; Block *block = frontBlock_;
do { do {
Block* nextBlock = block->next; Block *nextBlock = block->next;
size_t blockFront = block->front; size_t blockFront = block->front;
size_t blockTail = block->tail; size_t blockTail = block->tail;
for (size_t i = blockFront; i != blockTail; i = (i + 1) & block->sizeMask) { for (size_t i = blockFront; i != blockTail; i = (i + 1) & block->sizeMask) {
auto element = reinterpret_cast<T*>(block->data + i * sizeof(T)); auto element = reinterpret_cast<T *>(block->data + i * sizeof(T));
element->~T(); element->~T();
(void)element; (void) element;
} }
auto rawBlock = block->rawThis; auto rawBlock = block->rawThis;
...@@ -225,67 +220,68 @@ AE_NO_TSAN ~ReaderWriterQueue() ...@@ -225,67 +220,68 @@ AE_NO_TSAN ~ReaderWriterQueue()
std::free(rawBlock); std::free(rawBlock);
block = nextBlock; block = nextBlock;
} while (block != frontBlock_); } while (block != frontBlock_);
} }
// Enqueues a copy of element if there is room in the queue. // Enqueues a copy of element if there is room in the queue.
// Returns true if the element was enqueued, false otherwise. // Returns true if the element was enqueued, false otherwise.
// Does not allocate memory. // Does not allocate memory.
AE_FORCEINLINE bool try_enqueue(T const& element) AE_NO_TSAN AE_FORCEINLINE bool try_enqueue(T const &element) AE_NO_TSAN
{ {
return inner_enqueue<CannotAlloc>(element); return inner_enqueue<CannotAlloc>(element);
} }
// Enqueues a moved copy of element if there is room in the queue. // Enqueues a moved copy of element if there is room in the queue.
// Returns true if the element was enqueued, false otherwise. // Returns true if the element was enqueued, false otherwise.
// Does not allocate memory. // Does not allocate memory.
AE_FORCEINLINE bool try_enqueue(T&& element) AE_NO_TSAN AE_FORCEINLINE bool try_enqueue(T &&element) AE_NO_TSAN
{ {
return inner_enqueue<CannotAlloc>(std::forward<T>(element)); return inner_enqueue<CannotAlloc>(std::forward<T>(element));
} }
#if MOODYCAMEL_HAS_EMPLACE #if MOODYCAMEL_HAS_EMPLACE
// Like try_enqueue() but with emplace semantics (i.e. construct-in-place). // Like try_enqueue() but with emplace semantics (i.e. construct-in-place).
template<typename... Args> template<typename... Args>
AE_FORCEINLINE bool try_emplace(Args&&... args) AE_NO_TSAN AE_FORCEINLINE bool try_emplace(Args &&... args) AE_NO_TSAN {
{ return inner_enqueue<CannotAlloc>(std::forward<Args>(args)...);
return inner_enqueue<CannotAlloc>(std::forward<Args>(args)...); }
}
#endif #endif
// Enqueues a copy of element on the queue. // Enqueues a copy of element on the queue.
// Allocates an additional block of memory if needed. // Allocates an additional block of memory if needed.
// Only fails (returns false) if memory allocation fails. // Only fails (returns false) if memory allocation fails.
AE_FORCEINLINE bool enqueue(T const& element) AE_NO_TSAN AE_FORCEINLINE bool enqueue(T const &element) AE_NO_TSAN
{ {
return inner_enqueue<CanAlloc>(element); return inner_enqueue<CanAlloc>(element);
} }
// Enqueues a moved copy of element on the queue. // Enqueues a moved copy of element on the queue.
// Allocates an additional block of memory if needed. // Allocates an additional block of memory if needed.
// Only fails (returns false) if memory allocation fails. // Only fails (returns false) if memory allocation fails.
AE_FORCEINLINE bool enqueue(T&& element) AE_NO_TSAN AE_FORCEINLINE bool enqueue(T &&element) AE_NO_TSAN
{ {
return inner_enqueue<CanAlloc>(std::forward<T>(element)); return inner_enqueue<CanAlloc>(std::forward<T>(element));
} }
#if MOODYCAMEL_HAS_EMPLACE #if MOODYCAMEL_HAS_EMPLACE
// Like enqueue() but with emplace semantics (i.e. construct-in-place). // Like enqueue() but with emplace semantics (i.e. construct-in-place).
template<typename... Args> template<typename... Args>
AE_FORCEINLINE bool emplace(Args&&... args) AE_NO_TSAN AE_FORCEINLINE bool emplace(Args &&... args) AE_NO_TSAN {
{ return inner_enqueue<CanAlloc>(std::forward<Args>(args)...);
return inner_enqueue<CanAlloc>(std::forward<Args>(args)...); }
}
#endif #endif
// Attempts to dequeue an element; if the queue is empty, // Attempts to dequeue an element; if the queue is empty,
// returns false instead. If the queue has at least one element, // returns false instead. If the queue has at least one element,
// moves front to result using operator=, then returns true. // moves front to result using operator=, then returns true.
template<typename U> template<typename U>
bool try_dequeue(U& result) AE_NO_TSAN bool try_dequeue(U &result) AE_NO_TSAN {
{
#ifndef NDEBUG #ifndef NDEBUG
ReentrantGuard guard(this->dequeuing); ReentrantGuard guard(this->dequeuing);
#endif #endif
// High-level pseudocode: // High-level pseudocode:
...@@ -305,75 +301,73 @@ ReentrantGuard guard(this->dequeuing); ...@@ -305,75 +301,73 @@ ReentrantGuard guard(this->dequeuing);
// then re-read the front block and check if it's not empty again, then check if the tail // then re-read the front block and check if it's not empty again, then check if the tail
// block has advanced. // block has advanced.
Block* frontBlock_ = frontBlock.load(); Block *frontBlock_ = frontBlock.load();
size_t blockTail = frontBlock_->localTail; size_t blockTail = frontBlock_->localTail;
size_t blockFront = frontBlock_->front.load(); size_t blockFront = frontBlock_->front.load();
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) { if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
fence(memory_order_acquire); fence(memory_order_acquire);
non_empty_front_block: non_empty_front_block:
// Front block not empty, dequeue from here // Front block not empty, dequeue from here
auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T)); auto element = reinterpret_cast<T *>(frontBlock_->data + blockFront * sizeof(T));
result = std::move(*element); result = std::move(*element);
element->~T(); element->~T();
blockFront = (blockFront + 1) & frontBlock_->sizeMask; blockFront = (blockFront + 1) & frontBlock_->sizeMask;
fence(memory_order_release); fence(memory_order_release);
frontBlock_->front = blockFront; frontBlock_->front = blockFront;
} } else if (frontBlock_ != tailBlock.load()) {
else if (frontBlock_ != tailBlock.load()) { fence(memory_order_acquire);
fence(memory_order_acquire);
frontBlock_ = frontBlock.load(); frontBlock_ = frontBlock.load();
blockTail = frontBlock_->localTail = frontBlock_->tail.load(); blockTail = frontBlock_->localTail = frontBlock_->tail.load();
blockFront = frontBlock_->front.load(); blockFront = frontBlock_->front.load();
fence(memory_order_acquire); fence(memory_order_acquire);
if (blockFront != blockTail) { if (blockFront != blockTail) {
// Oh look, the front block isn't empty after all // Oh look, the front block isn't empty after all
goto non_empty_front_block; goto non_empty_front_block;
} }
// Front block is empty but there's another block ahead, advance to it // Front block is empty but there's another block ahead, advance to it
Block* nextBlock = frontBlock_->next; Block *nextBlock = frontBlock_->next;
// Don't need an acquire fence here since next can only ever be set on the tailBlock, // Don't need an acquire fence here since next can only ever be set on the tailBlock,
// and we're not the tailBlock, and we did an acquire earlier after reading tailBlock which // and we're not the tailBlock, and we did an acquire earlier after reading tailBlock which
// ensures next is up-to-date on this CPU in case we recently were at tailBlock. // ensures next is up-to-date on this CPU in case we recently were at tailBlock.
size_t nextBlockFront = nextBlock->front.load(); size_t nextBlockFront = nextBlock->front.load();
size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load(); size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load();
fence(memory_order_acquire); fence(memory_order_acquire);
// Since the tailBlock is only ever advanced after being written to, // Since the tailBlock is only ever advanced after being written to,
// we know there's for sure an element to dequeue on it // we know there's for sure an element to dequeue on it
assert(nextBlockFront != nextBlockTail); assert(nextBlockFront != nextBlockTail);
AE_UNUSED(nextBlockTail); AE_UNUSED(nextBlockTail);
// We're done with this block, let the producer use it if it needs // We're done with this block, let the producer use it if it needs
fence(memory_order_release); // Expose possibly pending changes to frontBlock->front from last dequeue fence(memory_order_release); // Expose possibly pending changes to frontBlock->front from last dequeue
frontBlock = frontBlock_ = nextBlock; frontBlock = frontBlock_ = nextBlock;
compiler_fence(memory_order_release); // Not strictly needed compiler_fence(memory_order_release); // Not strictly needed
auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T)); auto element = reinterpret_cast<T *>(frontBlock_->data + nextBlockFront * sizeof(T));
result = std::move(*element); result = std::move(*element);
element->~T(); element->~T();
nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask; nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask;
fence(memory_order_release); fence(memory_order_release);
frontBlock_->front = nextBlockFront; frontBlock_->front = nextBlockFront;
} } else {
else {
// No elements in current block and no other block to advance to // No elements in current block and no other block to advance to
return false; return false;
} }
return true; return true;
} }
// Returns a pointer to the front element in the queue (the one that // Returns a pointer to the front element in the queue (the one that
...@@ -381,129 +375,126 @@ return true; ...@@ -381,129 +375,126 @@ return true;
// queue appears empty at the time the method is called, nullptr is // queue appears empty at the time the method is called, nullptr is
// returned instead. // returned instead.
// Must be called only from the consumer thread. // Must be called only from the consumer thread.
T* peek() const AE_NO_TSAN T *peek() const AE_NO_TSAN
{ {
#ifndef NDEBUG #ifndef NDEBUG
ReentrantGuard guard(this->dequeuing); ReentrantGuard guard(this->dequeuing);
#endif #endif
// See try_dequeue() for reasoning // See try_dequeue() for reasoning
Block* frontBlock_ = frontBlock.load(); Block *frontBlock_ = frontBlock.load();
size_t blockTail = frontBlock_->localTail; size_t blockTail = frontBlock_->localTail;
size_t blockFront = frontBlock_->front.load(); size_t blockFront = frontBlock_->front.load();
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) { if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
fence(memory_order_acquire); fence(memory_order_acquire);
non_empty_front_block: non_empty_front_block:
return reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T)); return reinterpret_cast<T *>(frontBlock_->data + blockFront * sizeof(T));
} } else if (frontBlock_ != tailBlock.load()) {
else if (frontBlock_ != tailBlock.load()) { fence(memory_order_acquire);
fence(memory_order_acquire); frontBlock_ = frontBlock.load();
frontBlock_ = frontBlock.load(); blockTail = frontBlock_->localTail = frontBlock_->tail.load();
blockTail = frontBlock_->localTail = frontBlock_->tail.load(); blockFront = frontBlock_->front.load();
blockFront = frontBlock_->front.load(); fence(memory_order_acquire);
fence(memory_order_acquire);
if (blockFront != blockTail) { if (blockFront != blockTail) {
goto non_empty_front_block; goto non_empty_front_block;
} }
Block* nextBlock = frontBlock_->next; Block *nextBlock = frontBlock_->next;
size_t nextBlockFront = nextBlock->front.load(); size_t nextBlockFront = nextBlock->front.load();
fence(memory_order_acquire); fence(memory_order_acquire);
assert(nextBlockFront != nextBlock->tail.load()); assert(nextBlockFront != nextBlock->tail.load());
return reinterpret_cast<T*>(nextBlock->data + nextBlockFront * sizeof(T)); return reinterpret_cast<T *>(nextBlock->data + nextBlockFront * sizeof(T));
} }
return nullptr; return nullptr;
} }
// Removes the front element from the queue, if any, without returning it. // Removes the front element from the queue, if any, without returning it.
// Returns true on success, or false if the queue appeared empty at the time // Returns true on success, or false if the queue appeared empty at the time
// `pop` was called. // `pop` was called.
bool pop() AE_NO_TSAN bool pop() AE_NO_TSAN
{ {
#ifndef NDEBUG #ifndef NDEBUG
ReentrantGuard guard(this->dequeuing); ReentrantGuard guard(this->dequeuing);
#endif #endif
// See try_dequeue() for reasoning // See try_dequeue() for reasoning
Block* frontBlock_ = frontBlock.load(); Block *frontBlock_ = frontBlock.load();
size_t blockTail = frontBlock_->localTail; size_t blockTail = frontBlock_->localTail;
size_t blockFront = frontBlock_->front.load(); size_t blockFront = frontBlock_->front.load();
if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) { if (blockFront != blockTail || blockFront != (frontBlock_->localTail = frontBlock_->tail.load())) {
fence(memory_order_acquire); fence(memory_order_acquire);
non_empty_front_block: non_empty_front_block:
auto element = reinterpret_cast<T*>(frontBlock_->data + blockFront * sizeof(T)); auto element = reinterpret_cast<T *>(frontBlock_->data + blockFront * sizeof(T));
element->~T(); element->~T();
blockFront = (blockFront + 1) & frontBlock_->sizeMask; blockFront = (blockFront + 1) & frontBlock_->sizeMask;
fence(memory_order_release); fence(memory_order_release);
frontBlock_->front = blockFront; frontBlock_->front = blockFront;
} } else if (frontBlock_ != tailBlock.load()) {
else if (frontBlock_ != tailBlock.load()) { fence(memory_order_acquire);
fence(memory_order_acquire); frontBlock_ = frontBlock.load();
frontBlock_ = frontBlock.load(); blockTail = frontBlock_->localTail = frontBlock_->tail.load();
blockTail = frontBlock_->localTail = frontBlock_->tail.load(); blockFront = frontBlock_->front.load();
blockFront = frontBlock_->front.load(); fence(memory_order_acquire);
fence(memory_order_acquire);
if (blockFront != blockTail) { if (blockFront != blockTail) {
goto non_empty_front_block; goto non_empty_front_block;
} }
// Front block is empty but there's another block ahead, advance to it // Front block is empty but there's another block ahead, advance to it
Block* nextBlock = frontBlock_->next; Block *nextBlock = frontBlock_->next;
size_t nextBlockFront = nextBlock->front.load(); size_t nextBlockFront = nextBlock->front.load();
size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load(); size_t nextBlockTail = nextBlock->localTail = nextBlock->tail.load();
fence(memory_order_acquire); fence(memory_order_acquire);
assert(nextBlockFront != nextBlockTail); assert(nextBlockFront != nextBlockTail);
AE_UNUSED(nextBlockTail); AE_UNUSED(nextBlockTail);
fence(memory_order_release); fence(memory_order_release);
frontBlock = frontBlock_ = nextBlock; frontBlock = frontBlock_ = nextBlock;
compiler_fence(memory_order_release); compiler_fence(memory_order_release);
auto element = reinterpret_cast<T*>(frontBlock_->data + nextBlockFront * sizeof(T)); auto element = reinterpret_cast<T *>(frontBlock_->data + nextBlockFront * sizeof(T));
element->~T(); element->~T();
nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask; nextBlockFront = (nextBlockFront + 1) & frontBlock_->sizeMask;
fence(memory_order_release); fence(memory_order_release);
frontBlock_->front = nextBlockFront; frontBlock_->front = nextBlockFront;
} } else {
else {
// No elements in current block and no other block to advance to // No elements in current block and no other block to advance to
return false; return false;
} }
return true; return true;
} }
// Returns the approximate number of items currently in the queue. // Returns the approximate number of items currently in the queue.
// Safe to call from both the producer and consumer threads. // Safe to call from both the producer and consumer threads.
inline size_t size_approx() const AE_NO_TSAN inline size_t size_approx() const AE_NO_TSAN
{ {
size_t result = 0; size_t result = 0;
Block* frontBlock_ = frontBlock.load(); Block *frontBlock_ = frontBlock.load();
Block* block = frontBlock_; Block *block = frontBlock_;
do { do {
fence(memory_order_acquire); fence(memory_order_acquire);
size_t blockFront = block->front.load(); size_t blockFront = block->front.load();
size_t blockTail = block->tail.load(); size_t blockTail = block->tail.load();
result += (blockTail - blockFront) & block->sizeMask; result += (blockTail - blockFront) & block->sizeMask;
block = block->next.load(); block = block->next.load();
} while (block != frontBlock_); } while (block != frontBlock_);
return result; return result;
} }
// Returns the total number of items that could be enqueued without incurring // Returns the total number of items that could be enqueued without incurring
// an allocation when this queue is empty. // an allocation when this queue is empty.
...@@ -514,32 +505,35 @@ return result; ...@@ -514,32 +505,35 @@ return result;
// the block the consumer is removing from until it's completely empty, except in // the block the consumer is removing from until it's completely empty, except in
// the case where the producer was writing to the same block the consumer was // the case where the producer was writing to the same block the consumer was
// reading from the whole time. // reading from the whole time.
inline size_t max_capacity() const { inline size_t max_capacity() const {
size_t result = 0; size_t result = 0;
Block* frontBlock_ = frontBlock.load(); Block *frontBlock_ = frontBlock.load();
Block* block = frontBlock_; Block *block = frontBlock_;
do { do {
fence(memory_order_acquire); fence(memory_order_acquire);
result += block->sizeMask; result += block->sizeMask;
block = block->next.load(); block = block->next.load();
} while (block != frontBlock_); } while (block != frontBlock_);
return result; return result;
} }
private: private:
enum AllocationMode { CanAlloc, CannotAlloc }; enum AllocationMode {
CanAlloc, CannotAlloc
};
#if MOODYCAMEL_HAS_EMPLACE #if MOODYCAMEL_HAS_EMPLACE
template<AllocationMode canAlloc, typename... Args>
bool inner_enqueue(Args&&... args) AE_NO_TSAN template<AllocationMode canAlloc, typename... Args>
bool inner_enqueue(Args &&... args) AE_NO_TSAN
#else #else
template<AllocationMode canAlloc, typename U> template<AllocationMode canAlloc, typename U>
bool inner_enqueue(U&& element) AE_NO_TSAN bool inner_enqueue(U&& element) AE_NO_TSAN
#endif #endif
{ {
#ifndef NDEBUG #ifndef NDEBUG
ReentrantGuard guard(this->enqueuing); ReentrantGuard guard(this->enqueuing);
#endif #endif
// High-level pseudocode (assuming we're allowed to alloc a new block): // High-level pseudocode (assuming we're allowed to alloc a new block):
...@@ -549,77 +543,75 @@ ReentrantGuard guard(this->enqueuing); ...@@ -549,77 +543,75 @@ ReentrantGuard guard(this->enqueuing);
// Else create a new block and enqueue there // Else create a new block and enqueue there
// Advance tail to the block we just enqueued to // Advance tail to the block we just enqueued to
Block* tailBlock_ = tailBlock.load(); Block *tailBlock_ = tailBlock.load();
size_t blockFront = tailBlock_->localFront; size_t blockFront = tailBlock_->localFront;
size_t blockTail = tailBlock_->tail.load(); size_t blockTail = tailBlock_->tail.load();
size_t nextBlockTail = (blockTail + 1) & tailBlock_->sizeMask; size_t nextBlockTail = (blockTail + 1) & tailBlock_->sizeMask;
if (nextBlockTail != blockFront || nextBlockTail != (tailBlock_->localFront = tailBlock_->front.load())) { if (nextBlockTail != blockFront || nextBlockTail != (tailBlock_->localFront = tailBlock_->front.load())) {
fence(memory_order_acquire); fence(memory_order_acquire);
// This block has room for at least one more element // This block has room for at least one more element
char* location = tailBlock_->data + blockTail * sizeof(T); char *location = tailBlock_->data + blockTail * sizeof(T);
#if MOODYCAMEL_HAS_EMPLACE #if MOODYCAMEL_HAS_EMPLACE
new (location) T(std::forward<Args>(args)...); new(location) T(std::forward<Args>(args)...);
#else #else
new (location) T(std::forward<U>(element)); new (location) T(std::forward<U>(element));
#endif #endif
fence(memory_order_release); fence(memory_order_release);
tailBlock_->tail = nextBlockTail; tailBlock_->tail = nextBlockTail;
} } else {
else { fence(memory_order_acquire);
fence(memory_order_acquire); if (tailBlock_->next.load() != frontBlock) {
if (tailBlock_->next.load() != frontBlock) {
// Note that the reason we can't advance to the frontBlock and start adding new entries there // Note that the reason we can't advance to the frontBlock and start adding new entries there
// is because if we did, then dequeue would stay in that block, eventually reading the new values, // is because if we did, then dequeue would stay in that block, eventually reading the new values,
// instead of advancing to the next full block (whose values were enqueued first and so should be // instead of advancing to the next full block (whose values were enqueued first and so should be
// consumed first). // consumed first).
fence(memory_order_acquire); // Ensure we get latest writes if we got the latest frontBlock fence(memory_order_acquire); // Ensure we get latest writes if we got the latest frontBlock
// tailBlock is full, but there's a free block ahead, use it // tailBlock is full, but there's a free block ahead, use it
Block* tailBlockNext = tailBlock_->next.load(); Block *tailBlockNext = tailBlock_->next.load();
size_t nextBlockFront = tailBlockNext->localFront = tailBlockNext->front.load(); size_t nextBlockFront = tailBlockNext->localFront = tailBlockNext->front.load();
nextBlockTail = tailBlockNext->tail.load(); nextBlockTail = tailBlockNext->tail.load();
fence(memory_order_acquire); fence(memory_order_acquire);
// This block must be empty since it's not the head block and we // This block must be empty since it's not the head block and we
// go through the blocks in a circle // go through the blocks in a circle
assert(nextBlockFront == nextBlockTail); assert(nextBlockFront == nextBlockTail);
tailBlockNext->localFront = nextBlockFront; tailBlockNext->localFront = nextBlockFront;
char* location = tailBlockNext->data + nextBlockTail * sizeof(T); char *location = tailBlockNext->data + nextBlockTail * sizeof(T);
#if MOODYCAMEL_HAS_EMPLACE #if MOODYCAMEL_HAS_EMPLACE
new (location) T(std::forward<Args>(args)...); new(location) T(std::forward<Args>(args)...);
#else #else
new (location) T(std::forward<U>(element)); new (location) T(std::forward<U>(element));
#endif #endif
tailBlockNext->tail = (nextBlockTail + 1) & tailBlockNext->sizeMask; tailBlockNext->tail = (nextBlockTail + 1) & tailBlockNext->sizeMask;
fence(memory_order_release); fence(memory_order_release);
tailBlock = tailBlockNext; tailBlock = tailBlockNext;
} } else if (canAlloc == CanAlloc) {
else if (canAlloc == CanAlloc) {
// tailBlock is full and there's no free block ahead; create a new block // tailBlock is full and there's no free block ahead; create a new block
auto newBlockSize = largestBlockSize >= MAX_BLOCK_SIZE ? largestBlockSize : largestBlockSize * 2; auto newBlockSize = largestBlockSize >= MAX_BLOCK_SIZE ? largestBlockSize : largestBlockSize * 2;
auto newBlock = make_block(newBlockSize); auto newBlock = make_block(newBlockSize);
if (newBlock == nullptr) { if (newBlock == nullptr) {
// Could not allocate a block! // Could not allocate a block!
return false; return false;
} }
largestBlockSize = newBlockSize; largestBlockSize = newBlockSize;
#if MOODYCAMEL_HAS_EMPLACE #if MOODYCAMEL_HAS_EMPLACE
new (newBlock->data) T(std::forward<Args>(args)...); new(newBlock->data) T(std::forward<Args>(args)...);
#else #else
new (newBlock->data) T(std::forward<U>(element)); new (newBlock->data) T(std::forward<U>(element));
#endif #endif
assert(newBlock->front == 0); assert(newBlock->front == 0);
newBlock->tail = newBlock->localTail = 1; newBlock->tail = newBlock->localTail = 1;
newBlock->next = tailBlock_->next.load(); newBlock->next = tailBlock_->next.load();
tailBlock_->next = newBlock; tailBlock_->next = newBlock;
// Might be possible for the dequeue thread to see the new tailBlock->next // Might be possible for the dequeue thread to see the new tailBlock->next
// *without* seeing the new tailBlock value, but this is OK since it can't // *without* seeing the new tailBlock value, but this is OK since it can't
...@@ -627,73 +619,70 @@ tailBlock_->next = newBlock; ...@@ -627,73 +619,70 @@ tailBlock_->next = newBlock;
// case where it could try to read the next is if it's already at the tailBlock, // case where it could try to read the next is if it's already at the tailBlock,
// and it won't advance past tailBlock in any circumstance). // and it won't advance past tailBlock in any circumstance).
fence(memory_order_release); fence(memory_order_release);
tailBlock = newBlock; tailBlock = newBlock;
} } else if (canAlloc == CannotAlloc) {
else if (canAlloc == CannotAlloc) {
// Would have had to allocate a new block to enqueue, but not allowed // Would have had to allocate a new block to enqueue, but not allowed
return false; return false;
} } else {
else { assert(false && "Should be unreachable code");
assert(false && "Should be unreachable code"); return false;
return false; }
} }
}
return true; return true;
} }
// Disable copying // Disable copying
ReaderWriterQueue(ReaderWriterQueue const&) { } ReaderWriterQueue(ReaderWriterQueue const &) {}
// Disable assignment // Disable assignment
ReaderWriterQueue& operator=(ReaderWriterQueue const&) { } ReaderWriterQueue &operator=(ReaderWriterQueue const &) {}
AE_FORCEINLINE static size_t ceilToPow2(size_t x) AE_FORCEINLINE static size_t ceilToPow2(size_t x) {
{
// From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
--x; --x;
x |= x >> 1; x |= x >> 1;
x |= x >> 2; x |= x >> 2;
x |= x >> 4; x |= x >> 4;
for (size_t i = 1; i < sizeof(size_t); i <<= 1) { for (size_t i = 1; i < sizeof(size_t); i <<= 1) {
x |= x >> (i << 3); x |= x >> (i << 3);
} }
++x; ++x;
return x; return x;
} }
template<typename U> template<typename U>
static AE_FORCEINLINE char* align_for(char* ptr) AE_NO_TSAN static AE_FORCEINLINE char *align_for(char *ptr) AE_NO_TSAN {
{ const std::size_t alignment = std::alignment_of<U>::value;
const std::size_t alignment = std::alignment_of<U>::value; return ptr + (alignment - (reinterpret_cast<std::uintptr_t>(ptr) % alignment)) % alignment;
return ptr + (alignment - (reinterpret_cast<std::uintptr_t>(ptr) % alignment)) % alignment; }
}
private: private:
#ifndef NDEBUG #ifndef NDEBUG
struct ReentrantGuard
{ struct ReentrantGuard {
AE_NO_TSAN ReentrantGuard(weak_atomic<bool>& _inSection) AE_NO_TSAN ReentrantGuard(weak_atomic<bool> &_inSection)
: inSection(_inSection) : inSection(_inSection) {
{ assert(!inSection &&
assert(!inSection && "Concurrent (or re-entrant) enqueue or dequeue operation detected (only one thread at a time may hold the producer or consumer role)"); "Concurrent (or re-entrant) enqueue or dequeue operation detected (only one thread at a time may hold the producer or consumer role)");
inSection = true; inSection = true;
} }
AE_NO_TSAN ~ReentrantGuard() { inSection = false; } AE_NO_TSAN ~ReentrantGuard() { inSection = false; }
private: private:
ReentrantGuard& operator=(ReentrantGuard const&); ReentrantGuard &operator=(ReentrantGuard const &);
private:
weak_atomic<bool> &inSection;
};
private:
weak_atomic<bool>& inSection;
};
#endif #endif
struct Block struct Block {
{
// Avoid false-sharing by putting highly contended variables on their own cache lines // Avoid false-sharing by putting highly contended variables on their own cache lines
weak_atomic<size_t> front; // (Atomic) Elements are read from here weak_atomic<size_t> front; // (Atomic) Elements are read from here
size_t localTail; // An uncontended shadow copy of tail, owned by the consumer size_t localTail; // An uncontended shadow copy of tail, owned by the consumer
...@@ -702,75 +691,73 @@ struct Block ...@@ -702,75 +691,73 @@ struct Block
weak_atomic<size_t> tail; // (Atomic) Elements are enqueued here weak_atomic<size_t> tail; // (Atomic) Elements are enqueued here
size_t localFront; size_t localFront;
char cachelineFiller1[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) - sizeof(size_t)]; // next isn't very contended, but we don't want it on the same cache line as tail (which is) char cachelineFiller1[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<size_t>) -
weak_atomic<Block*> next; // (Atomic) sizeof(size_t)]; // next isn't very contended, but we don't want it on the same cache line as tail (which is)
weak_atomic<Block *> next; // (Atomic)
char* data; // Contents (on heap) are aligned to T's alignment char *data; // Contents (on heap) are aligned to T's alignment
const size_t sizeMask; const size_t sizeMask;
// size must be a power of two (and greater than 0) // size must be a power of two (and greater than 0)
AE_NO_TSAN Block(size_t const& _size, char* _rawThis, char* _data) AE_NO_TSAN Block(size_t const &_size, char *_rawThis, char *_data)
: front(0UL), localTail(0), tail(0UL), localFront(0), next(nullptr), data(_data), sizeMask(_size - 1), rawThis(_rawThis) : front(0UL), localTail(0), tail(0UL), localFront(0), next(nullptr), data(_data),
{ sizeMask(_size - 1), rawThis(_rawThis) {
} }
private: private:
// C4512 - Assignment operator could not be generated // C4512 - Assignment operator could not be generated
Block& operator=(Block const&); Block &operator=(Block const &);
public: public:
char* rawThis; char *rawThis;
}; };
static Block* make_block(size_t capacity) AE_NO_TSAN static Block *make_block(size_t capacity) AE_NO_TSAN
{ {
// Allocate enough memory for the block itself, as well as all the elements it will contain // Allocate enough memory for the block itself, as well as all the elements it will contain
auto size = sizeof(Block) + std::alignment_of<Block>::value - 1; auto size = sizeof(Block) + std::alignment_of<Block>::value - 1;
size += sizeof(T) * capacity + std::alignment_of<T>::value - 1; size += sizeof(T) * capacity + std::alignment_of<T>::value - 1;
auto newBlockRaw = static_cast<char*>(std::malloc(size)); auto newBlockRaw = static_cast<char *>(std::malloc(size));
if (newBlockRaw == nullptr) { if (newBlockRaw == nullptr) {
return nullptr; return nullptr;
} }
auto newBlockAligned = align_for<Block>(newBlockRaw); auto newBlockAligned = align_for<Block>(newBlockRaw);
auto newBlockData = align_for<T>(newBlockAligned + sizeof(Block)); auto newBlockData = align_for<T>(newBlockAligned + sizeof(Block));
return new (newBlockAligned) Block(capacity, newBlockRaw, newBlockData); return new(newBlockAligned) Block(capacity, newBlockRaw, newBlockData);
} }
private: private:
weak_atomic<Block*> frontBlock; // (Atomic) Elements are dequeued from this block weak_atomic<Block *> frontBlock; // (Atomic) Elements are dequeued from this block
char cachelineFiller[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<Block*>)]; char cachelineFiller[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(weak_atomic<Block *>)];
weak_atomic<Block*> tailBlock; // (Atomic) Elements are enqueued to this block weak_atomic<Block *> tailBlock; // (Atomic) Elements are enqueued to this block
size_t largestBlockSize; size_t largestBlockSize;
#ifndef NDEBUG #ifndef NDEBUG
weak_atomic<bool> enqueuing; weak_atomic<bool> enqueuing;
mutable weak_atomic<bool> dequeuing; mutable weak_atomic<bool> dequeuing;
#endif #endif
}; };
// Like ReaderWriterQueue, but also providees blocking operations // Like ReaderWriterQueue, but also providees blocking operations
template<typename T, size_t MAX_BLOCK_SIZE = 512> template<typename T, size_t MAX_BLOCK_SIZE = 512>
class BlockingReaderWriterQueue class BlockingReaderWriterQueue {
{ private:
private:
typedef ::moodycamel::ReaderWriterQueue<T, MAX_BLOCK_SIZE> ReaderWriterQueue; typedef ::moodycamel::ReaderWriterQueue<T, MAX_BLOCK_SIZE> ReaderWriterQueue;
public: public:
explicit BlockingReaderWriterQueue(size_t size = 15) AE_NO_TSAN explicit BlockingReaderWriterQueue(size_t size = 15) AE_NO_TSAN
: inner(size), sema(new spsc_sema::LightweightSemaphore()) : inner(size), sema(new spsc_sema::LightweightSemaphore()) {}
{ }
BlockingReaderWriterQueue(BlockingReaderWriterQueue&& other) AE_NO_TSAN BlockingReaderWriterQueue(BlockingReaderWriterQueue &&other) AE_NO_TSAN
: inner(std::move(other.inner)), sema(std::move(other.sema)) : inner(std::move(other.inner)), sema(std::move(other.sema)) {}
{ }
BlockingReaderWriterQueue& operator=(BlockingReaderWriterQueue&& other) AE_NO_TSAN BlockingReaderWriterQueue &operator=(BlockingReaderWriterQueue &&other) AE_NO_TSAN
{ {
std::swap(sema, other.sema); std::swap(sema, other.sema);
std::swap(inner, other.inner); std::swap(inner, other.inner);
...@@ -781,7 +768,7 @@ public: ...@@ -781,7 +768,7 @@ public:
// Enqueues a copy of element if there is room in the queue. // Enqueues a copy of element if there is room in the queue.
// Returns true if the element was enqueued, false otherwise. // Returns true if the element was enqueued, false otherwise.
// Does not allocate memory. // Does not allocate memory.
AE_FORCEINLINE bool try_enqueue(T const& element) AE_NO_TSAN AE_FORCEINLINE bool try_enqueue(T const &element) AE_NO_TSAN
{ {
if (inner.try_enqueue(element)) { if (inner.try_enqueue(element)) {
sema->signal(); sema->signal();
...@@ -793,7 +780,7 @@ public: ...@@ -793,7 +780,7 @@ public:
// Enqueues a moved copy of element if there is room in the queue. // Enqueues a moved copy of element if there is room in the queue.
// Returns true if the element was enqueued, false otherwise. // Returns true if the element was enqueued, false otherwise.
// Does not allocate memory. // Does not allocate memory.
AE_FORCEINLINE bool try_enqueue(T&& element) AE_NO_TSAN AE_FORCEINLINE bool try_enqueue(T &&element) AE_NO_TSAN
{ {
if (inner.try_enqueue(std::forward<T>(element))) { if (inner.try_enqueue(std::forward<T>(element))) {
sema->signal(); sema->signal();
...@@ -803,23 +790,24 @@ public: ...@@ -803,23 +790,24 @@ public:
} }
#if MOODYCAMEL_HAS_EMPLACE #if MOODYCAMEL_HAS_EMPLACE
// Like try_enqueue() but with emplace semantics (i.e. construct-in-place). // Like try_enqueue() but with emplace semantics (i.e. construct-in-place).
template<typename... Args> template<typename... Args>
AE_FORCEINLINE bool try_emplace(Args&&... args) AE_NO_TSAN AE_FORCEINLINE bool try_emplace(Args &&... args) AE_NO_TSAN {
{
if (inner.try_emplace(std::forward<Args>(args)...)) { if (inner.try_emplace(std::forward<Args>(args)...)) {
sema->signal(); sema->signal();
return true; return true;
} }
return false; return false;
} }
#endif #endif
// Enqueues a copy of element on the queue. // Enqueues a copy of element on the queue.
// Allocates an additional block of memory if needed. // Allocates an additional block of memory if needed.
// Only fails (returns false) if memory allocation fails. // Only fails (returns false) if memory allocation fails.
AE_FORCEINLINE bool enqueue(T const& element) AE_NO_TSAN AE_FORCEINLINE bool enqueue(T const &element) AE_NO_TSAN
{ {
if (inner.enqueue(element)) { if (inner.enqueue(element)) {
sema->signal(); sema->signal();
...@@ -831,7 +819,7 @@ public: ...@@ -831,7 +819,7 @@ public:
// Enqueues a moved copy of element on the queue. // Enqueues a moved copy of element on the queue.
// Allocates an additional block of memory if needed. // Allocates an additional block of memory if needed.
// Only fails (returns false) if memory allocation fails. // Only fails (returns false) if memory allocation fails.
AE_FORCEINLINE bool enqueue(T&& element) AE_NO_TSAN AE_FORCEINLINE bool enqueue(T &&element) AE_NO_TSAN
{ {
if (inner.enqueue(std::forward<T>(element))) { if (inner.enqueue(std::forward<T>(element))) {
sema->signal(); sema->signal();
...@@ -841,16 +829,17 @@ public: ...@@ -841,16 +829,17 @@ public:
} }
#if MOODYCAMEL_HAS_EMPLACE #if MOODYCAMEL_HAS_EMPLACE
// Like enqueue() but with emplace semantics (i.e. construct-in-place). // Like enqueue() but with emplace semantics (i.e. construct-in-place).
template<typename... Args> template<typename... Args>
AE_FORCEINLINE bool emplace(Args&&... args) AE_NO_TSAN AE_FORCEINLINE bool emplace(Args &&... args) AE_NO_TSAN {
{
if (inner.emplace(std::forward<Args>(args)...)) { if (inner.emplace(std::forward<Args>(args)...)) {
sema->signal(); sema->signal();
return true; return true;
} }
return false; return false;
} }
#endif #endif
...@@ -858,8 +847,7 @@ public: ...@@ -858,8 +847,7 @@ public:
// returns false instead. If the queue has at least one element, // returns false instead. If the queue has at least one element,
// moves front to result using operator=, then returns true. // moves front to result using operator=, then returns true.
template<typename U> template<typename U>
bool try_dequeue(U& result) AE_NO_TSAN bool try_dequeue(U &result) AE_NO_TSAN {
{
if (sema->tryWait()) { if (sema->tryWait()) {
bool success = inner.try_dequeue(result); bool success = inner.try_dequeue(result);
assert(success); assert(success);
...@@ -873,8 +861,7 @@ public: ...@@ -873,8 +861,7 @@ public:
// Attempts to dequeue an element; if the queue is empty, // Attempts to dequeue an element; if the queue is empty,
// waits until an element is available, then dequeues it. // waits until an element is available, then dequeues it.
template<typename U> template<typename U>
void wait_dequeue(U& result) AE_NO_TSAN void wait_dequeue(U &result) AE_NO_TSAN {
{
while (!sema->wait()); while (!sema->wait());
bool success = inner.try_dequeue(result); bool success = inner.try_dequeue(result);
AE_UNUSED(result); AE_UNUSED(result);
...@@ -890,8 +877,7 @@ public: ...@@ -890,8 +877,7 @@ public:
// Using a negative timeout indicates an indefinite timeout, // Using a negative timeout indicates an indefinite timeout,
// and is thus functionally equivalent to calling wait_dequeue. // and is thus functionally equivalent to calling wait_dequeue.
template<typename U> template<typename U>
bool wait_dequeue_timed(U& result, std::int64_t timeout_usecs) AE_NO_TSAN bool wait_dequeue_timed(U &result, std::int64_t timeout_usecs) AE_NO_TSAN {
{
if (!sema->wait(timeout_usecs)) { if (!sema->wait(timeout_usecs)) {
return false; return false;
} }
...@@ -923,7 +909,7 @@ public: ...@@ -923,7 +909,7 @@ public:
// queue appears empty at the time the method is called, nullptr is // queue appears empty at the time the method is called, nullptr is
// returned instead. // returned instead.
// Must be called only from the consumer thread. // Must be called only from the consumer thread.
AE_FORCEINLINE T* peek() const AE_NO_TSAN AE_FORCEINLINE T *peek() const AE_NO_TSAN
{ {
return inner.peek(); return inner.peek();
} }
...@@ -962,15 +948,16 @@ public: ...@@ -962,15 +948,16 @@ public:
return inner.max_capacity(); return inner.max_capacity();
} }
private: private:
// Disable copying & assignment // Disable copying & assignment
BlockingReaderWriterQueue(BlockingReaderWriterQueue const&) { } BlockingReaderWriterQueue(BlockingReaderWriterQueue const &) {}
BlockingReaderWriterQueue& operator=(BlockingReaderWriterQueue const&) { }
BlockingReaderWriterQueue &operator=(BlockingReaderWriterQueue const &) {}
private: private:
ReaderWriterQueue inner; ReaderWriterQueue inner;
std::unique_ptr<spsc_sema::LightweightSemaphore> sema; std::unique_ptr <spsc_sema::LightweightSemaphore> sema;
}; };
} // end namespace moodycamel } // end namespace moodycamel
......
...@@ -42,9 +42,11 @@ using namespace std; ...@@ -42,9 +42,11 @@ using namespace std;
shared_ptr <ZMQServer> ZMQServer::zmqServer = nullptr; shared_ptr <ZMQServer> ZMQServer::zmqServer = nullptr;
ZMQServer::ZMQServer(bool _checkSignature, bool _checkKeyOwnership, const string &_caCertFile) ZMQServer::ZMQServer(bool _checkSignature, bool _checkKeyOwnership, const string &_caCertFile)
: outgoingQueue(NUM_ZMQ_WORKER_THREADS), checkSignature(_checkSignature), checkKeyOwnership(_checkKeyOwnership), : incomingQueue(NUM_ZMQ_WORKER_THREADS), checkSignature(_checkSignature), checkKeyOwnership(_checkKeyOwnership),
caCertFile(_caCertFile), ctx(make_shared<zmq::context_t>(1)) { caCertFile(_caCertFile), ctx(make_shared<zmq::context_t>(1)) {
CHECK_STATE(NUM_ZMQ_WORKER_THREADS > 1);
socket = make_shared<zmq::socket_t>(*ctx, ZMQ_ROUTER); socket = make_shared<zmq::socket_t>(*ctx, ZMQ_ROUTER);
if (_checkSignature) { if (_checkSignature) {
...@@ -277,12 +279,20 @@ void ZMQServer::doOneServerLoop() { ...@@ -277,12 +279,20 @@ void ZMQServer::doOneServerLoop() {
CHECK_STATE2(msg, ZMQ_COULD_NOT_PARSE); CHECK_STATE2(msg, ZMQ_COULD_NOT_PARSE);
uint64_t index = 0;
if ((dynamic_pointer_cast<BLSSignReqMessage>(msg)!= nullptr) || if ((dynamic_pointer_cast<BLSSignReqMessage>(msg)!= nullptr) ||
dynamic_pointer_cast<ECDSASignReqMessage>(msg)) { dynamic_pointer_cast<ECDSASignReqMessage>(msg)) {
index = NUM_ZMQ_WORKER_THREADS - 1;
} else { } else {
index = 0;
} }
auto element = pair<shared_ptr<ZMQMessage>, shared_ptr<zmq::message_t>>(msg, identity);
incomingQueue.at(index).enqueue(element);
result = msg->process(); result = msg->process();
} catch (ExitRequestedException) { } catch (ExitRequestedException) {
throw; throw;
......
...@@ -34,6 +34,7 @@ ...@@ -34,6 +34,7 @@
#include "Agent.h" #include "Agent.h"
#include "WorkerThreadPool.h" #include "WorkerThreadPool.h"
#include "ZMQMessage.h"
using namespace moodycamel; using namespace moodycamel;
...@@ -41,6 +42,7 @@ typedef enum {GOT_INCOMING_MSG = 0, GOT_OUTFOING_MSG = 1} PollResult; ...@@ -41,6 +42,7 @@ typedef enum {GOT_INCOMING_MSG = 0, GOT_OUTFOING_MSG = 1} PollResult;
static const uint64_t NUM_ZMQ_WORKER_THREADS = 2; static const uint64_t NUM_ZMQ_WORKER_THREADS = 2;
class ZMQServer : public Agent{ class ZMQServer : public Agent{
uint64_t workerThreads; uint64_t workerThreads;
...@@ -48,9 +50,9 @@ class ZMQServer : public Agent{ ...@@ -48,9 +50,9 @@ class ZMQServer : public Agent{
string caCertFile; string caCertFile;
string caCert; string caCert;
ReaderWriterQueue<pair<string, shared_ptr<zmq_msg_t>>> outgoingQueue; ReaderWriterQueue<pair<string, shared_ptr<zmq::message_t>>> outgoingQueue;
vector<ReaderWriterQueue<pair<string, shared_ptr<zmq_msg_t>>>> incomingQueue; vector<ReaderWriterQueue<pair<shared_ptr<ZMQMessage>, shared_ptr<zmq::message_t>>>> incomingQueue;
bool checkKeyOwnership = true; bool checkKeyOwnership = true;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment