
Protocol Labs

Security Assessment
Filecoin Proving Subsystem

Version: 2.1

July, 2020

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 3
Security Review Summary 4

Detailed Findings 6

Summary of Findings 7Potentially Dangerous Unwraps on from_repr() . 8Index Out of Bounds . 9Failed Assertions #1 . 10Failed Assertions #2 . 11Piece Sizes Overflows . 12Potential Challenge Count Denial-of-Service . 13Potential Denial-of-Service on compute_comm_d . 14Merkle Tree Leaves . 15Merkle Tree Infinite Loop . 17Configuration Parameters Abuse . 18Unchecked Stack Accesses . 19Hash Message Sizes Panics . 20Miscellaneous General Comments . 21SDR Spec feistel() Infinite Loop . 22Feistel Permutation Tests Invalid Range . 23
SectorId::as_fr_safe() uses 31 Bytes for Field Representatives 24SDR Invalid Constants . 25SDR Spec Edge Cases . 26Unnecessary memcopy in generate_labels() . 27Miscellaneous General Comments - Round 2 . 28

A Vulnerability Severity Classification 30

1

Security Assessment Introduction

Introduction

Protocol Labs is a research, development, and deployment institution for improving Internet technology. Pro-tocol Labs leads groundbreaking internet projects, such as IPFS, a decentralized web protocol; and libp2p, amodular network stack for peer-to-peer applications.
Filecoin is an open source project led by Protocol Labs which aims at providing a decentralized storage networkthat turns cloud storage into an algorithmic market. Miners earn the native protocol token by providing datastorage and/or retrieval.
Sigma Prime was approached by Protocol Labs to perform a security assessment of the Filecoin Proving Subsys-tem which provides the storage proofs required by the Filecoin protocol. This is implemented in Rust, with anexecutable specification developed in Golang.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review regarding, the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Filecoin Proving Subsystem contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given, which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitiesfound within the code.

Page | 2

Security Assessment Overview

Overview

At the highest level, Filecoin Proving System aims to implement three types of protocols, Proof of Space-Time(PoST), Proof of Retrievability (PoR) and Proof of Replication (PoRep). These protocols are based upon zk-SNARKS which require a hashing protocol.
zk-SNARKs require an initial setup phase such that all participants may agree on a set of public parameters.These parameters only need to be generated once for each protocol before any proofs may be generated orverified.
Once the public parameters have been agreed upon, proofs may be generated for each of the protocols. PoRproofs verify that a piece of data currently exists in the users storage. PoRep proofs demonstrate that a piece ofdata has been duplicated and if there are multiple replications each duplication is unique. Finally, PoST proofsvalidate that a piece of data has indeed been stored for a given period of time.
The Filecoin Proving Subsystem exposes an API where the core functionality can be summarised as follows:

• Generating the initial protocol parameters
• Generating proofs
• Verifying proofs.

Page | 3

Security Assessment Security Review Summary

Security Review Summary

This review was initially conducted on the following commits:

• rust-fil-proofs : e8d4475
• filecoin-ffi : 870251c

The second round of this assessment targeted release v4.0.0 .
Fuzzing activities leveraging libFuzzer have been performed by the testing team in order to identify panics withinthe code in scope. libFuzzer is a coverage-guided tool which explores different code paths by mutating input toreach as many code paths possible. The aim is to find memory leaks, overflows, index out of bounds or any otherpanics.
Specifically, the testing team produced the following fuzzing targets:

• rust-fil-proofs :
– compute_d.rs

– finalize_ticket.rs

– generate_candidates.rs

– generate_candidates_with_conf.rs

– generate_post.rs

– generate_post_with_conf.rs

– generate_then_verify_post.rs

– get_unsealed_range.rs

– seal_commit_phase1.rs

– seal_commit_phase2.rs

– seal_pre_commit_phase1.rs

– seal_pre_commit_phase2.rs

– validate_cache_for_precommit_phase2.rs

– verify_batch_seal.rs

– verify_post_with_conf.rs

– verify_seal.rs

– blake2s_function.rs

– fuzz_blake2b.rs

– fuzz_blake2s.rs

– fuzz_pedersen.rs

– pedersen_function.rs

– poseidon_function.rs

Page | 4

https://github.com/filecoin-project/rust-fil-proofs/commit/e8d44754c1dc867dcbda3352645a5da9203ef694
https://github.com/filecoin-project/filecoin-ffi/commit/870251cd04c54e7a3a08b714f3e71a9edec28445
https://github.com/filecoin-project/rust-fil-proofs/tree/releases/v4.0.0
https://llvm.org/docs/LibFuzzer.html

Security Assessment Security Review Summary

– sha256_function.rs

• filecoin-ffi :
– fuzz_fil_write_with_alignment.rs

– fuzz_fil_write_without_alignment.rs

– fuzz_full_cycle.rs

These fuzzing targets have been shared with the development team.
The testing team identified a total of thirteen (13) issues during the first round of this assessment (FPS-01 to
FPS-13), of which:

• One (1) is classified as high risk,
• One (1) is classified as medium risk,
• Eleven (11) are classified as informational.

The testing team identified a total of seven (7) issues during the second round of this assessment (FPS-14 to
FPS-20), all of which are classified as informational.

Page | 5

Security Assessment Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within Filecoin Proving Subsystem.Each vulnerability has a severity classification which is determined from the likelihood and impact of each issueby the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the code base, including comments not directly related to the securityposture of Filecoin Proving Subsystem, are also described in this section and are labelled as "informational".
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team;
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk;
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 6

Summary of Findings

ID Description Severity Status
FPS-01 Potentially Dangerous Unwraps on from_repr() High Resolved

FPS-02 Index Out of Bounds Medium Resolved

FPS-03 Failed Assertions #1 Informational Resolved

FPS-04 Failed Assertions #2 Informational Resolved

FPS-05 Piece Sizes Overflows Informational Resolved

FPS-06 Potential Challenge Count Denial-of-Service Informational Resolved

FPS-07 Potential Denial-of-Service on compute_comm_d Informational Resolved

FPS-08 Merkle Tree Leaves Informational Resolved

FPS-09 Merkle Tree Infinite Loop Informational Resolved

FPS-10 Configuration Parameters Abuse Informational Resolved

FPS-11 Unchecked Stack Accesses Informational Resolved

FPS-12 Hash Message Sizes Panics Informational Resolved

FPS-13 Miscellaneous General Comments Informational Resolved

FPS-14 SDR Spec feistel() Infinite Loop Informational Resolved

FPS-15 Feistel Permutation Tests Invalid Range Informational Resolved

FPS-16 SectorId::as_fr_safe() uses 31 Bytes for Field Representatives Informational Resolved

FPS-17 SDR Invalid Constants Informational Resolved

FPS-18 SDR Spec Edge Cases Informational Resolved

FPS-19 Unnecessary memcopy in generate_labels() Informational Resolved

FPS-20 Miscellaneous General Comments - Round 2 Informational Resolved

7

Security Assessment Detailed Findings

FPS-01 Potentially Dangerous Unwraps on from_repr()

Asset Multiple locations
Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

The function Fr::from_repr() takes a value as input and converts it to a field value. If the input value is greaterthan the field modulus then the function will error.
There are numerous occurences of Fr::from_repr().unwrap() , .expect() or other panic happy accesses
of Results that can be seen in the codebase. The implication is that, panics will occur if the value is greaterthan the field modulus. This pattern is a regular occurence with respect to hash function domains.
Additionally, if the randomness used in aWinning PoST orWindow PoST is greater than the field modulus then
both generation and verification will error due to as_safe_commitment() . The generation of randomness must
ensure that the output is less than the field modulus (similar observation for prover_id).

Recommendations

Each occurrence where from_repr() is accessed without handling the error case needs to be manually re-viewed to ensure it cannot be reached from malicious user input. The cases where it can be reached frommalicious user input should instead propogate the error.
Care needs to be taken when generating randomness to ensure that the output is less than the field modulus orproofs cannot be created.

Resolution

The issue has been resolved in the specifications by dictating the type of byte arrays which have been checked as
B[32]

safe where from_repr() is ensuring the return value is Result::Ok() . Alternatively, B[32] is used for arrays
which have not been checked, in these situations the error case in from_repr() is handled.

Page | 8

Security Assessment Detailed Findings

FPS-02 Index Out of Bounds
Asset storage-proofs/src/compound_proofs.rs

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

In the bellman dependency, the function create_proof_batch_priority() will index out of bounds when
provers is of length zero, as it is indexed at zero.
The function is called from the function circuit_proofs() which is called from generate_post() .

Recommendations

We recommend returning an error when provers is of length zero.

Resolution

The development team has resolved this issue in commit 8d6c3f2.

Page | 9

https://github.com/filecoin-project/rust-fil-proofs/commit/8d6c3f203f894dffa5ac078cbb35c15207ec8972

Security Assessment Detailed Findings

FPS-03 Failed Assertions #1
Asset storage-proofs/src/circuit/stacked/proof.rs

Status Resolved: See Resolution
Rating Informational

Description

In the function circuit() each of the three assertions may be triggered, resulting in a panic.
The assertions may be reached from the function generate_post() for varying input. Note that these asser-
tions may be reached when PoStConfig configurations are restricted to valid inputs.
The three assertions are:

• assert!(!vanilla_proof.is_empty(), "Cannot create a circuit with no vanilla proofs");

• assert!(vanilla_proof.iter().all(|p| p.comm_r_last() == &comm_r_last));

• assert!(vanilla_proof.iter().all(|p| p.comm_c() == &comm_c));

Recommendations

Consider changing the assertions to the ensure! macro such that an error will be returned as opposed toresulting in panics.

Resolution

The development team has resolved this issue in commit 5ac8e2e.

Page | 10

https://github.com/filecoin-project/rust-fil-proofs/commit/5ac8e2e7720dc5260e7bbb16a22b0edec81ce100

Security Assessment Detailed Findings

FPS-04 Failed Assertions #2
Asset Multiple locations

Status Resolved: See Resolution
Rating Informational

Description

The following assertions may fail during execution of seal_commit_phase2() :

• storage-proofs/src/circuit/insertion.rs : line [22]
• storage-proofs/src/circuit/insertion.rs : line [81]
• storage-proofs/src/por.rs : line [197]
• storage-proofs/src/circuit/stacked/hash.rs : line [41]

Note that these assertions may be reached when PoRepConfig configurations are restricted to valid inputs.

Recommendations

Consider changing the assertions to return and propagate errors as opposed to panicking.

Resolution

The desired behaviour is for the program to panic under these conditions. The panics will be caught by the callingrepository thus preventing a full program crash.

Page | 11

Security Assessment Detailed Findings

FPS-05 Piece Sizes Overflows
Asset filecoin-proofs/src/api/seal.rs

Status Resolved: See Resolution
Rating Informational

Description

A range of overflows are possiblewhen piece_info.size is large, in the functions seal_pre_commit_phase1()

and seal_commit_phase1() .
The following is a list of possible vulnerabilities when the piece_infos.size is not restricted:

• filecoin-proofs/src/pieces.rs : line [98]:
Addition overflow if the array of piece_info have a summed total size greater than 264.

• filecoin-proofs/src/fr32.rs : line [324]:
Multiply overflow if pos * 8 is greater than 264, where pos = piece_info.size .

• filecoin-proofs/src/fr32.rs : line [314]:
Multiply overflow if full_elements * to_size , where full_elements = pos / 254 , to_size = 256

and pos = piece_info.size .
• filecoin-proofs/src/pieces.rs : line [235]:

Additional overflow left.size + right.size when the two sizes add to more than 264, where each
size is a piece_info.size .

Recommendations

Consider returning an error when a piece size is greater than the sector size.

Resolution

Piece lengths are verified by the network service when they are received and thus cannot be larger than thesector size. The max sector size is 64GB and thus piece_info.size will not be able to overflow in addition ormultiplication.

Page | 12

Security Assessment Detailed Findings

FPS-06 Potential Challenge Count Denial-of-Service
Asset filecoin-proofs/src/api/post.rs

Status Resolved: See Resolution
Rating Informational

Description

The function generate_candidates() takes the following parameters:

• post_config

• randomness

• challenge_count

• replicas

• prover_id

If generate_candidates() is called with a high challenge_count , the time taken to generate the sectorchallenges will be infeasible for all modern computers.
As a result, there is a denial of service on the client as the resources are tied up attempting to generate anexcessive number of sector challenges.

Recommendations

We recommend either:
• Setting a MAXIMUM_CHALLENGE_COUNT ;
• Restricting access to generate_candidates() .

Resolution

The development team is aware of this potential Denial-of-Service vector and have ensured that challenge_countis restricted by the network protocol.

Page | 13

Security Assessment Detailed Findings

FPS-07 Potential Denial-of-Service on compute_comm_d

Asset filecoin-proofs/src/api/seal.rs

Status Resolved: See Resolution
Rating Informational

Description

The function compute_comm_d() calls a function of the same name in filecoin-proofs/src/pieces.rs .
These functions take sector_size as input.
Specifying a large sector_size will result in filecoin-proofs/src/pieces.rs creating a reader of length
sector_size such that in line [68], io::copy(...) will iterate over the entire reader.
If sector_size is sufficiently large the copy will iterate over the entire reader which is infeasible for all commonmachines (consumer hardware), thereby allowing for a Denial-of-Service attack.

Recommendations

We recommend either:
• Converting SectorSize to an enum thereby restricting possible values;
• Ensuring sector_size is restricted in the calling repository.

Resolution

Piece sizes are restricted to the size of a sector by the network protocol, therefore providing a restriction on theamount of data that can be copied.

Page | 14

Security Assessment Detailed Findings

FPS-08 Merkle Tree Leaves
Asset filecoin-proofs/src/api/post.rs

Status Resolved: See Resolution
Rating Informational

Description

Inside the merkletree dependency, the function get_merkle_tree_len(leafs, branches) will give an in-
valid answer if leafs is not a valid power of branches.
A valid power of branches should be leafs = branchesx for a given x.
Similarly, the function get_merkle_tree_leafs(len, branches) will result in a subtraction overflow and the
assertion will fail causing a panic if len is not a the size of a full tree.
A full tree will have size:

• len =
∑n

i=0 branchesi for some n.

The combination of these functions are used in generate_post() and generate_candidates() .

First, tree_size = get_merkle_tree_len(leafs, branches) is called with:

• leafs = post_config.sector_size / Domain::byte_len()

• branches = OCT_ARITY = 8

Second, leafs = get_merkle_tree_leafs(len, branches) is called with:

• len = tree_size

• branches = OCT_ARITY = 8

Thus, if post_config.sector_size / Domain::byte_len() is not a valid multiple of 8 the tree_size will
be invalid and get_merkle_tree_leafs() will panic.
Effective exploitation of this bug requires sending an invalid post_config.sector_size which is restricted
through the use of enums in the calling repository filecoin-project/rust-filecoin-proofs-api .

Page | 15

Security Assessment Detailed Findings

Recommendations

To increase the overall robustness of the proof susbsytem, we recommend handling the invalid cases by return-ing errors for both get_merkle_tree_len() and get_merkle_tree_leaves() in merkletree and handling
these errors in generate_post() and generate_candidates() .

Resolution

The development team has modified get_merkle_tree_len() to return a Result in this issue in commita7073ff.
Additionally, get_merkle_tree_leafs() has been updated to return a Result in commit 9d0f4f2.

Page | 16

https://github.com/filecoin-project/merkle_light/commit/a7073ff558e511e76ce3d32f1b0d9efb9bbf128a
https://github.com/filecoin-project/merkle_light/commit/9d0f4f20ee937e85c1601c1ff8b1b9a2dba94e2d

Security Assessment Detailed Findings

FPS-09 Merkle Tree Infinite Loop
Asset filecoin-proofs/src/api/post.rs

Status Resolved: See Resolution
Rating Informational

Description

Inside the merkletree dependency, in the function get_merkle_tree_leafs(len, branches) , an infinite
loop will occur if len = 0 .
The function is called from generate_post() and generate_candidates() .
However, effective exploitation requires post_config.sector_size = 0 which is restricted through the use
of enums in the calling repository filecoin-project/rust-filecoin-proofs-api .

Recommendations

We recommend handling the zero case by either returning zero or returning an error.

Resolution

The code will now return an error in the loop if len < leafs which occurs when len = 0 . Therefore aninfinite loop cannot occur. See commit 9d0f4f2 for more details.

Page | 17

https://github.com/filecoin-project/merkle_light/commit/9d0f4f20ee937e85c1601c1ff8b1b9a2dba94e2d

Security Assessment Detailed Findings

FPS-10 Configuration Parameters Abuse
Asset filecoin-proofs/src/api/post.rs

Status Resolved: See Resolution
Rating Informational

Description

A range of overflows and an excessive memory allocations are plausible when PostConfig or PoRepConfigare able to be set by the user.
The following is a list of possible vulnerabilities when the configuration files are not restricted:

• storage-proofs/src/circuit/election_post.rs : line [166]:
Multiplication overflow in pub_params.challenged_nodes * pub_params.challenge_count . Where
challenged_nodes and challenged_count come from post_config.challenged_nodes and
post_config.challenged_count .

• storage-proofs/src/stacked/graph.rs : line [125]:
Multiplication overflow in expansion_degree * nodes . Where expansion_degree is set to
EXP_DEGREE = 8 and nodes comes from post_config.challenged_nodes.

• storage-proofs/src/circuit/election_posts.rs : line [171]:
Capacity overflow if challenged_nodes * challenge_count is large then initiaisation of vectors willrequire excessive memory and will panic.

Recommendations

Care should be taken in the calling repository filecoin-project/rust-filecoin-proofs-api to ensure thatthe configuration parameters cannot be manipulated.

Resolution

The development teamhas resolved themultiplication overflow in storage-proofs/src/stacked/graph.rs:125in commit 47c880d.
The remaining issues will not be fixed as these will be public parameters that are set by the network. In deploy-ment they are set as constant which will not overflow or use excessive memory.

Page | 18

https://github.com/filecoin-project/rust-fil-proofs/commit/47c880d430b5b5216d34eb51f6e9cfdf0e670830

Security Assessment Detailed Findings

FPS-11 Unchecked Stack Accesses
Asset filecoin-proofs/src/pieces.rs

Status Resolved: See Resolution
Rating Informational

Description

The struct Stack uses an underlying vector to immitate a stack.
The struct is implemented with two funcitons peek() and peek2() which provide a references to the first andsecond items in the stack respectively.
However, the functions access the underlying vector without first checking the number of elements.
For example, calling peek() on an empty stack will execute &self.0[self.0.len() - 1] which will cause a
subtraction overflow and the index will be 264 − 1. The index is out of bounds and will therefore panic.
Similarly, calling peek2() on a stack with one element will execute &self.0[self.0.len() - 2] thereby
accessing the index 264 − 1. The index is out of bounds and will again panic.
No direct exploitation of this vulnerability could be found based on the current usage of these functions.

Recommendations

Consider changing the function to return an Option<PieceInfo> and return None when there are insufficientelements.

Resolution

The development team has reviewed all uses of peek() and peek2() and confirm there are no possible usesresulting in a index out of bounds.

Page | 19

Security Assessment Detailed Findings

FPS-12 Hash Message Sizes Panics
Asset storage-proofs/src/hash/

Status Resolved: See Resolution
Rating Informational

Description

Numerous hash implementations, including SHA256 , Blake2s , Pedersen and Poseiodon , have been imple-mented. These hash functions take a message as input and output a message digest.
The following implementations of HashFunction will panic given a certain message size.

• PedersenFunction : if the message is length zero, the iterator in
storage-proofs/src/crypto/pedersen.rs will fail on the first call to next() as it will index outof bounds.

• PedersenFunction : if the message length is greater than about 120 bytes, then not enough Pedersengenerators would be created.Hence, an assertion in the dependency fil_sapling_crypto src/pedersen_has.rs on line [100] or
line [194] will be triggered.

• PoseidonFunction : if the message is length zero then the match statement at
storage-proofs/src/hasher/poseidon.rs on line [250] will panic.

• PoseidonFunction : if themessage is not 32 bytes nor zero, then PoseidonDomain::from_slice(data)will panic.
Additionally, PoseidonFunction will panic if the given data is not less than the field modulus as from_repr()

is unwrapped in storage-proofs/src/hasher/poseidon.rs on line [218].

Recommendations

We recommend ensuring all calls to PedersenFunction::hash() and PoseidonFunction::hash() only pass32 bytes messages.
The case in PoseidonFunction where the from_repr() may fail needs to be handled, consider returning aresult.

Resolution

All calls to PedersenFunction::hash() and PoseidonFunction::hash() are made using FrRepr checkedpoints and thus will not panic.

Page | 20

Security Assessment Detailed Findings

FPS-13 Miscellaneous General Comments
Asset filecoin-proofs/src/fr32.rs

Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have a direct securityimplication:

• filecoin-proofs/src/fr32.rs : consider changing padded_bytes() to to_padded_bytes() and
unpadded_bytes() to to_unpadded_bytes()

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team has resolved the issue in commit 031b6fb.

Page | 21

https://github.com/filecoin-project/rust-fil-proofs/commit/031b6fb940e1a87115ed230db70ad6c08f4fe464

Security Assessment Detailed Findings

FPS-14 SDR Spec feistel() Infinite Loop
Asset SDR Spec
Status Resolved: See Resolution
Rating Informational

Description

The function feistel() , in the SDR Spec section Feistel Network PRP, has a loop that will run indefinitely in50% of cases.
The loop is deterministic based off the values of leftr and rightr in lines 3 and 4. These values are based off
input and the constants RightMask and LeftMask . Hence, leftr and rightr will not change between each
iteration of the loop and thus the value of output will not change from the first iteration. If the value of outputdoes not satisfy the condition of the while loop after the first iteration, execution will continue indefinitely.
Note that this issue does not exist in the Rust implementation.

Recommendations

Either update the value of input to match output at the end of the loop. Otherwise, use a temporary variable
which is initially set to the value of input and updated with output at the end of each loop iteration.

Resolution

The value of input is set to the value of output as the last statement in the loop thereby preventing an infiniteloop. This can be seen in the updated spec.

Page | 22

https://bafybeidxw5vxjdwsun2zc2illagf43v6w5r5w63vg455h7vjesbyqssg64.ipfs.dweb.link/algorithms/sdr/#feistel-network-prp

Security Assessment Detailed Findings

FPS-15 Feistel Permutation Tests Invalid Range
Asset storage-proofs/core/src/crypto/feistel.rs

Status Resolved: See Resolution
Rating Informational

Description

The function feistel() requires the output permutation p in the range p < n or [0, n) where n is the size ofthe permutation.
The Rust tests for feistel() in storage-proofs/core/src/crypto/feistel.rs in line [128] and line [224]check the output permutation p ≤ n. Tests may incorrectly pass for the case where p = n.
Note that examination of the code shows the case p = n will not occur in the function.

Recommendations

Update the tests to check that p is strictly less than the size of the permutation.

Resolution

This issue has been resolved in the pull request #1196.

Page | 23

https://github.com/filecoin-project/rust-fil-proofs/pull/1196

Security Assessment Detailed Findings

FPS-16 SectorId::as_fr_safe() uses 31 Bytes for Field Representatives
Asset storage-proofs/core/src/sector.rs

Status Resolved: See Resolution
Rating Informational

Description

Checked field representatives, B[32]
safe, are 32 byte arrays with the most significant two bits in the most significant

byte set to 0. On the other hand, SectorId::as_fr_safe() outputs a 31 byte array.

Recommendations

The function is not used in rust-fil-proofs hence, to avoid accidental programming errors, itmay be removed.
Alternatively, if the function is required by an external library, consider updating the function to match B[32]

safe byadding a 0 byte as the most significant byte.

Resolution

This issue has been resolved in the pull request #1196.

Page | 24

https://github.com/filecoin-project/rust-fil-proofs/pull/1196

Security Assessment Detailed Findings

FPS-17 SDR Invalid Constants
Asset SRD Notation, Constants, and Types
Status Resolved: See Resolution
Rating Informational

Description

The constant dexp appears twice (with different values) while ddrg does not appear.
The constant Nfesitel_rounds = 4 is now 3 Feistel rounds. Note the number four is also used in SDR Specsection Feistel Network PRP. Furthermore, "fesitel" is spelt incorrectly in numerous locations in SDR Spec andSDR Notation, Constants, and Types.
Additionally, FeistelKeysP orepID can updated to be an array of length 3. The Rust implementation in
storage-proofs/porep/src/stacked/vanilla/graph.rs may now also generate 3 keys.
The constants Nporep_partitions and Nporep_challenges are used in SDR Spec but not defined in SDR Notation,Constants and Types.
All constants are defined for the 32GiB sector size. The constants for other sector sizes are have not beenincluded in SRD Notation, Constants, and Types.

Recommendations

Consider the following:

• Change dexp = 6 to ddrg = 6;
• Change Nfesitel_rounds = 4 to Nfeistel_rounds = 3 and fix any occurrences of "fesitel", in both SDR Specand SDR Notation, Constants, and Types. Additionally, consider using the FEISTEL_ROUNDS constant togenerate the required number of keys in the rust implementation;
• Add the constants Nporep_partitions and Nporep_challenges;
• Add the constants for other sector sizes.

Resolution

The recommendations have been implemented except the constants for the 64 GiB sector size have not beenadded. The updated spec can be seen here.

Page | 25

https://bafybeidxw5vxjdwsun2zc2illagf43v6w5r5w63vg455h7vjesbyqssg64.ipfs.dweb.link/algorithms/sdr/notation/#protocol-constants

Security Assessment Detailed Findings

FPS-18 SDR Spec Edge Cases
Asset SRD Spec
Status Resolved: See Resolution
Rating Informational

Description

There are a range of edge cases that may arise as part of normal code execution, considering normal executionto be the execution paths that occur with a high probability in valid use cases.
For example the cases for get_drg_parents(v) where v = 0 or 1 must be handled differently during thecode execution. These cases will always arise during replication and so are part of normal execution.

Recommendations

Consider adding the code paths that may be reached as part of the normal execution of the program.

Resolution

The edges cases for v = 0 or 1 have been updated in get_drg_parents(v) in the most recent spec update.

Page | 26

https://bafybeidxw5vxjdwsun2zc2illagf43v6w5r5w63vg455h7vjesbyqssg64.ipfs.dweb.link/algorithms/sdr/#drg

Security Assessment Detailed Findings

FPS-19 Unnecessary memcopy in generate_labels()

Asset storage-proofs/porep/src/stacked/vanilla/proof.rs

Status Resolved: See Resolution
Rating Informational

Description

The function generate_labels() iterates though the layers of the Stacked DRG, creating labels for each nodebased off their parents in both this layer and the previous one.
The function stores an array of the labels consisting of the current layer and the previous layer as
labels_buffer of length n ∗ 2 where n is the size of a layer. The first n nodes (i.e. [0, n)) represent the currentlayer and the second n (i.e. [n, 2n)) nodes represent the previous layer.
At the end of the iteration of each layer there is a memcopy of the current nodes to the previous nodes (i.e. the
first n nodes are copied over the second n nodes). Subsequently, the next iteration will overwrite the currentnodes (i.e. the first n nodes) with the new current layer nodes.
These new current layer nodes overwrite the first n nodes without reading them. Thus, the memcopy can beavoided.
It can be avoided by, at the end of the first iteration, switching the previous layer nodes to be the first n nodesand the current layer nodes to be the second n nodes. After the second iteration, switch back such that the first
n are the current layer nodes and the second n nodes are the previous layer nodes. This process can be repeatedto reduce the need for a memcopy .
This is a significant optimisation as a layer will contain a sector size worth of nodes which may be as large as64GiB.

Recommendations

Consider implementing the optimisation described above to reduce copying large quantities of memory.

Resolution

This issue has been resolved in the pull request #1198.

Page | 27

https://github.com/filecoin-project/rust-fil-proofs/pull/1198

Security Assessment Detailed Findings

FPS-20 Miscellaneous General Comments - Round 2
Asset Multiple
Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have a direct securityimplication:

• rust-fil-proofs/README.md :
– line [20]: The link go-filecoin is https://github.com/filecoin-project/go-filecoin’ . Con-sider removing the trailing apostrophe.
– Build Section: Consider including other dependencies such as gcc/clang wall , cmake .
– Benchmarking Section: bencher binary no longer exists.
– line [99]: The link stacked is broken.
– line [280]: The link sector-base is broken.
– line [287] & line [288]: The four links on these lines are broken.

• SDR Notation, Constants, and Types:
– General Notation Section: Fq would be clearer to say q is the curve subgroup order.
– Protocol Constants Section: "either Winning of Window PoSt, determined by context”

should be Winning or Window PoSt .
– Protocol Constants Section: The Groth16 keypair sued to generate ... should be

The Groth16 keypair used to generate
– Protocol Constants Section: The constant Nbuckets is not needed in SDR Notation, Constants, andTypes as it is calculated as a different value in SDR Spec.

• SDR Spec:
– Merkle Proofs Section: The link storage_proofs::merkle::MerkleTreeWrapper::gen_proof() isbroken.
– BinTreeProofs Subsection: There is a closing $ missing in, or the BinTreeProofc.leaf if $l = 0 .
– BinTreeProofs Subsection: The function create_proof() is referred to as both

BinTreeProof.create_proof() and BinTree.create_proof() .
– OctTreeProofs Subsection: Similarly, the function create_proof() is referred to as both

OctTreeProof.create_proof() and OctTree.create_proof() .
– DRG Subsection: distmin,b = max(dmax,b/2, 2) should be distmin,b = max(distmax,b/2, 2) .
– Expander Subsection: dE apprears twice, it should be dexp .

Page | 28

Security Assessment Detailed Findings

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The comments have been understood and acknowledged, and suggestions have been applied where required.

Page | 29

Security Assessment Vulnerability Severity Classification

Appendix A Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. Thetotal severity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

Page | 30

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Review Summary
	Detailed Findings
	 Summary of Findings
	Potentially Dangerous Unwraps on from_repr()
	Index Out of Bounds
	Failed Assertions #1
	Failed Assertions #2
	Piece Sizes Overflows
	Potential Challenge Count Denial-of-Service
	Potential Denial-of-Service on compute_comm_d
	Merkle Tree Leaves
	Merkle Tree Infinite Loop
	Configuration Parameters Abuse
	Unchecked Stack Accesses
	Hash Message Sizes Panics
	Miscellaneous General Comments
	SDR Spec feistel() Infinite Loop
	Feistel Permutation Tests Invalid Range
	SectorId::as_fr_safe() uses 31 Bytes for Field Representatives
	SDR Invalid Constants
	SDR Spec Edge Cases
	Unnecessary memcopy in generate_labels()
	Miscellaneous General Comments - Round 2

	Vulnerability Severity Classification

