
Protocol Labs

ZK-SNARK proofs audit

28th July 2020

Contents

Contents 1

1 Introduction 2
1.1 Audit summary . 2
1.2 Scope . 3
1.3 Security goals . 4

2 Methodology 5

3 Code functionality 7
3.1 Building blocks . 7
3.2 Schemes implemented . 7
3.3 BLS12-381 background . 8
3.4 Groth16 background . 8
3.5 Rank-1 constraint systems . 10
3.6 Implementation approach . 10

4 Security issues 15

5 Observations 16
5.1 Suggested additional pre-conditions checks 16

5.1.1 Resolution . 16
5.2 Unhandled overflow . 16

5.2.1 Resolution . 17
5.3 Deprecated dependencies . 17

5.3.1 Resolution . 17
5.4 Naming improvement . 17

5.4.1 Resolution . 18

1

1

Introduction

Protocol Labs hired us to review the security of their Filecoin storage proofs, which essen-
tially consist of zk-SNARK proofs of tree-based proofs-of-replication. Although the core
zk-SNARK logic is well understood and implemented using the established bellman im-
plementation (via the bellperson fork), the SNARK circuits creation is novel, and a critical
component for Filecoin’s security.
This report describes the work performed, including our methodology, a general descrip-
tion of the code covered and its security components, a minor specific observations re-
garding implementation quality.
We would like to thank Protocol Labs for trusting us and for their availability to answer
our questions in a timely manner. We greatly enjoyed working on this project, which is
among the most interesting auditing works we have done.
The work was performed by Dr. Jean-Philippe Aumasson and Antony Vennard, and took
the equivalent of 11 person-days.

1.1 Audit summary
We summarize this security assessment project as follows:

• It took us some time (a few days) to understand what was exactly being done and
how it was done. Even for seasoned experts familiar with SNARKS, it proved chal-
lenging to get a full understanding of the construction, mainly due to the relative
complexity of the structure of proofs-of-replication, an unusual type of cryptography
mechanism.

• We found that the code base somewhat lacked explanations and comments, and
that the documentation providedwas a reference for developers already familiar with
the logic implemented. A more gentle introduction might be beneficial to future new
contributors and reviewers.

• The highlymodular structure of the code, with distinct structures and filesmodules
for each proof type and functionality, as well as the clear separation between vanilla
proofs and circuits, makes the workflow easier to follow, and gives a relatively clear

2

Protocol Labs 28th July 2020

picture of what role various components play and what are the potential security
issues.

• The zk-SNARK creation workflow, and in particular the circuit synthesis, is clearly
separated from the creation of the vanilla proofs (of replication and/or spacetime),
which we believe is a good design choice that makes the code more adaptable to
future updates, and also easier to audit. The fact that circuit synthesis logic is split
across different places in the code is not ideal from an audit perspective, but makes
logical sense in terms of software design, so we recommend to stick to the current
structure.

• The circuit creation relies asmuch as possible on established components (mainly,
the bellman/bellperson crate and its “Groth16” logic), where the only novel compo-
nent is the Poseidon hash and its implementation, which we believe do not repre-
sent a high security risk. The code is written in safe Rust, and enforces the validity,
correct encoding, and acceptable size of objects it is processing (in particular, po-
tentially untrusted inputs).

• Our work involved documents review, code review, writing of custom test cases,
step-by-step execution using a debugger. We notably evaluated the code behavior
against the expected behavior, as documented, and did not find any significant
discrepancy or inconsistency.

• The circuit definition and synthesis appeared to fully match the expected func-
tionality, and did not reveal any behavior that would compromise the zk-SNARKs’
security (be it in terms of completeness, soundness, or information leakage). Al-
though we did not review bellperson’s logic, we sometimes referred to its code to
verify that it behaved as expected. Overall, we have not found any issue we
consider as having a security impact. The only observations we report are quality
improvement suggestions and defense-in-depth controls.

• The testing of the circuits and evaluation under adversarial/invalid input was made
more challenging by the relatively low number of unit tests, and the complexity
and running time of the ones available. Although it does not seem straightforward
to create tests that are both much simpler/faster yet meaningful, such tests would
be greatly beneficial for more advanced and automated testing. For example, some
kind of fuzzing would probably be valuable.

1.2 Scope
The audit concerns components in the filecoin-project/rust-fil-proofs (version v3.0.0), where
the main components relevant for this audit are:

• The storage-proof/core components, including

– The generic definition of ProofScheme
– The compound proof logic defined by the CompoundProof trait, whose proving

mechanisms first builds “vanilla” proofs (i.e., non-SNARK proofs) for a series
of partitions, before turning said proofs into an actual NIZK proof after circuit
synthesis.

ZK-SNARK proofs audit 3

https://github.com/filecoin-project/rust-fil-proofs
https://github.com/filecoin-project/rust-fil-proofs/tree/be90253f8ff7316d8ef862a1aaed92e76c05ce36/storage-proofs/core/src
https://github.com/filecoin-project/rust-fil-proofs/blob/be90253f8ff7316d8ef862a1aaed92e76c05ce36/storage-proofs/core/src/proof.rs#L10
https://github.com/filecoin-project/rust-fil-proofs/blob/be90253f8ff7316d8ef862a1aaed92e76c05ce36/storage-proofs/core/src/compound_proof.rs

Protocol Labs 28th July 2020

• The storage-proofs/porep component, specific to proofs-of-replication, whose code
of interest for the audit is mainly in the stacked/circuit subdirectory. Also of interest
for the logic’s understanding is the stacked/vanilla code.

• The storage-proofs/post component, specific to proofs-of-spacetime, built on top
of proofs-of-replication, and whose code of interest for the audit is mainly in fall-
back/circuit.rs, and where the vanilla proof mechanism is in fallback/vanilla.rs.

Other important components are the bellman zk-SNARK logic (for creating the NIZK
proofs), and the neptune implementation of the Poseidon circuit-friendly hash function.
These are not in the scope of the audit, and were just partially reviewed when needed,
for the sake of the system’s understanding.

1.3 Security goals
In our review, we evaluated the proofs’ and their circuits implementation against the fol-
lowing security properties:

• Correctness: The code should correctly translates the proof logic into the structure
processed by Groth proofs, and this logic should be consistent across different proof
instances or executions of the code.

• Completeness and soundness: A proof (PoRep or PoST) that is incorrectly encoded
or invalid should not lead to a zk-SNARK proof that would be verifiable as valid.
Likewise, valid PoRep or PoST should yield a valid zk-SNARK proof.

• Zero-knowledge: The proof generated should not leak any data that in principle
should not be leaked. To a lesser extent, the creation of the proof should not expose
information more than needed (note that side channel evaluation was out of scope).

• Software security : The implementation cannot be abused by exploiting logic errors
or software bugs. Although the audit is not a pure code review, code safety is one
relevant aspect of our assessment, for it can jeopardize the above security notions.

The section below explains in details the actions performed to assess these security prop-
erties.

ZK-SNARK proofs audit 4

https://github.com/filecoin-project/rust-fil-proofs/tree/be90253f8ff7316d8ef862a1aaed92e76c05ce36/storage-proofs/porep
https://github.com/filecoin-project/rust-fil-proofs/tree/be90253f8ff7316d8ef862a1aaed92e76c05ce36/storage-proofs/porep/src/stacked/circuit
https://github.com/filecoin-project/rust-fil-proofs/tree/be90253f8ff7316d8ef862a1aaed92e76c05ce36/storage-proofs/porep/src/stacked/vanilla
https://github.com/filecoin-project/rust-fil-proofs/tree/be90253f8ff7316d8ef862a1aaed92e76c05ce36/storage-proofs/post
https://github.com/filecoin-project/rust-fil-proofs/blob/be90253f8ff7316d8ef862a1aaed92e76c05ce36/storage-proofs/post/src/fallback/circuit.rs
https://github.com/filecoin-project/rust-fil-proofs/blob/be90253f8ff7316d8ef862a1aaed92e76c05ce36/storage-proofs/post/src/fallback/circuit.rs
https://github.com/filecoin-project/rust-fil-proofs/blob/be90253f8ff7316d8ef862a1aaed92e76c05ce36/storage-proofs/post/src/fallback/vanilla.rs
https://github.com/filecoin-project/bellman/
https://github.com/filecoin-project/neptune

2

Methodology

Our main sources of information were, besides the code repositories, documentation pro-
vided by Protocol Labs: comprehensive documentation of both the specification and of
the lower level encodings and structures. We notably compared this documentation pro-
vided with the code, in terms of algorithmic logic, values encoding, bit ordering, etc., and
looked for inconsistencies between the two.
When needed for the understanding of the code’s logic, we also referred to the Filecoin
paper, the proof of replication paper, and the Groth16 paper.
To test the implementation, we relied on built-in unit tests that we modified to test specific
(such as porep’s stacked_test_compound()), and also relied on fil-proof-tooling, as well
as custom test suites that we wrote in Rust.
In our review of the circuit creation code, we reviewed the proper allocation of inputs, pa-
rameters, adequate use of bellperson logic, and content of the dedicated gadgets used.
We also looked for missing sanity checks, possible acceptance of invalid or incorrect
proofs in the circuitization process, correct generation of inputs, consistent circuit syn-
thesis across different runs or instances, redundant operations, suboptimal ordering of
operations, and so on. More generally, we looked for any behavior that could compro-
mise the proof’s security, in terms of completeness, soundness, or information leak.
When auditing the circuit creation code for pure code safety, we specifically looked for

• The handling of edge cases that could lead to unsafe behavior (for example, poten-
tial ambiguous encodings of data)

• Correct and safe usage of other components (mainly bellperson).
• Correct and safe usage of cryptographic APIs (hash functions Poseidon and SHA-
256, PRNG)

• Software security bugs, such as:

– Potential memory corruption issues (in unsafe blocks).
– Memory leaks and unsafe use of dynamic allocators.
– Arithmetic bugs, such as integer overflow and division by zero.
– Unhandled or unsafely handled errors.

5

https://bafybeidxw5vxjdwsun2zc2illagf43v6w5r5w63vg455h7vjesbyqssg64.ipfs.dweb.link/algorithms/sdr/
https://bafybeidxw5vxjdwsun2zc2illagf43v6w5r5w63vg455h7vjesbyqssg64.ipfs.dweb.link/algorithms/sdr/notation/

Protocol Labs 28th July 2020

We did this via a combination of static analysis (reading code, comparing to specifica-
tions/expected outcomes) and dynamic analysis (debugging running test harnesses to
understand how the code works and what happens if parameters are altered).
As in all Rust audits we do, we ran linters and analyzers to get an idea of the general
code hygiene and safety. We notably used the following Rust utilities via cargo:

• audit, identifying dependencies with known vulnerabilities identified by the RustSec
project.

• clippy, standard Rust linter, suggesting quality improvements and identifying risky
coding patterns.

• geiger, reporting statistics about unsafe code blocks.

• outdated, to identify dependencies used in a version that is not the latest one.

• asm, to example how code compiles to machine code.

Except for one minor issue related to deprecated third-party crates, these tools did not
reveal any significant issue.

ZK-SNARK proofs audit 6

3

Code functionality

We briefly describe the components involved and the general proof workflow. Details can
be found in the related papers and documentation.

3.1 Building blocks
The core cryptographic building blocks of the filecoin proofs are:

• zk-SNARKs, the non-interactive zero-knowledge proof technique built on Groth’s
technique, and implemented by leveraging Zcash’s bellman crate.

• Hash functions: the circuit-friend Poseidon hash (whose implementation in the neptune

crate was audited), and SHA-256, as well as “SHA-254”, a version of SHA-256
whose output is stripped of its two most significant bits in order to hash to a 254-bit
field element.

• The BLS12-381 curve, an established pairing-friendly curve, which targets 128-bit
security.

• Merkle tree, or hash trees Trees involved in proofs of replication are binary or of
arity 8 (“octotrees”), and use Poseidon or SHA-256 as a hash. For example, column
commitments

• Proof-of-membership, a.k.a. Merkle proofs or authentication paths, which consist in
showing the set of nodes that “connect” a tree’s leaf or node to its root, by hashing
one’s way up to the tree’s too.

• Depth-robust graphs (DRG), a key component of the proof-of-replication encoding
scheme, which ensures (to some extent) that replicas remain stored and are not
recomputed between different proofs-of-replication. DRGs are graphs

3.2 Schemes implemented
• A proof-of-replication (PoRep) extends the basic concept of proof-of-retrievability by
proving that multiple copies (replicas) of the data are stored. This leverages DRGs
to “seal” different instances of the data, and showing compact proofs for such DRGs.

7

Protocol Labs 28th July 2020

• A proof-of-spacetime (PoSt) extends PoRep by proving that multiple copies of the
data are stored for a given period of time. A PoSt involves a series of PoReps.

(Here, “proving” should of course be understood as “proving a certain security bound that
depends on certain computational assumptions and on several parameters”.)

3.3 BLS12-381 background
This section will be very brief, as the literature on BLS12 curves is fairly widely established
and understood. BLS12-381 allows us to target a 128-bit security level type-3 pairing,
usually implemented as an optimal ate pairing, that transforms between two groups to a
third:

e : G1 ×G2 7→ GT

In usual implementations, the first group is formed from the curve E(Fp) and the second
group from the sextic twist of the 12th degree extension field, which is E(Fp2).
A third field exists, Fr, where r is the size of the cyclic subgroup used for cryptography
over the curves. Elements of this field therefore describe the order of any point in the
scheme.

3.4 Groth16 background
The objective of the Groth16 work is to provide a proof via a non-interactive protocol
in zero-knowledge. Ideally such a proof is succinct, hence the Succinct Non-Interactive
Argument of Knowledge (SNARK) acronym.
The Groth16 technique uses a generalized arithmetic circuit to build a binary relation R,
comprised of statement wires and witness wires. The witness wires satisfy the arithmetic
circuit and make the overall circuit consistent (or not).
The generalized arithmetic circuit is expressed as:

∑
aiui,q ·

∑
aivi,q =

∑
aiwi,q

Where a0 = 1 and a1, . . . , am ∈ K are variables and u, v, w are constants also in K
specifying the appropriate equation.
This expression is reformulated by taking arbitrary but distinct r1, . . . , rn ∈ K, defining

t(x) =
n∏

q=1

(x− rq)

and then set ui(x) to be a polynomial degree n− 1 where:

ui(rq) = ui,q

that is, the polynomial chosen when evaluated at the respective rq is equal to the constant
chosen above. Repeat this for v, w.

ZK-SNARK proofs audit 8

Protocol Labs 28th July 2020

The above generalized arithmetic circuit can then be written as:

∑
aiui(X) ·

∑
aivi(X) =

∑
aiwi(X) mod t(X)

The overall binary relation becomes:

R = (K, aux, l, {ui(X), vi(X), wi(X)}mi=0, t(X))

Here the parameter l is chosen such that 1 ≤ l ≤ m. Those terms in {ui(X), vi(X), wi(X)}li=0

are statements in the way explained above, and those terms {ui(X), vi(X), wi(X)}mi=l+1

are witness circuits. K is an appropriately large finite field, aux is some auxiliary informa-
tion and t(X) a polynomial described above.
Thus l delimits which of the m available wires are statement wires and which are witness
wires.
The system proposed by Groth and used here is concretely a pairing based variant of this
generalized description.
In the type-3 pairing case frequently used by BLS12-381, G1 6= G2 in the pairing groups
and there is no efficiently computable isomorphism between them - these are usually
implemented as optimal ate pairings.
The pairing-based NIZK is specified by:

R = (p,G1,G2,GT , e, g, h, l, {ui(X), vi(X), wi(X)}mi=0, t(X))

Then:

1. Setup: pick α, β, γ, δ, x ∈ Z∗
p.

Define:

τ = (α, β, γ, δ, x)

Then let:

σ1 =


α, β, γ, δ, {βui(x) + αvi(x) + wi(x)

γ
}li=0{

βui(x) + αvi(x) + wi(x)

γ

}m

i=l+1

,

{
xit(x)

δ

}n−1

i=0


and let:

σ2 = (β, γδ, {xi}n−1
i=0)

Then return σ = (σ1, σ2)

These expressions are complex, but are simply parameter sets expressing appro-
priately manipulated equations that are circuits, or quadratic arithmetic programs,
with parameters in appropriate domains for use in pairings.

ZK-SNARK proofs audit 9

Protocol Labs 28th July 2020

2. Prove: pick r, s ∈ Z∗
p. Compute:

A = α+

m∑
i=0

aiui(x) + rδ

B = β +

m∑
i=0

aivi(x) + sδ

C =

∑m
i=l+1 ai(βui(x) + αvi(x) + wi(x)) + h(x)t(x)

δ
+As+Br − rsδ

The proof statement is then: π = (A ·G1, B ·G1, B ·G2)

3. Verify:

e(A,B) == e(α, β) + e

(
l∑

i=0

ai

[
βui(x) + αvi(x) + wi(x)

γ

]
, γ

)
+ e(C, δ)

where e is the bilinear pairing.

In the Groth paper, [x]1 is used to mean x ∈ G1, that is, the bracket subscript indicates
the group in question. This notation has not been used here.

3.5 Rank-1 constraint systems
This concept originates in linear algebra but is relevant in the zkSNARK literature. The
Groth16 scheme enables one to implement such a constraint system.
The rank of a matrix A is the number of linearly independent columns in the matrix. A
circuit from groth16 can be reduced to a rank-1 constraint system and so the language of
constraint systems is used frequently throughout crates used by this project.

3.6 Implementation approach
The implementation approach is partially documented in https://hackmd.io/@jake/Bko2WrFhL
and https://hackmd.io/@jake/rym1Ggj2L, regarding the algorithms implemented, primi-
tives and encoding used. Below we briefly describe our understanding of the general
workflow of a proof’s generation logic, as context for our review and further comments.
The main steps involved in a creation of a (compound) proof, as well as the software
components involved, are the following (we omit details of the PoRep construction) after
an initial setup:
The first step is a creation of (vanilla) a batch of proofs of replication, using the ProofScheme’s
prove_all_partitions()method. The actual prove_all_partitions() is therefore that of a
vanilla proof, ultimately relying on the logic of prove_layer() in porep/stacked/vanilla/proof.rs.
These vanilla proofs are not NIZK proofs yet, and will be used as input for creating circuit
proofs. This is done via (as defined in compound_proofs.rs):

ZK-SNARK proofs audit 10

Protocol Labs 28th July 2020

fn circuit_proofs(

pub_in: &S::PublicInputs,

vanilla_proof: Vec<S::Proof>,

pub_params: &S::PublicParams,

groth_params: &groth16::MappedParameters<Bls12>,

priority: bool,

)

which takes a vector of vanilla proofs. Each proof in this vector is then circuitized via:

Self::circuit(

&pub_in,

C::ComponentPrivateInputs::default(),

&vanilla_proof,

&pub_params,

Some(k),

)

The actual circuit() being called is from porep/stacked/circuit/proof.rs, which performs
some sanity checks and returns a StackedCircuit object.
The actual circuit synthesis happens in groth16’s create_proof_batch_priority(), called
via various wrappers:

let mut provers = circuits

.into_par_iter()

.map(|circuit| -> Result<_, SynthesisError> {

let mut prover = ProvingAssignment {

a_aux_density: DensityTracker::new(),

b_input_density: DensityTracker::new(),

b_aux_density: DensityTracker::new(),

a: vec![],

b: vec![],

c: vec![],

input_assignment: vec![],

aux_assignment: vec![],

};

prover.alloc_input(|| ””, || Ok(E::Fr::one()))?;

circuit.synthesize(&mut prover)?;

The synthesize() of the stacked circuit object is then called, for example the PoRep’s:
this takes public parameters, a list of proofs, a replica ID, and commitments to the tree’s
roots (or hash thereof):

fn synthesize<CS: ConstraintSystem<Bls12>>(self, cs: &mut CS) -> Result<(), SynthesisError> {

let StackedCircuit {

public_params,

ZK-SNARK proofs audit 11

Protocol Labs 28th July 2020

proofs,

replica_id,

comm_r,

comm_d,

comm_r_last,

comm_c,

..

} = self;

This then allocates commitments as numbers, defines the public input, reverses the order
of the ID’s bit, and synthesizes each of the proofs:

for (i, proof) in proofs.into_iter().enumerate() {

proof.synthesize(

&mut cs.namespace(|| format!(”challenge_{}”, i)),

public_params.layer_challenges.layers(),

&comm_d_num,

&comm_c_num,

&comm_r_last_num,

&replica_id_bits,

)?;

}

Non-vanilla proofs are verified using groth16::verify_proof according to the logic in the
groth16 section above. Proof verification can be batched using groth16::verify_proofs_batched.
The CompoundProof trait in storage core offers two functions, verify and verify_batch. We
include only the signature of verify here:

fn verify<’b>(

public_params: &PublicParams<’a, S>,

public_inputs: &S::PublicInputs,

multi_proof: &MultiProof<’b>,

requirements: &S::Requirements,

) -> Result<bool> {

Here a multi_proof is exactly a vector of groth16 compatible proofs:

pub struct MultiProof<’a> {

pub circuit_proofs: Vec<groth16::Proof<Bls12>>,

pub verifying_key: &’a groth16::VerifyingKey<Bls12>,

}

In this case, StackedCompound, which forms the target scope for our review, implements
CompoundProof, providing the prove and verify_* methods necessary to create and prove
SNARG proofs.
Our review then focuses on what happens from this point. During this review we looked
primarily at the circuit being synthesized and its appropriate use in Groth proofs. Full
circuit synthesis takes place in porep/src/stacked/circuit/params.rs.

ZK-SNARK proofs audit 12

Protocol Labs 28th July 2020

Here, as described in the specification a number of proof of replication circuits are synthe-
sized and added as “inclusions” in the constraint system. The constraint system object is
reasonably complex: it supports multiple namespaces under the root each with their own
unique namespace, as implemented by the namespace struct:

/// This is a ”namespaced” constraint system which borrows a constraint system (pushing

/// a namespace context) and, when dropped, pops out of the namespace context.

pub struct Namespace<’a, E: ScalarEngine, CS: ConstraintSystem<E>>(&’a mut CS, PhantomData<E>);

This is a newtype declaration, so the Rust syntax appears unusual; the constraint system
is then referenced as self.0 inside this struct. The constraint system itself is implemented
as a trait, for which a test harness is provided. Its code comment describes its role:

/// Represents a constraint system which can have new variables

/// allocated and constrains between them formed.

pub trait ConstraintSystem<E: ScalarEngine>: Sized {

/// Represents the type of the ”root” of this constraint system

/// so that nested namespaces can minimize indirection.

type Root: ConstraintSystem<E>;

The Constraint system is built of LinearCombination objects:

/// This represents a linear combination of some variables, with coefficients

/// in the scalar field of a pairing-friendly elliptic curve group.

#[derive(Clone)]

pub struct LinearCombination<E: ScalarEngine>(HashMap<Variable, E::Fr>);

This may not seem to match the definitions of the Groth16 but in fact does if we consider
that any elliptic curve point may be expressed as the generator multiplied by some value
k in a cyclic group. Thus it is possible to evaluate the pairings demanded by the groth16
proof.
The multiple namespaces in the constraint system allow different commitments to be
made. We were not asked to analyse the larger scheme in this review, so we have not
included report findings or a description of said scheme here. Nevertheless, we have
checked that these variables are of the desired type, how they are instantiated and how
well the system tolerates possible manipulations.
Indeed this can be seen in the code, for example:

Thread 1 ”filecoinrunner” hit Breakpoint 4, paired::Engine::pairing (p=..., q=...)

at paired-0.19.1/src/lib.rs:97

(gdb) bt

#0 paired::Engine::pairing (p=..., q=...) at paired-0.19.1/src/lib.rs:97

#1 0x0000555555971505 in bellperson::groth16::verifier::prepare_batch_verifying_key

(vk=0x7fffffffc9c0) at bellperson-0.8.0/src/groth16/verifier.rs:32

#2 0x00005555557c45e3 in storage_proofs_core::compound_proof::CompoundProof::verify

ZK-SNARK proofs audit 13

Protocol Labs 28th July 2020

(public_params=0x7fffffffaaa8, public_inputs=0x7fffffffb340,

multi_proof=0x7fffffffd358, requirements=0x55555653cc00)

at rust-fil-proofs/storage-proofs/core/src/compound_proof.rs:118

#3 0x0000555555c60b16 in filecoinrunner::filecoinutils::run_compound_proof ()

at src/filecoinutils.rs:377

#4 0x00005555558a5ad6 in filecoinrunner::main () at src/main.rs:46

In public parameters and inputs supplied to proof and verify functions, Poseidon “do-
mains” are supplied. The Poseidon hash function was designed for more efficient hash-
ing in SNARKs and SNARGS, where the cost of SHA-256 circuits is computationally very
expensive and a quicker, yet secure, alternative is desired. This is used in the compound
proof as desired.
From our verification and analysis of the inputs, including attempts to induce logic errors
with a debugger and a custom running harness and having compared the scheme to its
specification, we have we believe demonstrated to our own satisfaction that the code
implements the desired scheme correctly.

ZK-SNARK proofs audit 14

4

Security issues

In the course of our analysis we have not found any issues we consider as having a secu-
rity impact. The code is written in safe Rust, and uses established and well implemented
dependencies for its circuit construction, evaluation and for Groth proofs.
As always, security issues cannot be entirely ruled out.

15

5

Observations

5.1 Suggested additional pre-conditions checks
In porep/stacked/circuit/params.rs, synthesize()may perform early additional sanity checks
such as checking the length of comm_d_path (although an invalid path will prevent enforce_inclusion()
from succeeding). The number of layers layers could be checked to be the number of
parent columns (being used in parent_col.get_value(layer)), otherwise the assert! in
get_value() will fail. Likewise, parents proofs argument in this function might gain to be
checked for consistency and non-emptiness.
In porep/stacked/circuit/create_label.rs, create_label_circuit() accepts replica_id that
is a very short or even empty slice, a minimal length should thus be enforced.

5.1.1 Resolution
This issue was resolved by the customer in this pull request. Checks now exist for empty
input values:

assert!(!drg_parents_proofs.is_empty());

assert!(!exp_parents_proofs.is_empty());

as suggested. In addition, as suggested, layers and parent column equality are also
checked:

assert_eq!(layers, parent_col.len());

The remaining issues suggested here are also resolved as part of these commits.

5.2 Unhandled overflow
The (unlikely) case of an integer overflow is not handled in themultiplications in satisfies_requirements():

16

https://github.com/filecoin-project/rust-fil-proofs/pull/1196

Protocol Labs 28th July 2020

fn satisfies_requirements(

public_params: &Self::PublicParams,

requirements: &Self::Requirements,

partitions: usize,

) -> bool {

partitions * public_params.sector_count * public_params.challenge_count

>= requirements.minimum_challenge_count

}

fn satisfies_requirements(

public_params: &PublicParams<Tree>,

requirements: &ChallengeRequirements,

partitions: usize,

) -> bool {

let partition_challenges = public_params.layer_challenges.challenges_count_all();

partition_challenges * partitions >= requirements.minimum_challenges

}

5.2.1 Resolution
This issue was resolved by the customer in this pull request. satisfies_requirements now
includes an overflow check in the form of Rust/LLVM’s checked_mul primitive:

assert_eq!(

partition_challenges.checked_mul(partitions),

Some(partition_challenges * partitions)

);

5.3 Deprecated dependencies
Two dependencies are reported as deprecated by cargo audit, and could be replaced
with new crates:

• tempdir, used in neptune and rust-fil-proofs, to be replaced with tempfile

• net2, used in rust-fil-proofs, to be replaced with socket2

5.3.1 Resolution
This issue was resolved by the customer in this pull request. tempdir has been replaced
by tempfile.
socket2 is used by an upstream dependency and will need to be resolved by the relevant
upstream package.

5.4 Naming improvement
In compound_proofs.rs’ circuit_proofs(), the vanilla_proof: Vec<S::Proof> might be
renamed to vanilla_proofs for clarity.

ZK-SNARK proofs audit 17

https://github.com/filecoin-project/rust-fil-proofs/pull/1196
https://docs.rs/crate/tempdir/0.3.7
https://docs.rs/crate/tempfile/3.1.0
https://docs.rs/crate/net2/0.2.34
https://docs.rs/crate/socket2/0.3.12
https://github.com/filecoin-project/rust-fil-proofs/pull/1196

Protocol Labs 28th July 2020

5.4.1 Resolution
This issue was resolved by the customer in this pull request. The name is changed as
suggested.

ZK-SNARK proofs audit 18

https://github.com/filecoin-project/rust-fil-proofs/pull/1196

	Contents
	Introduction
	Audit summary
	Scope
	Security goals

	Methodology
	Code functionality
	Building blocks
	Schemes implemented
	BLS12-381 background
	Groth16 background
	Rank-1 constraint systems
	Implementation approach

	Security issues
	Observations
	Suggested additional pre-conditions checks
	Resolution

	Unhandled overflow
	Resolution

	Deprecated dependencies
	Resolution

	Naming improvement
	Resolution

